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The Limits of Computability
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What problems can be
solved by a computer?



  

What problems can be
solved efficiently by a computer?



  

Where We've Been

● The class R represents problems that can be 
solved by a computer.

● The class RE represents problems where “yes” 
answers can be verified by a computer.                 
       

● The class co-RE represents problems where
“no” answers can be verified by a computer.         
         

● The mapping reduction can be used to find 
connections between problems.



  

Where We're Going

● The class P represents problems that can be 
solved efficiently by a computer.

● The class NP represents problems where “yes” 
answers can be verified efficiently by a 
computer.

● The class co-NP represents problems where 
“no” answers can be verified efficiently by a 
computer.

● The polynomial-time mapping reduction can be 
used to find connections between problems.



  

It may be that since one is customarily 
concerned with existence, […] finiteness, 
and so forth, one is not inclined to take 
seriously the question of the existence of a 
better-than-finite algorithm.

- Jack Edmonds, “Paths, Trees, and Flowers”



  

It may be that since one is customarily 
concerned with existence, […] decidability, 
and so forth, one is not inclined to take 
seriously the question of the existence of a 
better-than-decidable algorithm.

- Jack Edmonds, “Paths, Trees, and Flowers”



  

A Decidable Problem
● Presburger arithmetic is a logical system for reasoning 

about arithmetic.

● ∀x. x + 1 ≠ 0

● ∀x. ∀y. (x + 1 = y + 1 → x = y)

● ∀x. x + 0 = x

● ∀x. ∀y. (x + y) + 1 = x + (y + 1)

● ∀x. ((P(0) ∧ ∀y. (P(y) → P(y + 1))) → ∀x. P(x)

● Given a statement, it is decidable whether that statement can 
be proven from the laws of Presburger arithmetic.

● Any Turing machine that decides whether a statement in 
Presburger arithmetic is true or false has to move the tape 
head at least       times on some inputs of length n (for some 
fixed constant c).
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For Reference

● Assume c = 1.
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The Limits of Decidability

● The fact that a problem is decidable does not mean 
that it is feasibly decidable.

● In computability theory, we ask the question

          Is it possible to solve problem L?

● In complexity theory, we ask the question

       Is it possible to solve problem L efficiently?

● In the remainder of this course, we will explore this 
question in more detail.
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The Setup

● In order to study computability, we 
needed to answer these questions:
● What is “computation?”
● What is a “problem?”
● What does it mean to “solve” a problem?

● To study complexity, we need to answer 
these questions:
● What does “complexity” even mean?
● What is an “efficient” solution to a problem?



  

Measuring Complexity

● Suppose that we have a decider D for some language L.
● How might we measure the complexity of D?

● Number of states.
● Size of tape alphabet.
● Size of input alphabet.
● Amount of tape required.
● Number of steps required.
● Number of times a given state is entered.
● Number of times a given symbol is printed.
● Number of times a given transition is taken.
● (Plus a whole lot more...)
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Time Complexity

● A step of a Turing machine is one event where the 
TM takes a transition.
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Time Complexity

● The number of steps a TM takes on some 
input is sensitive to
● The structure of that input.
● The length of the input.

● How can we come up with a consistent 
measure of a machine's runtime?



  

Time Complexity

● The time complexity of a TM M is a function 
denoting the worst-case number of steps M takes 
on any input of length n.

● By convention, n denotes the length of the input.
● Assume we're only dealing with deciders, so there's 

no need to handle looping TMs.

● The previous TM has a time complexity that is 
(roughly) proportional to n2 / 2.

● Difficult and utterly unrewarding exercise: compute 
the exact time complexity of the previous TM.



  

A Slight Problem

● Consider the following TM over Σ = {0, 1} 
for the language BALANCE = { w ∈ Σ* | w 
has the same number of 0s and 1s }:
● M = “On input w:

– Scan across the tape until a 0 or 1 is found.

– If none are found, accept.
– If one is found, continue scanning until a matching 1 

or 0 is found.

– If none is found, reject.
– Otherwise, cross off that symbol and repeat.”

● What is the time complexity of M?



  

A Loss of Precision

● When considering computability, using 
high-level TM descriptions is perfectly 
fine.

● When considering complexity, high-level 
TM descriptions make it nearly 
impossible to precisely reason about the 
actual time complexity.

● What are we to do about this?



  

The Best We Can

M = “On input w:

● Scan across the tape until a 0 or 1
is found.

● If none are found, accept.
● If one is found, continue scanning

until a matching 1 or 0 is found.

● If none are found, reject.
● Otherwise, cross off that symbol

and repeat.”

At most n steps.

At most 1 step.

At most n 
more steps.

At most 1 step

At most n steps to 
get back to the 

start of the tape.

At most 3n + 2 steps.

At most
n/2

loops

At most n/2 loops.

At most 3n2 / 2 + n steps.

+

×



  

An Easier Approach

● In complexity theory, we rarely need an exact 
value for a TM's time complexity.

● Usually, we are curious with the long-term 
growth rate of the time complexity. That tells 
us how scalable our algorithm will be.

● For example, if the time complexity is 3n + 5, 
then doubling the length of the string roughly 
doubles the worst-case runtime.

● If the time complexity is 2n – n2, since 2n grows 
much more quickly than n2, for large values of 
n, increasing the size of the input by 1 doubles 
the worst-case running time.



  

Big-O Notation

● Ignore everything except the dominant 
growth term, including constant factors.

● Examples:
● 4n + 4 = O(n)
● 137n + 271 = O(n)
● n2 + 3n + 4 = O(n2)
● 2n + n3 = O(2n)
● 137 = O(1)
● n2 log n + log5 n = O(n2 log n)



  

Big-O Notation, Formally

● Formally speaking, let f, g : ℕ → ℕ.
● We say f(n) = O(g(n)) iff

There are constants n₀, c such that
    ∀n ∈ ℕ. (n ≥ n0 → f(n) ≤ c·g(n))

● Intuitively, when n gets “sufficiently 
large” (i.e. greater than n0), f(n) is 
bounded from above by some constant 
multiple (specifically, c) of g(n).



  

f(n) = O(g(n))

f(n)

g(n)

c · g(n)

n₀



  

● Theorem: If f1(n) = O(g1(n)) and f2(n) = O(g2(n)), 
then f1(n) + f2(n) = O(g1(n) + g2(n)).

● Intuitively: If you run two programs one after 
another, the big-O of the result is the big-O of the 
sum of the two runtimes.

● Theorem: If f1(n) = O(g1(n)) and f2(n) = O(g2(n)), 
then f1(n)f2(n) = O(g1(n)g2(n)).

● Intuitively: If you run one program some number of 
times, the big-O of the result is the big-O of the 
program times the big-O of the number of iterations.

● This makes it substantially easier to analyze time 
complexity, though we do lose some precision.

Properties of Big-O Notation



  

Life is Easier with Big-O

O(n) steps

O(1) steps

O(n) steps

O(1) steps

O(n) steps

O(n) steps

O(n)
loops

O(n) loops

O(n2) steps

+

×

M = “On input w:

● Scan across the tape until a 0 or 1
is found.

● If none are found, accept.
● If one is found, continue scanning

until a matching 1 or 0 is found.

● If none is found, reject.
● Otherwise, cross off that symbol

and repeat.”



  

A Quick Note

● Time complexity depends on the model of 
computation.
● A computer can binary search over a sorted 

array in time O(log n).
● A TM has to spend at least n time doing this, 

since it has no random access.
● For now, assume that the slowdown going 

from a computer to a TM or vice-versa is 
not “too bad.”



  

The Story So Far

● We now have a definition of the runtime 
of a TM.

● We can use big-O notation to measure 
the relative growth rates of different 
runtimes.

● Big question: How do we define 
efficiency?



  

Time-Out For Announcements!



  

Problem Set 6 Graded

● All Problem Set 6's have been graded. 
Late submissions will be returned at the 
end of lecture today.



  

A Question from Last Time



  

“Aren't there some cases where we can 
know a TM is infinite looping? Couldn't we 
modify the UTM so it keeps a record of IDs 

and then if it sees the same one twice know 
it was in a loop? This doesn't guarantee to 

find all loops, but would it be useful?”



  

Back to CS103!



  

What is an efficient algorithm?



  

Searching Finite Spaces

● Many decidable problems can be solved 
by searching over a large but finite space 
of possible options.

● Searching this space might take a 
staggeringly long time, but only finite 
time.

● From a decidability perspective, this is 
totally fine.

● From a complexity perspective, this is 
totally unacceptable.



  

A Sample Problem

4 3 11 9 7 13 5 6 1 12 2 8 0 10

Goal: Find the length of 
the longest increasing 
subsequence of this 

sequence.

Goal: Find the length of 
the longest increasing 
subsequence of this 

sequence.



  

4 3 11 9 7 13 5 6 1 12 2 8 0 10

A Sample Problem

Longest so far: 4 11

How many different 
subsequences are there in a 
sequence of n elements?  2n

How long does it take to check 
each subsequence?  O(n) time.

Runtime is around O(n · 2n).

How many different 
subsequences are there in a 
sequence of n elements?  2n

How long does it take to check 
each subsequence?  O(n) time.

Runtime is around O(n · 2n).
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A Sample Problem

1 1 2 2 2 3 32 3 1 4 2 4 1 5

How many elements of the 
sequence do we have to look at 

when considering the kth 
element of the sequence? k – 1

Total runtime is
1 + 2 + … + (n – 1) = O(n2)

How many elements of the 
sequence do we have to look at 

when considering the kth 
element of the sequence? k – 1

Total runtime is
1 + 2 + … + (n – 1) = O(n2)



  

Another Problem
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Goal: Determine the 
length of the shortest 
path from A to F in 

this graph.

Goal: Determine the 
length of the shortest 
path from A to F in 

this graph.



  

Another Problem

E
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Number of possible 
ways to order a 

subset of n nodes is 
O(n × n!)

Time to check a 
path is O(n).

Runtime: O(n2 · n!)

Number of possible 
ways to order a 

subset of n nodes is 
O(n × n!)

Time to check a 
path is O(n).

Runtime: O(n2 · n!)



  

Another Problem
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is O(n + m),
where n is the 
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For Comparison

● Longest increasing 
subsequence:
● Naive: O(n · 2n)
● Fast: O(n2)

● Shortest path 
problem:
● Naive: O(n2 · n!)
● Fast: O(n + m), 

where n is the 
number of nodes 
and m the number 
of edges. (Take 
CS161 for details!)



  

Defining Efficiency

● When dealing with problems that search 
for the “best” object of some sort, there 
are often at least exponentially many 
possible options.

● Brute-force solutions tend to take at least 
exponential time to complete.

● Clever algorithms often run in time O(n), 
or O(n2), or O(n3), etc.



  

Polynomials and Exponentials

● A TM runs in polynomial time iff its 
runtime is some polynomial in n.
● That is, time O(nk) for some constant k.

● Polynomial functions “scale well.”
● Small changes to the size of the input do not 

typically induce enormous changes to the 
overall runtime.

● Exponential functions scale terribly.
● Small changes to the size of the input induce 

huge changes in the overall runtime.



  

The Cobham-Edmonds Thesis

A language L can be decided efficiently iff
there is a TM that decides it in polynomial time.

Equivalently, L can be decided efficiently iff
it can be decided in time O(nk) for some k ∈ ℕ.

Like the Church-Turing thesis, this is 
not a theorem!

 

It's an assumption about the nature of 
efficient computation, and it is 

somewhat controversial.

Like the Church-Turing thesis, this is 
not a theorem!

 

It's an assumption about the nature of 
efficient computation, and it is 

somewhat controversial.



  

The Cobham-Edmonds Thesis

● Efficient runtimes:
● 4n + 13
● n3 – 2n2 + 4n
● n log log n

● “Efficient” runtimes:
● n1,000,000,000,000

● 10500

● Inefficient runtimes:
● 2n

● n!
● nn

● “Inefficient” runtimes:
● n0.0001 log n

● 1.000000001n



  

The Complexity Class P

● The complexity class P (for polynomial 
time) contains all problems that can be 
solved in polynomial time.

● Formally:

P = { L | There is a polynomial-time   
decider for L }      

● Assuming the Cobham-Edmonds thesis, a 
language is in P iff it can be decided 
efficiently.



  

Examples of Problems in P

● All regular languages are in P.
● All have linear-time TMs.

● All CFLs are in P.
● Requires a more nuanced argument (the 

CYK algorithm or Earley's algorithm.)

● Many other problems are in P.
● More on that in a second.
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