

Complexity Theory
Part I

Problem Set 7 due
right now using a

late period

Problem Set 7 due
right now using a

late period

The Limits of Computability

RE

A
TMHALT

L
D

co-RE R
ADD

0*1*

A
TMHALT

L
D

L
e

L
e

EQ
TM

EQ
TM

What problems can be
solved by a computer?

What problems can be
solved efficiently by a computer?

Where We've Been

● The class R represents problems that can be
solved by a computer.

● The class RE represents problems where “yes”
answers can be verified by a computer.

● The class co-RE represents problems where
“no” answers can be verified by a computer.

● The mapping reduction can be used to find
connections between problems.

Where We're Going

● The class P represents problems that can be
solved efficiently by a computer.

● The class NP represents problems where “yes”
answers can be verified efficiently by a
computer.

● The class co-NP represents problems where
“no” answers can be verified efficiently by a
computer.

● The polynomial-time mapping reduction can be
used to find connections between problems.

It may be that since one is customarily
concerned with existence, […] finiteness,
and so forth, one is not inclined to take
seriously the question of the existence of a
better-than-finite algorithm.

- Jack Edmonds, “Paths, Trees, and Flowers”

It may be that since one is customarily
concerned with existence, […] decidability,
and so forth, one is not inclined to take
seriously the question of the existence of a
better-than-decidable algorithm.

- Jack Edmonds, “Paths, Trees, and Flowers”

A Decidable Problem
● Presburger arithmetic is a logical system for reasoning

about arithmetic.

● ∀x. x + 1 ≠ 0

● ∀x. ∀y. (x + 1 = y + 1 → x = y)

● ∀x. x + 0 = x

● ∀x. ∀y. (x + y) + 1 = x + (y + 1)

● ∀x. ((P(0) ∧ ∀y. (P(y) → P(y + 1))) → ∀x. P(x)

● Given a statement, it is decidable whether that statement can
be proven from the laws of Presburger arithmetic.

● Any Turing machine that decides whether a statement in
Presburger arithmetic is true or false has to move the tape
head at least times on some inputs of length n (for some
fixed constant c).

22
cn

For Reference

● Assume c = 1.

220

=2

221

=4

222

=16

223

=256

224

=65536

225

=18446744073709551616

226

=340282366920938463463374607431768211456

The Limits of Decidability

● The fact that a problem is decidable does not mean
that it is feasibly decidable.

● In computability theory, we ask the question

 Is it possible to solve problem L?

● In complexity theory, we ask the question

 Is it possible to solve problem L efficiently?

● In the remainder of this course, we will explore this
question in more detail.

 Undecidable Languages

Regular
Languages CFLs R

Efficiently
Decidable

Languages

The Setup

● In order to study computability, we
needed to answer these questions:
● What is “computation?”
● What is a “problem?”
● What does it mean to “solve” a problem?

● To study complexity, we need to answer
these questions:
● What does “complexity” even mean?
● What is an “efficient” solution to a problem?

Measuring Complexity

● Suppose that we have a decider D for some language L.
● How might we measure the complexity of D?

● Number of states.
● Size of tape alphabet.
● Size of input alphabet.
● Amount of tape required.
● Number of steps required.
● Number of times a given state is entered.
● Number of times a given symbol is printed.
● Number of times a given transition is taken.
● (Plus a whole lot more...)

q
0

Time Complexity

● A step of a Turing machine is one event where the
TM takes a transition.

q
0

q
3
q
3

q
1
q
1

q
2
q
2

start

0 → , R☐

0 → 0, R
1 → 1, R

 → ☐ ☐, L

1 → , L☐0 → 0, L
1 → 1, L

 → ☐ ☐, R

q
acc

 → ☐ ☐, R

q
acc

1 → , R☐

 → ☐ ☐, R
0 → 0, R

q
rej

q
acc 0 0 1 1… …

0
Step Counter

q
0
q
0

q
3
q
3

q
2

q
1

q
2

q
1

Time Complexity

● A step of a Turing machine is one event where the
TM takes a transition.

start

0 → , R☐

0 → 0, R
1 → 1, R

 → ☐ ☐, L

1 → , L☐0 → 0, L
1 → 1, L

 → ☐ ☐, R

q
acc

 → ☐ ☐, R

q
acc

1 → , R☐

 → ☐ ☐, R
0 → 0, R

q
rej

q
acc … …

15
Step Counter

q
0

Time Complexity

● A step of a Turing machine is one event where the
TM takes a transition.

q
0

q
3
q
3

q
1
q
1

q
2
q
2

start

0 → , R☐

0 → 0, R
1 → 1, R

 → ☐ ☐, L

1 → , L☐0 → 0, L
1 → 1, L

 → ☐ ☐, R

q
acc

 → ☐ ☐, R

q
acc

1 → , R☐

 → ☐ ☐, R
0 → 0, R

q
rej

q
acc 0 1… …

0
Step Counter

q
0
q
0

q
3
q
3

q
2

q
1

q
2

q
1

Time Complexity

● A step of a Turing machine is one event where the
TM takes a transition.

start

0 → , R☐

0 → 0, R
1 → 1, R

 → ☐ ☐, L

1 → , L☐0 → 0, L
1 → 1, L

 → ☐ ☐, R

q
acc

 → ☐ ☐, R

q
acc

1 → , R☐

 → ☐ ☐, R
0 → 0, R

q
rej

q
acc … …

6
Step Counter

q
0

Time Complexity

● A step of a Turing machine is one event where the
TM takes a transition.

q
0

q
3
q
3

q
1
q
1

q
2
q
2

start

0 → , R☐

0 → 0, R
1 → 1, R

 → ☐ ☐, L

1 → , L☐0 → 0, L
1 → 1, L

 → ☐ ☐, R

q
acc

 → ☐ ☐, R

q
acc

1 → , R☐

 → ☐ ☐, R
0 → 0, R

q
rej

q
acc 0 1 1 1… …

0
Step Counter

q
0
q
0

q
3
q
3

q
2

q
1

q
2

q
1

Time Complexity

● A step of a Turing machine is one event where the
TM takes a transition.

start

0 → , R☐

0 → 0, R
1 → 1, R

 → ☐ ☐, L

1 → , L☐0 → 0, L
1 → 1, L

 → ☐ ☐, R

q
acc

 → ☐ ☐, R

q
acc

1 → , R☐

 → ☐ ☐, R
0 → 0, R

q
rej

q
acc 1… …

10
Step Counter

Time Complexity

● The number of steps a TM takes on some
input is sensitive to
● The structure of that input.
● The length of the input.

● How can we come up with a consistent
measure of a machine's runtime?

Time Complexity

● The time complexity of a TM M is a function
denoting the worst-case number of steps M takes
on any input of length n.

● By convention, n denotes the length of the input.
● Assume we're only dealing with deciders, so there's

no need to handle looping TMs.

● The previous TM has a time complexity that is
(roughly) proportional to n2 / 2.

● Difficult and utterly unrewarding exercise: compute
the exact time complexity of the previous TM.

A Slight Problem

● Consider the following TM over Σ = {0, 1}
for the language BALANCE = { w ∈ Σ* | w
has the same number of 0s and 1s }:
● M = “On input w:

– Scan across the tape until a 0 or 1 is found.

– If none are found, accept.
– If one is found, continue scanning until a matching 1

or 0 is found.

– If none is found, reject.
– Otherwise, cross off that symbol and repeat.”

● What is the time complexity of M?

A Loss of Precision

● When considering computability, using
high-level TM descriptions is perfectly
fine.

● When considering complexity, high-level
TM descriptions make it nearly
impossible to precisely reason about the
actual time complexity.

● What are we to do about this?

The Best We Can

M = “On input w:

● Scan across the tape until a 0 or 1
is found.

● If none are found, accept.
● If one is found, continue scanning

until a matching 1 or 0 is found.

● If none are found, reject.
● Otherwise, cross off that symbol

and repeat.”

At most n steps.

At most 1 step.

At most n
more steps.

At most 1 step

At most n steps to
get back to the

start of the tape.

At most 3n + 2 steps.

At most
n/2

loops

At most n/2 loops.

At most 3n2 / 2 + n steps.

+

×

An Easier Approach

● In complexity theory, we rarely need an exact
value for a TM's time complexity.

● Usually, we are curious with the long-term
growth rate of the time complexity. That tells
us how scalable our algorithm will be.

● For example, if the time complexity is 3n + 5,
then doubling the length of the string roughly
doubles the worst-case runtime.

● If the time complexity is 2n – n2, since 2n grows
much more quickly than n2, for large values of
n, increasing the size of the input by 1 doubles
the worst-case running time.

Big-O Notation

● Ignore everything except the dominant
growth term, including constant factors.

● Examples:
● 4n + 4 = O(n)
● 137n + 271 = O(n)
● n2 + 3n + 4 = O(n2)
● 2n + n3 = O(2n)
● 137 = O(1)
● n2 log n + log5 n = O(n2 log n)

Big-O Notation, Formally

● Formally speaking, let f, g : ℕ → ℕ.
● We say f(n) = O(g(n)) iff

There are constants n₀, c such that
 ∀n ∈ ℕ. (n ≥ n0 → f(n) ≤ c·g(n))

● Intuitively, when n gets “sufficiently
large” (i.e. greater than n0), f(n) is
bounded from above by some constant
multiple (specifically, c) of g(n).

f(n) = O(g(n))

f(n)

g(n)

c · g(n)

n₀

● Theorem: If f1(n) = O(g1(n)) and f2(n) = O(g2(n)),
then f1(n) + f2(n) = O(g1(n) + g2(n)).

● Intuitively: If you run two programs one after
another, the big-O of the result is the big-O of the
sum of the two runtimes.

● Theorem: If f1(n) = O(g1(n)) and f2(n) = O(g2(n)),
then f1(n)f2(n) = O(g1(n)g2(n)).

● Intuitively: If you run one program some number of
times, the big-O of the result is the big-O of the
program times the big-O of the number of iterations.

● This makes it substantially easier to analyze time
complexity, though we do lose some precision.

Properties of Big-O Notation

Life is Easier with Big-O

O(n) steps

O(1) steps

O(n) steps

O(1) steps

O(n) steps

O(n) steps

O(n)
loops

O(n) loops

O(n2) steps

+

×

M = “On input w:

● Scan across the tape until a 0 or 1
is found.

● If none are found, accept.
● If one is found, continue scanning

until a matching 1 or 0 is found.

● If none is found, reject.
● Otherwise, cross off that symbol

and repeat.”

A Quick Note

● Time complexity depends on the model of
computation.
● A computer can binary search over a sorted

array in time O(log n).
● A TM has to spend at least n time doing this,

since it has no random access.
● For now, assume that the slowdown going

from a computer to a TM or vice-versa is
not “too bad.”

The Story So Far

● We now have a definition of the runtime
of a TM.

● We can use big-O notation to measure
the relative growth rates of different
runtimes.

● Big question: How do we define
efficiency?

Time-Out For Announcements!

Problem Set 6 Graded

● All Problem Set 6's have been graded.
Late submissions will be returned at the
end of lecture today.

A Question from Last Time

“Aren't there some cases where we can
know a TM is infinite looping? Couldn't we
modify the UTM so it keeps a record of IDs

and then if it sees the same one twice know
it was in a loop? This doesn't guarantee to

find all loops, but would it be useful?”

Back to CS103!

What is an efficient algorithm?

Searching Finite Spaces

● Many decidable problems can be solved
by searching over a large but finite space
of possible options.

● Searching this space might take a
staggeringly long time, but only finite
time.

● From a decidability perspective, this is
totally fine.

● From a complexity perspective, this is
totally unacceptable.

A Sample Problem

4 3 11 9 7 13 5 6 1 12 2 8 0 10

Goal: Find the length of
the longest increasing
subsequence of this

sequence.

Goal: Find the length of
the longest increasing
subsequence of this

sequence.

4 3 11 9 7 13 5 6 1 12 2 8 0 10

A Sample Problem

Longest so far: 4 11

How many different
subsequences are there in a
sequence of n elements? 2n

How long does it take to check
each subsequence? O(n) time.

Runtime is around O(n · 2n).

How many different
subsequences are there in a
sequence of n elements? 2n

How long does it take to check
each subsequence? O(n) time.

Runtime is around O(n · 2n).

3 5 6 8 10131379 711 93 1144 5 6 1 12 2 8 0 101 12 2 0

A Sample Problem

1 1 2 2 2 3 32 3 1 4 2 4 1 5

How many elements of the
sequence do we have to look at

when considering the kth
element of the sequence? k – 1

Total runtime is
1 + 2 + … + (n – 1) = O(n2)

How many elements of the
sequence do we have to look at

when considering the kth
element of the sequence? k – 1

Total runtime is
1 + 2 + … + (n – 1) = O(n2)

Another Problem

E

A

F

C

D

B

To

From

Goal: Determine the
length of the shortest
path from A to F in

this graph.

Goal: Determine the
length of the shortest
path from A to F in

this graph.

Another Problem

E

A

F

C

D

B

To

From

Number of possible
ways to order a

subset of n nodes is
O(n × n!)

Time to check a
path is O(n).

Runtime: O(n2 · n!)

Number of possible
ways to order a

subset of n nodes is
O(n × n!)

Time to check a
path is O(n).

Runtime: O(n2 · n!)

Another Problem

E

A

F

C

D

B

To

From

0

1

2

2

3

3

With a precise
analysis, runtime

is O(n + m),
where n is the

number of nodes
and m is the

number of edges.

With a precise
analysis, runtime

is O(n + m),
where n is the

number of nodes
and m is the

number of edges.

For Comparison

● Longest increasing
subsequence:
● Naive: O(n · 2n)
● Fast: O(n2)

● Shortest path
problem:
● Naive: O(n2 · n!)
● Fast: O(n + m),

where n is the
number of nodes
and m the number
of edges. (Take
CS161 for details!)

Defining Efficiency

● When dealing with problems that search
for the “best” object of some sort, there
are often at least exponentially many
possible options.

● Brute-force solutions tend to take at least
exponential time to complete.

● Clever algorithms often run in time O(n),
or O(n2), or O(n3), etc.

Polynomials and Exponentials

● A TM runs in polynomial time iff its
runtime is some polynomial in n.
● That is, time O(nk) for some constant k.

● Polynomial functions “scale well.”
● Small changes to the size of the input do not

typically induce enormous changes to the
overall runtime.

● Exponential functions scale terribly.
● Small changes to the size of the input induce

huge changes in the overall runtime.

The Cobham-Edmonds Thesis

A language L can be decided efficiently iff
there is a TM that decides it in polynomial time.

Equivalently, L can be decided efficiently iff
it can be decided in time O(nk) for some k ∈ ℕ.

Like the Church-Turing thesis, this is
not a theorem!

It's an assumption about the nature of
efficient computation, and it is

somewhat controversial.

Like the Church-Turing thesis, this is
not a theorem!

It's an assumption about the nature of
efficient computation, and it is

somewhat controversial.

The Cobham-Edmonds Thesis

● Efficient runtimes:
● 4n + 13
● n3 – 2n2 + 4n
● n log log n

● “Efficient” runtimes:
● n1,000,000,000,000

● 10500

● Inefficient runtimes:
● 2n

● n!
● nn

● “Inefficient” runtimes:
● n0.0001 log n

● 1.000000001n

The Complexity Class P

● The complexity class P (for polynomial
time) contains all problems that can be
solved in polynomial time.

● Formally:

P = { L | There is a polynomial-time
decider for L }

● Assuming the Cobham-Edmonds thesis, a
language is in P iff it can be decided
efficiently.

Examples of Problems in P

● All regular languages are in P.
● All have linear-time TMs.

● All CFLs are in P.
● Requires a more nuanced argument (the

CYK algorithm or Earley's algorithm.)

● Many other problems are in P.
● More on that in a second.

 Undecidable Languages

Regular
Languages CFLs R

Efficiently
Decidable

Languages

 Undecidable Languages

Regular
Languages CFLs RP

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

