Complexity Theory Part I

Problem Set 7 due right now using a late period

The Limits of Computability

 $\stackrel{50}{50}$

What problems can be solved by a computer?

What problems can be solved efficiently by a computer?

Where We've Been

- The class \mathbf{R} represents problems that can be solved by a computer.
- The class RE represents problems where "yes" answers can be verified by a computer.
- The class co-RE represents problems where "no" answers can be verified by a computer.
- The mapping reduction can be used to find connections between problems.

Where We're Going

- The class \mathbf{P} represents problems that can be solved efficiently by a computer.
- The class NP represents problems where "yes" answers can be verified efficiently by a computer.
- The class co-NP represents problems where "no" answers can be verified efficiently by a computer.
- The polynomial-time mapping reduction can be used to find connections between problems.

It may be that since one is customarily concerned with existence, [...] finiteness, and so forth, one is not inclined to take seriously the question of the existence of a better-than-finite algorithm.

- Jack Edmonds, "Paths, Trees, and Flowers"

It may be that since one is customarily concerned with existence, [...] decidability, and so forth, one is not inclined to take seriously the question of the existence of a better-than-decidable algorithm.

- Jack Edmonds, "Paths, Trees, and Flowers"

A Decidable Problem

- Presburger arithmetic is a logical system for reasoning about arithmetic.
- $\forall x . x+1 \neq 0$
- $\forall x \cdot \forall y \cdot(x+1=y+1 \rightarrow x=y)$
- $\forall x . x+0=x$
- $\forall x . \forall y .(x+y)+1=x+(y+1)$
- $\forall x .((P(0) \wedge \forall y .(P(y) \rightarrow P(y+1))) \rightarrow \forall x . P(x)$
- Given a statement, it is decidable whether that statement can be proven from the laws of Presburger arithmetic.
- Any Turing machine that decides whether a statement in Presburger arithmetic is true or false has to move the tape head at least $\mathbf{2}^{2^{\text {cn }}}$ times on some inputs of length n (for some fixed constant C).

For Reference

- Assume $c=1$.

$$
\begin{gathered}
2^{2^{0}}=2 \\
2^{2^{1}}=4 \\
2^{2^{2}}=16 \\
2^{2^{3}}=256 \\
2^{2^{4}}=65536 \\
2^{2^{5}}=18446744073709551616
\end{gathered}
$$

$2^{2^{6}}=340282366920938463463374607431768211456$

The Limits of Decidability

- The fact that a problem is decidable does not mean that it is feasibly decidable.
- In computability theory, we ask the question

Is it possible to solve problem L ?

- In complexity theory, we ask the question

Is it possible to solve problem L efficiently?

- In the remainder of this course, we will explore this question in more detail.

The Setup

- In order to study computability, we needed to answer these questions:
- What is "computation?"
- What is a "problem?"
- What does it mean to "solve" a problem?
- To study complexity, we need to answer these questions:
- What does "complexity" even mean?
- What is an "efficient" solution to a problem?

Measuring Complexity

- Suppose that we have a decider D for some language L.
- How might we measure the complexity of D ?
- Number of states.
- Size of tape alphabet.
- Size of input alphabet.
- Amount of tape required.
- Number of steps required.
- Number of times a given state is entered.
- Number of times a given symbol is printed.
- Number of times a given transition is taken.
- (Plus a whole lot more...)

Time Complexity

- A step of a Turing machine is one event where the TM takes a transition.

Time Complexity

- A step of a Turing machine is one event where the TM takes a transition.

Step Counter
15

Time Complexity

- A step of a Turing machine is one event where the TM takes a transition.

Time Complexity

- A step of a Turing machine is one event where the TM takes a transition.

Step Counter

Time Complexity

- A step of a Turing machine is one event where the TM takes a transition.

Time Complexity

- A step of a Turing machine is one event where the TM takes a transition.

Time Complexity

- The number of steps a TM takes on some input is sensitive to
- The structure of that input.
- The length of the input.
- How can we come up with a consistent measure of a machine's runtime?

Time Complexity

- The time complexity of a TM M is a function denoting the worst-case number of steps M takes on any input of length n.
- By convention, n denotes the length of the input.
- Assume we're only dealing with deciders, so there's no need to handle looping TMs.
- The previous TM has a time complexity that is (roughly) proportional to $n^{2} / 2$.
- Difficult and utterly unrewarding exercise: compute the exact time complexity of the previous TM.

A Slight Problem

- Consider the following TM over $\Sigma=\{0,1\}$ for the language BALANCE $=\left\{w \in \Sigma^{*} \mid w\right.$ has the same number of 0 s and 1 s$\}$:
- $M=$ "On input w :
- Scan across the tape until a 0 or 1 is found.
- If none are found, accept.
- If one is found, continue scanning until a matching 1 or 0 is found.
- If none is found, reject.
- Otherwise, cross off that symbol and repeat."
- What is the time complexity of M ?

A Loss of Precision

- When considering computability, using high-level TM descriptions is perfectly fine.
- When considering complexity, high-level TM descriptions make it nearly impossible to precisely reason about the actual time complexity.
- What are we to do about this?

The Best We Can

$M=$ "On input w :

- Scan across the tape until a 0 or 1 At most n steps. is found.
- If none are found, accept.
- If one is found, continue scanning until a matching 1 or 0 is found.

At most 1 step.
At most n more steps.

At most
n/2
loops

- If none are found, reject.

At most 1 step

- Otherwise, cross off that symbol At most n steps to and repeat." get back to the
$+\quad$ start of the tape. At most $3 n+2$ steps.
$\times \quad$ At most $n / 2$ loops.
At most $3 n^{2} / 2+n$ steps.

An Easier Approach

- In complexity theory, we rarely need an exact value for a TM's time complexity.
- Usually, we are curious with the long-term growth rate of the time complexity. That tells us how scalable our algorithm will be.
- For example, if the time complexity is $3 n+5$, then doubling the length of the string roughly doubles the worst-case runtime.
- If the time complexity is $2^{n}-n^{2}$, since 2^{n} grows much more quickly than n^{2}, for large values of n, increasing the size of the input by 1 doubles the worst-case running time.

Big-O Notation

- Ignore everything except the dominant growth term, including constant factors.
- Examples:
- $4 n+4=\mathbf{O}(\mathbf{n})$
- $137 n+271=\mathbf{O}(\boldsymbol{n})$
- $n^{2}+3 n+4=\mathbf{O}\left(\boldsymbol{n}^{2}\right)$
- $2^{n}+n^{3}=\mathbf{O}\left(2^{n}\right)$
- $137=\mathbf{O (1)}$
- $n^{2} \log n+\log ^{5} n=\mathbf{O}\left(\boldsymbol{n}^{2} \log \boldsymbol{n}\right)$

Big-O Notation, Formally

- Formally speaking, let $f, g: \mathbb{N} \rightarrow \mathbb{N}$.
- We say $\boldsymbol{f}(\boldsymbol{n})=\mathbf{O}(\boldsymbol{g}(\boldsymbol{n}))$ iff

There are constants n_{0}, c such that $\forall n \in \mathbb{N} .\left(n \geq n_{0} \rightarrow f(n) \leq C \cdot g(n)\right)$

- Intuitively, when n gets "sufficiently large" (i.e. greater than n_{0}), $f(n)$ is bounded from above by some constant multiple (specifically, c) of $g(n)$.

$f(n)=O(g(n))$

Properties of Big-O Notation

- Theorem: If $f_{1}(n)=\mathrm{O}\left(g_{1}(n)\right)$ and $f_{2}(n)=\mathrm{O}\left(g_{2}(n)\right)$, then $f_{1}(n)+f_{2}(n)=\mathrm{O}\left(g_{1}(n)+g_{2}(n)\right)$.
- Intuitively: If you run two programs one after another, the big-O of the result is the big-O of the sum of the two runtimes.
- Theorem: If $f_{1}(n)=\mathrm{O}\left(g_{1}(n)\right)$ and $f_{2}(n)=\mathrm{O}\left(g_{2}(n)\right)$, then $f_{1}(n) f_{2}(n)=\mathrm{O}\left(g_{1}(n) g_{2}(n)\right)$.
- Intuitively: If you run one program some number of times, the big-O of the result is the big-O of the program times the big-O of the number of iterations.
- This makes it substantially easier to analyze time complexity, though we do lose some precision.

Life is Easier with Big-O

$M=$ "On input w :

- Scan across the tape until a 0 or 1 is found.
- If none are found, accept.
\(\left.\begin{array}{ll} \& O(1) steps

\& O(n) steps

\& O(1) steps

+\quad \& O(n) steps\end{array}\right\}\)| $O(n)$ |
| :--- |
| loops |
| $\times \quad O(n)$ steps |
| |

A Quick Note

- Time complexity depends on the model of computation.
- A computer can binary search over a sorted array in time $\mathrm{O}(\log n)$.
- A TM has to spend at least n time doing this, since it has no random access.
- For now, assume that the slowdown going from a computer to a TM or vice-versa is not "too bad."

The Story So Far

- We now have a definition of the runtime of a TM.
- We can use big-O notation to measure the relative growth rates of different runtimes.
- Big question: How do we define efficiency?

Time-Out For Announcements!

Problem Set 6 Graded

- All Problem Set 6's have been graded. Late submissions will be returned at the end of lecture today.

A Question from Last Time

"Aren't there some cases where we can know a TM is infinite looping? Couldn't we modify the U_{TM} so it keeps a record of IDs
and then if it sees the same one twice know it was in a loop? This doesn't guarantee to find all loops, but would it be useful?"

Back to CS103!

What is an efficient algorithm?

Searching Finite Spaces

- Many decidable problems can be solved by searching over a large but finite space of possible options.
- Searching this space might take a staggeringly long time, but only finite time.
- From a decidability perspective, this is totally fine.
- From a complexity perspective, this is totally unacceptable.

A Sample Problem

$$
\begin{array}{llllllllllllll}
4 & 3 & 11 & 9 & 7 & 13 & 5 & 6 & 1 & 12 & 2 & 8 & 0 & 10
\end{array}
$$

Goal: Find the length of the longest increasing subsequence of this sequence.

A Sample Problem

$$
\begin{array}{l|llllll|lll|l|l}
4 & 3 & 11 & 9 & 7 & 13 & 5 & 6 & 1 & 12 & 2 & 8
\end{array} 0
$$

Longest so far: 411

How many different subsequences are there in a sequence of n elements? $\mathbf{2}^{n}$

How long does it take to check each subsequence? $\mathbf{O (n)}$ time.

Runtime is around $\mathbf{O}\left(\boldsymbol{n} \cdot \mathbf{2}^{\boldsymbol{n}}\right.$).

A Sample Problem

$\begin{array}{llllllllllll}4 & 3 & 11 & 9 & 7 & 13 & 5 & 6 & 1 & 12 & 2 & 8 \\ 0 & 10\end{array}$
 $\begin{array}{llllllllllllll}1 & 1 & 2 & 2 & 2 & 3 & 2 & 3 & 1 & 4 & 2 & 4 & 1 & 5\end{array}$

How many elements of the sequence do we have to look at when considering the k th element of the sequence? \boldsymbol{k} - $\mathbf{1}$

Total runtime is

$$
1+2+\ldots+(n-1)=\mathbf{O}\left(n^{2}\right)
$$

Another Problem

Another Problem

Another Problem

For Comparison

- Longest increasing • Shortest path subsequence:
- Naive: $\mathrm{O}\left(n \cdot 2^{n}\right)$
- Fast: $\mathrm{O}\left(n^{2}\right)$
- Naive: $\mathrm{O}\left(n^{2} \cdot n!\right)$
- Fast: $\mathrm{O}(n+m)$, where n is the number of nodes and m the number of edges. (Take CS161 for details!)

Defining Efficiency

- When dealing with problems that search for the "best" object of some sort, there are often at least exponentially many possible options.
- Brute-force solutions tend to take at least exponential time to complete.
- Clever algorithms often run in time $O(n)$, or $\mathrm{O}\left(n^{2}\right)$, or $\mathrm{O}\left(n^{3}\right)$, etc.

Polynomials and Exponentials

- A TM runs in polynomial time iff its runtime is some polynomial in n.
- That is, time $\mathrm{O}\left(n^{k}\right)$ for some constant k.
- Polynomial functions "scale well."
- Small changes to the size of the input do not typically induce enormous changes to the overall runtime.
- Exponential functions scale terribly.
- Small changes to the size of the input induce huge changes in the overall runtime.

The Cobham-Edmonds Thesis

A language L can be decided efficiently iff there is a TM that decides it in polynomial time.

Equivalently, L can be decided efficiently iff it can be decided in time $O\left(n^{k}\right)$ for some $k \in \mathbb{N}$.

Like the Church-Turing thesis, this is not a theorem!

It's an assumption about the nature of efficient computation, and it is somewhat controversial.

The Cobham-Edmonds Thesis

- Efficient runtimes:
- $4 n+13$
- $n^{3}-2 n^{2}+4 n$
- $n \log \log n$
- "Efficient" runtimes:
- $n^{1,000,000,000,000}$
- 10^{500}
- Inefficient runtimes:
- 2^{n}
- n !
- n^{n}
- "Inefficient" runtimes:
- $n^{0.0001 \log n}$
- 1.000000001^{n}

The Complexity Class \mathbf{P}

- The complexity class \mathbf{P} (for polynomial time) contains all problems that can be solved in polynomial time.
- Formally:

$$
\begin{gathered}
\mathbf{P}=\left\{L \left\lvert\, \begin{array}{l}
\text { There is a polynomial-time } \\
\text { decider for } L\}
\end{array}\right.\right.
\end{gathered}
$$

- Assuming the Cobham-Edmonds thesis, a language is in \mathbf{P} iff it can be decided efficiently.

Examples of Problems in \mathbf{P}

- All regular languages are in \mathbf{P}.
- All have linear-time TMs.
- All CFLs are in \mathbf{P}.
- Requires a more nuanced argument (the CYK algorithm or Earley's algorithm.)
- Many other problems are in P.
- More on that in a second.

