Reducibility Part II

Problem Set 7
due in the box up front.

The General Pattern

Machine H
$H=$ "On input w :

- Transform the input w into $f(w)$.
- Run machine R on $f(w)$.
- If R accepts $f(w)$, then H accepts w.
- If R rejects $f(w)$, then H rejects $w . "$

Defining Reductions

- A reduction from A to B is a function $f: \Sigma_{1}^{*} \rightarrow \Sigma_{2}{ }^{*}$ such that

For any $w \in \Sigma_{1}{ }^{*}, w \in A$ iff $f(w) \in B$
\square

Defining Reductions

- A reduction from A to B is a function $f: \Sigma_{1}{ }^{*} \rightarrow \Sigma_{2}{ }^{*}$ such that
For any $w \in \Sigma_{1}{ }^{*}, w \in A$ iff $f(w) \in B$

Defining Reductions

- A reduction from A to B is a function $f: \Sigma_{1}^{*} \rightarrow \Sigma_{2}{ }^{*}$ such that
For any $w \in \Sigma_{1}{ }^{*}, w \in A$ iff $f(w) \in B$

Defining Reductions

- A reduction from A to B is a function $f: \Sigma_{1}{ }^{*} \rightarrow \Sigma_{2}{ }^{*}$ such that

For any $w \in \Sigma_{1}{ }^{*}, w \in A$ iff $f(w) \in B$

- Every $w \in A$ maps to some $f(w) \in B$.
- Every $w \notin A$ maps to some $f(w) \notin B$.
- f does not have to be injective or surjective.

$w \in A \quad$ iff $\quad f(w) \in B$

Machine H
$H=$ "On input w :

- Transform the input w into $f(w)$.
- Run machine R on $f(w)$.
- If R accepts $f(w)$, then H accepts w.
- If R rejects $f(w)$, then H rejects w. ."

H accepts w iff
 R accepts $\boldsymbol{f}(\boldsymbol{w})$
 iff
 $f(w) \in B$
 iff
 $w \in \mathbf{A}$

Mapping Reductions

- A function $f: \Sigma_{1}^{*} \rightarrow \Sigma_{2}^{*}$ is called a mapping reduction from A to B iff
- For any $w \in \Sigma_{1}^{*}, w \in A$ iff $f(w) \in B$.
- f is a computable function.
- Intuitively, a mapping reduction from A to B says that a computer can transform any instance of A into an instance of B such that the answer to B is the answer to A.

Mapping Reducibility

- If there is a mapping reduction from language A to language B, we say that language A is mapping reducible to language B.
- Notation: $\boldsymbol{A} \leq_{\mathbf{M}} \boldsymbol{B}$ iff language A is mapping reducible to language B.
- Note that we reduce languages, not machines.

Why Mapping Reducibility Matters

- Theorem: If $B \in \mathbf{R}$ and $A \leq_{\mathrm{M}} B$, then $A \in \mathbf{R}$.
- Theorem: If $B \in \mathbf{R E}$ and $A \leq_{\mathrm{M}} B$, then $A \in \mathbf{R E}$.
- Theorem: If $B \in \operatorname{co-RE}$ and $A \leq_{\mathrm{M}} B$, then $A \in$ co-RE.
- Intuitively: $A \leq_{\mathrm{M}} B$ means " A is not harder than B."

Why Mapping Reducibility Matters

- Theorem: If $A \notin \mathbf{R}$ and $A \leq_{\mathrm{M}} B$, then $B \notin \mathbf{R}$.
- Theorem: If $A \notin \mathbf{R E}$ and $A \leq_{\mathrm{M}} B$, then $B \notin \mathbf{R E}$.
- Theorem: If $A \notin \operatorname{co-RE}$ and $A \leq_{M} B$, then $B \notin \mathrm{co}-\mathbf{R E}$.
- Intuitively: $A \leq_{\mathrm{M}} B$ means " B is at at least as hard as A."

Why Mapping Reducibility Matters

If this one is "easy" ($R, R E, C O-R E$)...

$$
A \leq_{\mathrm{M}} B
$$

... then this one is
"easy" ($R, R E$, co-RE) too.

Why Mapping Reducibility Matters

If this one is "hard"
(not R, not RE, or not

$$
c o-R E) . . .
$$

$$
A \leq_{\mathrm{M}} B
$$

then this one is "hard" (not R, not RE, or not co-RE) too.

Using Mapping Reductions

Revisiting our Proofs

- Consider the language

$$
L=\{\langle M\rangle \mid M \text { is a TM and } M \text { accepts } \varepsilon\}
$$

- We have already proven that this language is in RE by building a TM for it.
- Let's repeat this proof using mapping reductions.
- Specifically, we will prove

$$
L \leq_{\mathrm{M}} \mathbf{A}_{\mathrm{TM}}
$$

$L=\{\langle M\rangle \mid M$ is a TM and M accepts $\varepsilon\}$

- To prove $L \leq_{M} A_{T M}$, we will need to find a computable function f such that

$$
\langle M\rangle \in L \quad \text { iff } \quad f(\langle M\rangle) \in \mathbf{A}_{\mathrm{TM}}
$$

- Since $A_{\text {TM }}$ is a language of TM/string pairs, let's assume $f(\langle M\rangle)=\langle N, w\rangle$ for some TM N and string w (which we'll pick later):

$$
\langle M\rangle \in L \quad \text { iff } \quad\langle N, w\rangle \in \mathbf{A}_{\text {тм }}
$$

- Substituting definitions:

M accepts ε iff N accepts w

- Choose $\boldsymbol{N}=\boldsymbol{M}, \boldsymbol{w}=\boldsymbol{\varepsilon}$. So $\boldsymbol{f}(\langle\boldsymbol{M}\rangle)=\langle\boldsymbol{M}, \boldsymbol{\varepsilon}\rangle$.

One Interpretation of the Reduction

One Interpretation of the Reduction

$\langle M\rangle$

- Compute f

$\langle M, \varepsilon\rangle$ Recognizer for A_{TM}

Machine R

Machine H

$H=$ "On input $\langle M\rangle$:

- Run machine R on $\langle M, \varepsilon\rangle$.
- If R accepts $\langle M, \varepsilon\rangle$, then H accepts w.
- If R rejects $\langle M, \varepsilon\rangle$, then H rejects w."

One Interpretation of the Reduction

$\langle M\rangle$

$\langle M, \varepsilon\rangle$ Recognizer for $A_{T M}$

Machine R

Machine H

$H=$ "On input $\langle M\rangle$:

- Run machine R on $\langle M, \varepsilon\rangle$.
- If R accepts $\langle M, \varepsilon\rangle$, then H accepts w.
- If R rejects $\langle M, \varepsilon\rangle$, then H rejects w."

One Interpretation of the Reduction

$\langle M\rangle$

$\langle M, \varepsilon\rangle$ Recognizer for $A_{T M}$

Machine R

Machine H

$H=$ "On input $\langle M\rangle$:

- Run machine R on $\langle M, \varepsilon\rangle$.
- If R accepts $\langle M, \varepsilon\rangle$, then H accepts w.
- If R rejects $\langle M, \varepsilon\rangle$, then H rejects w."
H accepts $\langle M\rangle$ iff
R accepts $\langle M, \varepsilon\rangle$

One Interpretation of the Reduction

$\langle M\rangle$

$\langle M, \varepsilon\rangle$ Recognizer for $A_{T M}$

Machine R
Machine H

$H=$ "On input $\langle M\rangle$:

- Run machine R on $\langle M, \varepsilon\rangle$.
- If R accepts $\langle M, \varepsilon\rangle$, then H accepts w.
- If R rejects $\langle M, \varepsilon\rangle$, then H rejects w."
H accepts $\langle M\rangle$ iff
R accepts $\langle M, \varepsilon\rangle$ iff
M accepts ε

One Interpretation of the Reduction

$\langle M\rangle$

$\langle M, \varepsilon\rangle$ Recognizer for $A_{T M}$

Machine R
Machine H

$H=$ "On input $\langle M\rangle$:

- Run machine R on $\langle M, \varepsilon\rangle$.
- If R accepts $\langle M, \varepsilon\rangle$, then H accepts w.
- If R rejects $\langle M, \varepsilon\rangle$, then H rejects w."
H accepts $\langle M\rangle$ iff
R accepts $\langle M, \varepsilon\rangle$ iff
M accepts ε iff $\langle M\rangle \in L$

One Interpretation of the Reduction

$\langle M\rangle$
Compute f

$\langle M, \varepsilon\rangle$ Recognizer for $A_{T M}$

Machine R
Machine H

$H=$ "On input $\langle M\rangle$:

- Run machine R on $\langle M, \varepsilon\rangle$.
- If R accepts $\langle M, \varepsilon\rangle$, then H accepts w.
- If R rejects $\langle M, \varepsilon\rangle$, then H rejects w."
H accepts $\langle M\rangle$ iff

iff
$\langle M\rangle \in L$

$L=\{\langle M\rangle \mid M$ is a TM that accepts $\varepsilon\}$

Theorem: $L \in \mathbf{R E}$.

$L=\{\langle M\rangle \mid M$ is a TM that accepts $\varepsilon\}$

Theorem: $L \in \mathbf{R E}$. Proof: We will prove that $L \leq{ }_{\mathrm{M}} \mathrm{A}_{\mathrm{TM}}$.

$L=\{\langle M\rangle \mid M$ is a TM that accepts $\varepsilon\}$

Theorem: $L \in \mathbf{R E}$.
Proof: We will prove that $L \leq_{\mathrm{M}} \mathrm{A}_{\mathrm{TM}}$. Since $\mathrm{A}_{\mathrm{TM}} \in \mathbf{R E}$, this proves $L \in \mathbf{R E}$ as well.

$L=\{\langle M\rangle \mid M$ is a TM that accepts $\varepsilon\}$

Theorem: $L \in \mathbf{R E}$.
Proof: We will prove that $L \leq_{\mathrm{M}} \mathrm{A}_{\mathrm{TM}}$. Since $\mathrm{A}_{\mathrm{TM}} \in \mathbf{R E}$, this proves $L \in \mathbf{R E}$ as well.

To prove this, we will give a mapping reduction from L to A_{TM}.

$$
L=\{\langle M\rangle \mid M \text { is a TM that accepts } \varepsilon\}
$$

Theorem: $L \in$ RE.
Proof: We will prove that $L \leq_{\mathrm{M}} \mathrm{A}_{\mathrm{TM}}$. Since $\mathrm{A}_{\mathrm{TM}} \in \mathbf{R E}$, this proves $L \in \mathbf{R E}$ as well.

To prove this, we will give a mapping reduction from L to A_{TM}. For any TM M, let $f(\langle M\rangle)=\langle M, \varepsilon\rangle$. This function can be computed by a Turing machine.

$L=\{\langle M\rangle \mid M$ is a TM that accepts $\varepsilon\}$

Theorem: $L \in \mathbf{R E}$.
Proof: We will prove that $L \leq_{\mathrm{M}} \mathrm{A}_{\mathrm{TM}}$. Since $\mathrm{A}_{\mathrm{TM}} \in \mathbf{R E}$, this proves $L \in \mathbf{R E}$ as well.

To prove this, we will give a mapping reduction from L to A_{TM}. For any TM M, let $f(\langle M\rangle)=\langle M, \varepsilon\rangle$. This function can be computed by a Turing machine.
Now, we will prove that f is a mapping reduction by proving for all TMs M that $\langle M\rangle \in L$ iff $\langle M, \varepsilon\rangle \in \mathrm{A}_{\mathrm{TM}}$.

$$
L=\{\langle M\rangle \mid M \text { is a TM that accepts } \varepsilon\}
$$

Theorem: $L \in \mathbf{R E}$.
Proof: We will prove that $L \leq_{\mathrm{M}} \mathrm{A}_{\mathrm{TM}}$. Since $\mathrm{A}_{\mathrm{TM}} \in \mathbf{R E}$, this proves $L \in \mathbf{R E}$ as well.

To prove this, we will give a mapping reduction from L to A_{TM}. For any TM M, let $f(\langle M\rangle)=\langle M, \varepsilon\rangle$. This function can be computed by a Turing machine.
Now, we will prove that f is a mapping reduction by proving for all TMs M that $\langle M\rangle \in L$ iff $\langle M, \varepsilon\rangle \in \mathrm{A}_{\mathrm{TM}}$. To do this, consider any TM M.

$$
L=\{\langle M\rangle \mid M \text { is a TM that accepts } \varepsilon\}
$$

Theorem: $L \in \mathbf{R E}$.
Proof: We will prove that $L \leq_{\mathrm{M}} \mathrm{A}_{\mathrm{TM}}$. Since $\mathrm{A}_{\mathrm{TM}} \in \mathbf{R E}$, this proves $L \in \mathbf{R E}$ as well.

To prove this, we will give a mapping reduction from L to A_{TM}. For any TM M, let $f(\langle M\rangle)=\langle M, \varepsilon\rangle$. This function can be computed by a Turing machine.

Now, we will prove that f is a mapping reduction by proving for all TMs M that $\langle M\rangle \in L$ iff $\langle M, \varepsilon\rangle \in \mathrm{A}_{\mathrm{TM}}$. To do this, consider any TM M. Note that by the definition of L, we see $\langle M\rangle \in L$ iff M accepts ε.

$$
L=\{\langle M\rangle \mid M \text { is a TM that accepts } \varepsilon\}
$$

Theorem: $L \in \mathbf{R E}$.
Proof: We will prove that $L \leq_{\mathrm{M}} \mathrm{A}_{\mathrm{TM}}$. Since $\mathrm{A}_{\mathrm{TM}} \in \mathbf{R E}$, this proves $L \in \mathbf{R E}$ as well.

To prove this, we will give a mapping reduction from L to A_{TM}. For any TM M, let $f(\langle M\rangle)=\langle M, \varepsilon\rangle$. This function can be computed by a Turing machine.

Now, we will prove that f is a mapping reduction by proving for all TMs M that $\langle M\rangle \in L$ iff $\langle M, \varepsilon\rangle \in \mathrm{A}_{\mathrm{TM}}$. To do this, consider any TM M. Note that by the definition of L, we see $\langle M\rangle \in L$ iff M accepts ε. By the definition of A_{TM}, we know that M accepts ε iff $\langle M, \varepsilon\rangle \in \mathrm{A}_{\mathrm{TM}}$.

$$
L=\{\langle M\rangle \mid M \text { is a TM that accepts } \varepsilon\}
$$

Theorem: $L \in \mathbf{R E}$.
Proof: We will prove that $L \leq_{\mathrm{M}} \mathrm{A}_{\mathrm{TM}}$. Since $\mathrm{A}_{\mathrm{TM}} \in \mathbf{R E}$, this proves $L \in \mathbf{R E}$ as well.

To prove this, we will give a mapping reduction from L to A_{TM}. For any TM M, let $f(\langle M\rangle)=\langle M, \varepsilon\rangle$. This function can be computed by a Turing machine.

Now, we will prove that f is a mapping reduction by proving for all TMs M that $\langle M\rangle \in L$ iff $\langle M, \varepsilon\rangle \in \mathrm{A}_{\mathrm{TM}}$. To do this, consider any TM M. Note that by the definition of L, we see $\langle M\rangle \in L$ iff M accepts ε. By the definition of A_{TM}, we know that M accepts ε iff $\langle M, \varepsilon\rangle \in \mathrm{A}_{\mathrm{TM}}$. Combining these statements together, we have that $\langle M\rangle \in L$ iff $\langle M, \varepsilon\rangle \in \mathrm{A}_{\mathrm{TM}}$.

$$
L=\{\langle M\rangle \mid M \text { is a TM that accepts } \varepsilon\}
$$

Theorem: $L \in \mathbf{R E}$.
Proof: We will prove that $L \leq_{\mathrm{M}} \mathrm{A}_{\mathrm{TM}}$. Since $\mathrm{A}_{\mathrm{TM}} \in \mathbf{R E}$, this proves $L \in \mathbf{R E}$ as well.

To prove this, we will give a mapping reduction from L to A_{TM}. For any TM M, let $f(\langle M\rangle)=\langle M, \varepsilon\rangle$. This function can be computed by a Turing machine.

Now, we will prove that f is a mapping reduction by proving for all TMs M that $\langle M\rangle \in L$ iff $\langle M, \varepsilon\rangle \in \mathrm{A}_{\mathrm{TM}}$. To do this, consider any TM M. Note that by the definition of L, we see $\langle M\rangle \in L$ iff M accepts ε. By the definition of A_{TM}, we know that M accepts ε iff $\langle M, \varepsilon\rangle \in \mathrm{A}_{\mathrm{TM}}$. Combining these statements together, we have that $\langle M\rangle \in L$ iff $\langle M, \varepsilon\rangle \in \mathrm{A}_{\mathrm{TM}}$.

This means that f is a mapping reduction from L to A_{TM}, so $L \leq_{\mathrm{M}} \mathrm{A}_{\mathrm{TM}}$, as required.

$$
L=\{\langle M\rangle \mid M \text { is a TM that accepts } \varepsilon\}
$$

Theorem: $L \in \mathbf{R E}$.
Proof: We will prove that $L \leq_{\mathrm{M}} \mathrm{A}_{\mathrm{TM}}$. Since $\mathrm{A}_{\mathrm{TM}} \in \mathbf{R E}$, this proves $L \in \mathbf{R E}$ as well.

To prove this, we will give a mapping reduction from L to A_{TM}. For any TM M, let $f(\langle M\rangle)=\langle M, \varepsilon\rangle$. This function can be computed by a Turing machine.

Now, we will prove that f is a mapping reduction by proving for all TMs M that $\langle M\rangle \in L$ iff $\langle M, \varepsilon\rangle \in \mathrm{A}_{\mathrm{TM}}$. To do this, consider any TM M. Note that by the definition of L, we see $\langle M\rangle \in L$ iff M accepts ε. By the definition of A_{TM}, we know that M accepts ε iff $\langle M, \varepsilon\rangle \in \mathrm{A}_{\mathrm{TM}}$. Combining these statements together, we have that $\langle M\rangle \in L$ iff $\langle M, \varepsilon\rangle \in \mathrm{A}_{\mathrm{TM}}$.

This means that f is a mapping reduction from L to A_{TM}, so $L \leq_{\mathrm{M}} \mathrm{A}_{\mathrm{TM}}$, as required.

What Did We Prove?

- YES

Machine H

$H=$ "On input $\langle M\rangle$:

- Run machine R on $\langle M, \varepsilon\rangle$.
- If R accepts $\langle M, \varepsilon\rangle$, then H accepts w.
- If R rejects $\langle M, \varepsilon\rangle$, then H rejects $w . "$
H accepts $\langle M\rangle$ iff

iff
$\langle M\rangle \in L$

What Did We Prove?

$H=$ "On input $\langle M\rangle$:

- Run machine R on $\langle M, \varepsilon\rangle$.
- If R accepts $\langle M, \varepsilon\rangle$, then H accepts w.
- If R rejects $\langle M, \varepsilon\rangle$, then H rejects w.

Machine H

H accepts $\langle M\rangle$

iff
$\langle M\rangle \in L$

Interpreting Mapping Reductions

- If $A \leq_{\mathrm{M}} B$, there is a known construction to turn a TM for B into a TM for A.
- When doing proofs with mapping reductions, you do not need to show the overall construction.
- You just need to prove that
- f is a computable function, and
- $w \in A$ iff $f(w) \in B$.

Another Mapping Reduction

L_{D} and $\overline{\mathrm{A}}_{\mathrm{TM}}$

- Earlier, we proved $\overline{\mathrm{A}}_{\mathrm{TM}} \notin \mathbf{R E}$ by proving that

$$
\text { If } \overline{\mathrm{A}}_{\mathrm{TM}} \in \mathbf{R E} \text {, then } L_{\mathrm{D}} \in \mathbf{R E} .
$$

- The proof constructed this TM, assuming R was a recognizer for $\overline{\mathrm{A}}_{\mathrm{TM}}$.
$H=$ "On input $\langle M\rangle$:
- Construct the string $\langle M,\langle M\rangle\rangle$.
- Run R on $\langle M,\langle M\rangle\rangle$.
- If R accepts $\langle M,\langle M\rangle\rangle$, then H accepts $\langle M\rangle$.
- If R rejects $\langle M,\langle M\rangle\rangle$, then H rejects $\langle M\rangle$."
- Let's do another proof using mapping reductions.

$$
L_{\mathrm{D}} \leq_{\mathrm{M}} \overline{\mathrm{~A}}_{\mathrm{TM}}
$$

- To prove that $\overline{\mathrm{A}}_{\mathrm{TM}} \notin \mathbf{R E}$, we will prove

$$
L_{\mathrm{D}} \leq_{\mathrm{M}} \overline{\mathbf{A}}_{\mathrm{TM}}
$$

- By our earlier theorem, since $L_{\mathrm{D}} \notin \mathbf{R E}$, we have that $\overline{\mathrm{A}}_{\mathrm{TM}} \notin \mathbf{R E}$.
- Intuitively: $\overline{\mathrm{A}}_{\mathrm{TM}}$ is "at least as hard" as L_{D}, and since $L_{\mathrm{D}} \notin \mathbf{R E}$, this means $\overline{\mathrm{A}}_{\mathrm{TM}} \notin \mathbf{R E}$.

$L_{D} \leq_{M} \bar{A}_{T M}$

- Goal: Find a computable function f such that

$$
\langle M\rangle \in L_{\mathrm{D}} \quad \text { iff } \quad f(\langle M\rangle) \in \overline{\mathrm{A}}_{\mathrm{TM}}
$$

- Simplifying this using the definition of L_{D}
M does not accept $\langle M\rangle \quad$ iff $\quad f(\langle M\rangle) \in \bar{A}_{\text {TM }}$
- Let's assume that $f(\langle M\rangle)$ has the form $\langle N, w\rangle$ for some TM N and string w. This means that
M does not accept $\langle M\rangle \quad$ iff $\quad\langle N, w\rangle \in \overline{\mathbf{A}}_{\text {тм }}$
M does not accept $\langle M\rangle \quad$ iff $\quad N$ does not accept \boldsymbol{w}
- If we can choose w and N such that the above is true, we will have our reduction from L_{D} to $\overline{\mathrm{A}}_{\mathrm{TM}}$.
- Choose $\boldsymbol{N}=\boldsymbol{M}$ and $\boldsymbol{w}=\langle\boldsymbol{M}\rangle$.

One Interpretation of the Reduction

One Interpretation of the Reduction

$\langle M\rangle$

Machine R
Machine H

$H=$ "On input $\langle M\rangle$:

- Run machine R on $\langle M,\langle M\rangle\rangle$.
- If R accepts $\langle M,\langle M\rangle\rangle$, then H accepts w.
- If R rejects $\langle M,\langle M\rangle\rangle$, then H rejects $w . "$

One Interpretation of the Reduction

$\langle M\rangle$

Machine R
Machine H
H accepts $\langle M\rangle$
$H=$ "On input $\langle M\rangle$:

- Run machine R on $\langle M,\langle M\rangle\rangle$.
- If R accepts $\langle M,\langle M\rangle\rangle$, then H accepts w.
- If R rejects $\langle M,\langle M\rangle\rangle$, then H rejects $w . "$

One Interpretation of the Reduction

$\langle M\rangle$

$\langle M,\langle M\rangle\rangle$ Recognizer for \bar{A}_{TM}

Machine R
Machine H
$H=$ "On input $\langle M\rangle$:

- Run machine R on $\langle M,\langle M\rangle\rangle$.
- If R accepts $\langle M,\langle M\rangle\rangle$, then H accepts w.
- If R rejects $\langle M,\langle M\rangle\rangle$, then H rejects w."
H accepts 〈M〉 iff
R accepts $\langle M,\langle M\rangle\rangle$

One Interpretation of the Reduction

$\langle M\rangle$

Machine R

- YES

Machine H
$H=$ "On input $\langle M\rangle$:

- Run machine R on $\langle M,\langle M\rangle\rangle$.
- If R accepts $\langle M,\langle M\rangle\rangle$, then H accepts w.
- If R rejects $\langle M,\langle M\rangle\rangle$, then H rejects w."
H accepts 〈M〉 iff
R accepts $\langle M,\langle M\rangle\rangle$ iff
M does not accept $\langle M\rangle$

One Interpretation of the Reduction

$\langle M\rangle$

$\langle M,\langle M\rangle\rangle$ Recognizer for \bar{A}_{TM}

Machine R

- YES

Machine H
$H=$ "On input $\langle M\rangle$:

- Run machine R on $\langle M,\langle M\rangle\rangle$.
- If R accepts $\langle M,\langle M\rangle\rangle$, then H accepts w.
- If R rejects $\langle M,\langle M\rangle\rangle$, then H rejects w."
H accepts 〈M〉 iff
R accepts $\langle M,\langle M\rangle\rangle$ iff
M does not accept $\langle M\rangle$ iff
$\langle M\rangle \in L_{\mathrm{D}}$

One Interpretation of the Reduction

$\langle M\rangle$

$\langle M,\langle M\rangle\rangle \quad$ Recognizer for \bar{A}_{TM}

Machine R

Machine H

$H=$ "On input $\langle M\rangle$:

- Run machine R on $\langle M,\langle M\rangle\rangle$.
- If R accepts $\langle M,\langle M\rangle\rangle$, then H accepts w.
- If R rejects $\langle M,\langle M\rangle\rangle$, then H rejects w."
H accepts 〈M〉

Theorem: $\overline{\mathrm{A}}_{\mathrm{TM}} \notin \mathbf{R E}$.
Proof: We will prove that $L_{\mathrm{D}} \leq_{\mathrm{M}} \overline{\mathrm{A}}_{\mathrm{TM}}$. Since $L_{\mathrm{D}} \notin \mathbf{R E}$, this proves that $\overline{\mathrm{A}}_{\mathrm{TM}} \notin \mathbf{R E}$.
To show that $L_{\mathrm{D}} \leq_{\mathrm{M}} \overline{\mathrm{A}}_{\mathrm{TM}}$, we will give a mapping reduction from L_{D} to $\overline{\mathrm{A}}_{\mathrm{TM}}$. For any TM M, let $f(\langle M\rangle)=\langle M,\langle M\rangle\rangle$. This function f is computable.
To prove that f is a mapping reduction from L_{D} to $\overline{\mathrm{A}}_{\mathrm{TM}}$, we will prove for all TMs M that $\langle M\rangle \in L_{\mathrm{D}}$ iff $\langle M,\langle M\rangle\rangle \in \overline{\mathrm{A}}_{\mathrm{TM}}$. By the definition of L_{D}, we know $\langle M\rangle \in L_{\mathrm{D}}$ iff M does not accept $\langle M\rangle$. Similarly, by definition of $\overline{\mathrm{A}}_{\mathrm{TM}}$, we know that M does not accept $\langle M\rangle$ iff $\langle M,\langle M\rangle\rangle \in \overline{\mathrm{A}}_{\mathrm{TM}}$. Combining these statements together, we see $\langle M\rangle \in L_{\mathrm{D}}$ iff $\langle M,\langle M\rangle\rangle \in \overline{\mathrm{A}}_{\mathrm{TM}}$. Thus f is a mapping reduction from L_{D} to $\overline{\mathrm{A}}_{\mathrm{TM}}$, so $L_{\mathrm{D}} \leq \overline{\mathrm{A}}_{\mathrm{TM}}$, as required.

The Amplifier Machine

TMs in TMs

- As we've seen, Turing machines can run other Turing machines as subroutines.
- In order to reduce certain problems to one another, it is useful / necessary to embed Turing machines inside of one another.
- We'll see an example in a second.
- One construction, in particular, is useful for reductions like these.

The Amplifier Machine

For any $\mathrm{TM} M$ and string w, let $\operatorname{Amp}(M, w)$ be this TM:
$\operatorname{Amp}(M, w)=" O n$ input x :
Ignore x.
Run M on w.
If M accepts w, then $\operatorname{Amp}(M, w)$ accepts x. If M rejects w, then $\operatorname{Amp}(M, w)$ rejects x."

The Amplifier Machine

For any TM M and string w, let $\operatorname{Amp}(M, w)$ be this TM: $\operatorname{Amp}(M, w)=" O n$ input x :

Ignore x.
Run M on w.
If M accepts w, then $\operatorname{Amp}(M, w)$ accepts x. If M rejects w, then $\operatorname{Amp}(M, w)$ rejects x."

The Amplifier Machine

For any TM M and string w, let $\operatorname{Amp}(M, w)$ be this TM:
$\operatorname{Amp}(M, w)="$ On input $x:$
Ignore x.
Run M on w.
If M accepts w, then $\operatorname{Amp}(M, w)$ accepts χ.
If M rejects w, then $\operatorname{Amp}(M, w)$ rejects x."
Theorem 1: If M accepts w, then $\mathscr{L}(\operatorname{Amp}(M, w))=\Sigma^{*}$. If M does not accept w, then $\mathscr{L}(\operatorname{Amp}(M, w))=\varnothing$.

Corollary 1: M accepts w iff $\mathscr{L}(\operatorname{Amp}(M, w))=\Sigma^{*}$
Corollary 2: M does not accept w iff $\mathscr{L}(\operatorname{Amp}(M, w))=\varnothing$.

For any TM M and string w, let $\operatorname{Amp}(M, w)$ be the following TM:
$\operatorname{Amp}(M, w)="$ On input $x:$
Ignore x.
Run M on w.
If M accepts w, then $\operatorname{Amp}(M, w)$ accepts x.
If M rejects w, then $\operatorname{Amp}(M, w)$ rejects x."
Theorem: If M accepts w, then $\mathscr{L}(\operatorname{Amp}(M, w))=\Sigma^{*}$. If M does not accept w, then $\mathscr{L}(\operatorname{Amp}(M, w))=\varnothing$.

Proof: First, we consider what happens if M accepts w. In this case, consider what happens when we run $\operatorname{Amp}(M, w)$ on an arbitrary input string $x . \operatorname{Amp}(M, w)$ will run M on w, and since M accepts $w, \operatorname{Amp}(M, w)$ accepts x. Since our choice of x was arbitrary, we see that $\operatorname{Amp}(M, w)$ accepts any input, so $\mathscr{L}(\operatorname{Amp}(M, w))=\Sigma^{*}$.

Otherwise, M does not accept w, so M rejects w or M loops on w. Consider the result of running $\operatorname{Amp}(M, w)$ on an arbitrary string x. If M rejects w, then $\operatorname{Amp}(M, w)$ rejects x. Otherwise, $\operatorname{Amp}(M, w)$ loops on x. In both cases, $\operatorname{Amp}(M, w)$ doesn't accept x. Since our choice of x was arbitrary, we see that $\operatorname{Amp}(M, w)$ never accepts any input, so $\mathscr{L}(\operatorname{Amp}(M, w))=\varnothing$. \square

The Amplifier Machine

For any TM M and string w, let $\operatorname{Amp}(M, w)$ be this TM:
$\operatorname{Amp}(M, w)="$ On input $x:$
Ignore x.
Run M on w.
If M accepts w, then $\operatorname{Amp}(M, w)$ accepts x.
If M rejects w, then $\operatorname{Amp}(M, w)$ rejects x."
Theorem 1: If M accepts w, then $\mathscr{L}(\operatorname{Amp}(M, w))=\Sigma^{*}$. If M does not accept w, then $\mathscr{L}(\operatorname{Amp}(M, w))=\varnothing$.

Corollary 1: M accepts w iff $\mathscr{L}(\operatorname{Amp}(M, w))=\Sigma^{*}$
Corollary 2: M does not accept w iff $\mathscr{L}(\operatorname{Amp}(M, w))=\varnothing$.
Theorem 2: The function $f(\langle M, w\rangle)=\langle\operatorname{Amp}(M, w)\rangle$ is computable.

"On input x :

- Ignore x.
- Run M on w.
- If M accepts w, we accept x.
- If M rejects w, we reject χ."

"On input x :
- Ignore x.
- Run M on w.
- If M accepts w, we accept x.
- If M rejects w, we reject χ."

Hypothetically,
assume that w is the string 1101.

"On input x :

- Ignore x.
- Run M on w.
- If M accepts w, we accept x.
- If M rejects w, we reject x."

Hypothetically, assume that w is the string 1101.
"On input x :

- Ignore x.
- Run M on w.
- If M accepts w, we accept χ.
- If M rejects w, we reject x."

Hypothetically, assume that w is the string 1101.

"On input x :

- Ignore x.
- Run M on w.
- If M accepts w, we accept x.
- If M rejects w, we reject χ."

Hypothetically, assume that w is the string 1101.

"On input x :

- Ignore x.
- Run M on w.
- If M accepts w, we accept x.
- If M rejects w, we reject χ."

Hypothetically, assume that w is the string 1101.

"On input x :

- Ignore x.
- Run M on w.
- If M accepts w, we accept x.
- If M rejects w, we reject χ."

Hypothetically, assume that w is the string 1101.

"On input x :

- Ignore x.
- Run M on w.
- If M accepts w, we accept x.
- If M rejects w, we reject x."

Hypothetically, assume that w is the string 1101.

$\mathbf{0} \rightarrow \square, \mathbf{R}$
$1 \rightarrow \square, R$

"On input x :

- Ignore x.
- Run M on w.
- If M accepts w, we accept x.
- If M rejects w, we reject x."

Hypothetically, assume that w is the string 1101.

$\mathbf{0} \rightarrow \square, \mathbf{R}$
$1 \rightarrow \square, R$

"On input x :

- Ignore x.
- Run M on w.
- If M accepts w, we accept x.
- If M rejects w, we reject x."

Hypothetically, assume that w is the string 1101.

$\mathbf{0} \rightarrow \square, \mathbf{R}$
$1 \rightarrow \square, R$

"On input x :

- Ignore x.
- Run M on w.
- If M accepts w, we accept x.
- If M rejects w, we reject χ."

Hypothetically, assume that w is the string 1101.

$\mathbf{0} \rightarrow \square, \mathbf{R}$
$1 \rightarrow \square, R$

"On input x :

- Ignore x.
- Run M on w.
- If M accepts w, we accept x.
- If M rejects w, we reject χ."

Hypothetically, assume that w is the string 1101.

$\mathbf{0} \rightarrow \square, \mathbf{R}$
$1 \rightarrow \square, R$

"On input x :

- Ignore x.
- Run M on w.
- If M accepts w, we accept x.
- If M rejects w, we reject χ."

Hypothetically, assume that w is the string 1101.

$\mathbf{0} \rightarrow \square, \mathbf{R}$
$1 \rightarrow \square, R$

"On input x :

- Ignore x.
- Run M on w.
- If M accepts w, we accept x.
- If M rejects w, we reject x."

Hypothetically, assume that w is the string 1101.

$\mathbf{0} \rightarrow \square, \mathbf{R}$
$1 \rightarrow \square, R$

"On input x :

- Ignore x.
- Run M on w.
- If M accepts w, we accept x.
- If M rejects w, we reject χ."

Hypothetically, assume that w is the string 1101.

$\mathbf{0} \rightarrow \square, \mathbf{R}$
$1 \rightarrow \square, R$

"On input x :

- Ignore x.
- Run M on w.
- If M accepts w, we accept χ.
- If M rejects w, we reject x."

Hypothetically, assume that w is the string 1101.

$\mathbf{0} \rightarrow \square, \mathbf{R}$
$1 \rightarrow \square, R$

"On input x :

- Ignore x.
- Run M on w.
- If M accepts w, we accept χ.
- If M rejects w, we reject x."

Hypothetically, assume that w is the string 1101.

$\mathbf{0} \rightarrow \square, \mathbf{R}$
$1 \rightarrow \square, R$

"On input x :

- Ignore x.
- Run M on w.
- If M accepts w, we accept χ.
- If M rejects w, we reject x."

Hypothetically, assume that w is the string 1101.

... 1 | | 1 | 0 |
| :--- | :--- | :--- |

$\mathbf{0} \rightarrow \square, \mathbf{R}$
$1 \rightarrow \square, R$

"On input x :

- Ignore x.
- Run M on w.
- If M accepts w, we accept x.
- If M rejects w, we reject x."

Hypothetically, assume that w is the string 1101.

$\mathbf{0} \rightarrow \square, \mathbf{R}$
$\mathbf{1} \rightarrow \square, \mathbf{R}$

"On input x :

- Ignore x.
- Run M on w.
- If M accepts w, we accept x.
- If M rejects w, we reject x."

Hypothetically, assume that w is the string 1101.

$\mathbf{0} \rightarrow \square, \mathbf{R}$
$1 \rightarrow \square, R$

"On input x :

- Ignore x.
- Run M on w.
- If M accepts w, we accept χ.
- If M rejects w, we reject x."

Hypothetically, assume that w is the string 1101.

..	1	1	0	1		

$\mathbf{0} \rightarrow \square$, R
$1 \rightarrow \square, R$

M

"On input x :

- Ignore x.
- Run M on w.
- If M accepts w, we accept χ.
- If M rejects w, we reject x."

Hypothetically, assume that w is the string 1101.

$1 \rightarrow \square, R$

$\square \rightarrow \square, \mathbf{R}$

Using the Amplifier

A More Elaborate Reduction

- Since $\overline{\mathrm{A}}_{\mathrm{TM}} \notin \mathbf{R E}$, there is no algorithm for determining whether a TM will not accept a given string.
- Could we check instead whether a TM never accepts a string?
- Consider the language

$$
L_{\mathrm{e}}=\{\langle M\rangle \mid M \text { is a } T M \text { and } \mathscr{L}(M)=\varnothing\}
$$

- How "hard" is L_{e} ? Is it $\mathbf{R}, \mathbf{R E}$, co-RE, or none of these?

Building an Intuition

- Before we even try to prove how "hard" this language is, we should build an intuition for its difficulty.
- L_{e} is probably not in $\mathbf{R E}$, since if we were convinced a TM never accepted, it would be hard to find positive evidence of this.
- L_{e} is probably in co-RE, since if we were convinced that a TM did accept some string, we could exhaustively search over all strings and try to find the string it accepts.
- Best guess: $L_{\mathrm{e}} \in \operatorname{co}-\mathbf{R E}-\mathbf{R}$.

$\overline{\mathrm{A}}_{\mathrm{TM}} \leq_{\mathrm{M}} L_{\mathrm{e}}$

- We will prove that $L_{\mathrm{e}} \notin \mathbf{R E}$ by showing that $\overline{\mathrm{A}}_{\mathrm{TM}} \leq_{\mathrm{M}} L_{\mathrm{e}}$. (This also proves $L_{\mathrm{e}} \notin \mathbf{R}$).
- We want to find a function f such that

$$
\langle M, w\rangle \in \overline{\mathbf{A}}_{\mathrm{TM}} \quad \text { iff } \quad f(\langle M, w\rangle) \in \mathbf{L}_{\mathrm{e}}
$$

- Since L_{e} is a language of TM descriptions, let's assume $f(\langle M, w\rangle)=\langle N\rangle$ for some TM N. Then

$$
\langle M, w\rangle \in \overline{\mathbf{A}}_{\mathrm{TM}} \quad \text { iff } \quad\langle N\rangle \in L_{\mathrm{e}}
$$

- Expanding out definitions, we get
M doesn't accept \boldsymbol{w} iff $\mathscr{L}(\mathbf{N})=\varnothing$
- How do we pick the machine N ?

The Reduction

- Choose N such that this holds:

M doesn't accept \boldsymbol{w} iff $\mathscr{L}(\mathbf{N})=\boldsymbol{\varnothing}$

- We can pick $N=\operatorname{Amp}(M, w)$.
- Recall: $\mathscr{L}(\operatorname{Amp}(M, w))=\varnothing$ iff M doesn't accept w.
- Since $f(\langle M, w\rangle)=\langle\operatorname{Amp}(M, w)\rangle$ is computable, this is the mapping reduction we need!

The Reduction

The Reduction

The Reduction

The Reduction

$\operatorname{Amp}(M, w) |$| $\mathscr{L}(\operatorname{Amp}(\mathrm{M}, \mathrm{w}))=\Sigma^{*}$ if |
| :---: |
| M accepts w. |
| $\mathscr{L}(\operatorname{Amp}(M, w))=\varnothing$ if |
| M does not accept w. |

The Reduction

\checkmark

The Reduction

Machine H

The Reduction

Machine H

What does H do if M does not accept w ?

The Reduction

Machine H

What does H do if M does not accept w ?

The Reduction

Machine H

What does H do if M does not accept w ?

The Reduction

Machine H

The Reduction

Machine H

What does H do if M accepts w ?

The Reduction

Machine H

What does H do if M accepts w ?

The Reduction

The Reduction

Machine H

The Reduction

Machine H

The Reduction

Machine H

What does H do if M does
not accept w ?

The Reduction

Machine H

What does H do if M does
not accept w ?

The Reduction

Machine H

The Reduction

Machine H

What does H do if M accepts w ?

The Reduction

The Reduction

Machine H

The Reduction

Machine H

Theorem: $L_{\mathrm{e}} \notin \mathbf{R E}$
Proof: We will prove $\overline{\mathrm{A}}_{\mathrm{TM}} \leq_{\mathrm{M}}$ Le. Since $\overline{\mathrm{A}}_{\mathrm{TM}} \notin \mathbf{R E}$, this proves that $L_{\mathrm{e}} \notin \mathbf{R E}$, as required. To do so, we will exhibit a mapping reduction from $\overline{\mathrm{A}}_{\mathrm{TM}}$ to L_{e}. For any TM/string pair $\langle M, w\rangle$, let $f(\langle M, w\rangle)=\langle\operatorname{Amp}(M, w)\rangle$. By our earlier theorem, this function is computable.

We claim this is a mapping reduction from $\overline{\mathrm{A}}_{\mathrm{TM}}$ to L_{e}. To prove this, we will prove that $\langle M, w\rangle \in \overline{\mathrm{A}}_{\mathrm{TM}}$ iff $\langle\operatorname{Amp}(M, w)\rangle \in L e$. By definition of $\overline{\mathrm{A}}_{\mathrm{TM}}$, we see $\langle M, w\rangle$ iff M does not accept w. By our earlier theorem, M does not accept w iff $\mathscr{L}(\operatorname{Amp}(M, w))=\emptyset$. Finally, by definition of $L e$, we see $\mathscr{L}(\operatorname{Amp}(M, w))=\varnothing$ iff $\langle\operatorname{Amp}(M, w)\rangle \in L_{\mathrm{e}}$. Taken together, we see that $\langle M, w\rangle \in \overline{\mathrm{A}}_{\mathrm{TM}}$ iff $\langle\operatorname{Amp}(M, w)\rangle \in L_{e}$, so f is a mapping reduction from $\overline{\mathrm{A}}_{\mathrm{TM}}$ to $L e$. Therefore, we see $\overline{\mathrm{A}}_{\mathrm{TM}} \leq_{\mathrm{M}} \mathrm{Le}_{\mathrm{e}}$, as required.

A Math Joke

Time-Out For Announcements

Problem Set 6 Graded

- On-time Problem Set 6's have all been graded and should be returned after lecture today.
- Online submissions: contact us if you don't hear back soon.
- Late Problem Set 6's will be returned this Wednesday.

Problem Set 8 Out

- Problem Set 8 goes out right now. It's due the Monday after Thanksgiving break (December 2).
- Some contradictory information:
- This is the last problem set on which you can use a late period.
- We strongly recommend that you don't, since you'll be pinched trying to finish Problem Set 9 if you do.
- TAs and I will figure out an OH schedule during Thanksgiving week.

Your Questions

"The fact we can't create a TM for $\overline{\mathrm{A}}_{\mathrm{TM}}$ and L_{D} is very cool. But it is tough to see why we would want to solve those problems in the first place - what are problems that we actually want to solve but can't, because of limits of computability?"
"Aren't there some cases where we can know a TM is infinite looping? Couldn't we modify the U_{TM} so it keeps a record of IDs
and then if it sees the same one twice know it was in a loop? This doesn't guarantee to find all loops, but would it be useful?"
"What's the difference between a language being decidable and having a decider for a language?"
"The generalized hailstone sequence terminating is proven to be undecidable (http://link.springer.com/chapter/10.1007\%2F978-3-540-72504-6_49).
What purpose is there to prove something as undecidable? Is undecidable better than not solvable?"

Back to CS103

The Limits of Computability

RE \cup co-RE is Not Everything

- Using the same reasoning as the first day of lecture, we can show that there must be problems that are neither RE nor co-RE.
- There are more sets of strings than TMs.
- There are more sets of strings than twice the number of TMs.
- What do these languages look like?

TM Equality

- There are infinitely many pairs of Turing machines with the same language as one another.
- Good exercise: think about why this is.
- Consider the following language:

$$
\begin{array}{r}
E Q_{\mathrm{TM}}=\left\{\left\langle M_{1}, M_{2}\right\rangle \mid M_{1} \text { and } M_{2}\right. \text { are TMs } \\
\\
\text { and } \left.\mathscr{L}\left(M_{1}\right)=\mathscr{L}\left(M_{2}\right)\right\}
\end{array}
$$

- Questions:
- Is $\mathrm{EQ}_{\mathrm{TM}} \in$ co-RE?
- Is $\mathrm{EQ}_{\mathrm{TM}} \in \mathbf{R E}$?

Is $\mathrm{EQ}_{\mathrm{TM}} \in$ co-RE?

- Intuitively, would we expect $\mathrm{EQ}_{\mathrm{TM}}$ to be a co-RE language?
- Suppose TM M_{1} accepts a string w. We'd need to know whether M_{2} accepts w as well.
- Co-recognizing this would require us to have a corecognizer that detects whether $\left\langle M_{2}, w\right\rangle \in \mathrm{A}_{\mathrm{TM}}$, but that's not an co-RE language!
- Our guess: $E Q_{T M}$ is probably not co-RE.

Proving $\mathrm{EQ}_{\mathrm{TM}} \notin$ co-RE

- To prove that $\mathrm{EQ}_{\mathrm{TM}} \notin$ co-RE, we can try to find a language L where
- L \notin co-RE, and
- $L \leq_{\mathrm{M}} \mathrm{EQ}_{\mathrm{TM}}$
- A good candidate would be something like A_{TM}, which is a "canonical" non-co-RE languages.
- Goal: Prove $A_{T M} \leq_{M} \mathrm{EQ}_{\mathrm{TM}}$.

Proving $A_{T M} \leq_{M} E Q_{T M}$

- Goal: Find a computable function f where

$$
\langle M, w\rangle \in \mathbf{A}_{\mathrm{TM}} \text { iff } f(\langle M, w\rangle) \in E \mathbf{Q}_{\mathrm{TM}}
$$

- Since $E Q_{T M}$ is a language of pairs of TMs, let's assume $f(\langle M\rangle)=\left\langle M_{1}, M_{2}\right\rangle$. Then we want to pick M_{1} and M_{2} such that

$$
\left\langle M_{1}, w\right\rangle \in \mathbf{A}_{\mathrm{TM}} \text { iff }\left\langle M_{1}, M_{2}\right\rangle \in \mathbf{E Q}_{\mathrm{TM}}
$$

- Substituting definitions, we want
M accepts \boldsymbol{w} iff $\mathscr{L}\left(\mathbf{M}_{1}\right)=\mathscr{L}\left(M_{2}\right)$
- What do we do now?

Using the Amplifier

- We want

M accepts \boldsymbol{w} iff $\mathscr{L}\left(\mathbf{M}_{1}\right)=\mathscr{L}\left(\mathbf{M}_{2}\right)$

- What happens if we pick M_{1} to be $\operatorname{Amp}(M, w) ?$
- If M accepts w, then $\mathscr{L}\left(M_{1}\right)=\Sigma^{*}$.
- If M does not accept w, then $\mathscr{L}\left(M_{1}\right)=\varnothing$.
- Choose M_{1} to be the amplifier machine and M_{2} to be any TM with language Σ^{*}. Then the above statement is true!

What's Going On?

- Suppose we have an oracle for $E Q_{T M}$.
- We want to know whether M accepts w.
- To do this:
- Find a TM S we know has language Σ^{*}.
- Ask the oracle "does TM $\operatorname{Amp}(M, w)$ have the same language as TM S?"
- If so, then M accepts w.
- If not, then M does not accept w.

Theorem: $\mathrm{EQ}_{\mathrm{TM}} \notin$ co-RE.

Proof: We will prove $\mathrm{A}_{\mathrm{TM}} \leq_{\mathrm{M}} \mathrm{EQ}_{\mathrm{TM}}$. Since $\mathrm{A}_{\mathrm{TM}} \notin$ co-RE, this proves that $\mathrm{EQ}_{\mathrm{TM}} \notin$ co-RE. To show $\mathrm{A}_{\mathrm{TM}} \leq_{\mathrm{M}} \mathrm{EQ}_{\mathrm{TM}}$, we will exhibit a mapping reduction from A_{TM} to $\mathrm{EQ}_{\mathrm{TM}}$.

For any TM/string pair $\langle M, w\rangle$, define $f(\langle M, w\rangle)$ to be the pair of TMs $\langle\operatorname{Amp}(M, w), S\rangle$, where S is the TM "On input x, accept x." This function is computable, and note that $\mathscr{L}(S)=\Sigma^{*}$.
We claim that $\langle M, w\rangle \in \mathrm{A}_{\text {TM }}$ iff $\langle\operatorname{Amp}(M, w), E\rangle \in \mathrm{EQ}_{\text {TM }}$. To see this, note by definition of A_{TM} that $\langle M, w\rangle \in \mathrm{A}_{\mathrm{TM}}$ iff M accepts w. By our earlier theorem, M accepts w iff $\mathscr{L}(\operatorname{Amp}(M, w))=\Sigma^{*}$. Since $\mathscr{L}(S)=\Sigma^{*}$, we see M accepts w iff $\mathscr{L}(\operatorname{Amp}(M, w))=\mathscr{L}(S)$. Finally, by definition of $\mathrm{EQ}_{\mathrm{TM}}$, $\mathscr{L}(\operatorname{Amp}(M, w))=\mathscr{L}(S)$ iff $\langle\operatorname{Amp}(M, w), S\rangle \in \mathrm{EQ}_{\mathrm{TM}}$. Collectively, we see $\langle M, w\rangle \in \mathrm{A}_{\mathrm{TM}}$ iff $\langle\operatorname{Amp}(M, w), S\rangle \in \mathrm{EQ}_{\mathrm{TM}}$. Thus f is a mapping reduction from A_{TM} to $\mathrm{EQ}_{\mathrm{TM}}$, so $\mathrm{A}_{\mathrm{TM}} \leq_{\mathrm{M}} \mathrm{EQ}_{\mathrm{TM}}$, as required.

Is $\mathrm{EQ}_{\mathrm{TM}} \in \mathbf{R E}$?

- Intuitively, would we expect $\mathrm{EQ}_{\mathrm{TM}}$ to be a RE language?
- Suppose TM M_{1} doesn't accept a string w. We'd need to know whether M_{2} also doesn't accept w.
- Recognizing this would require us to have a recognizer that detects whether $\left\langle M_{2}, w\right\rangle \in \overline{\mathrm{A}}_{\mathrm{TM}}$, but that's not an $\mathbf{R E}$ language!
- Our guess: $E Q_{T M}$ is probably not $\boldsymbol{R E}$.

Proving $\overline{\mathrm{A}}_{\mathrm{TM}} \leq_{\mathrm{M}} \mathrm{EQ}_{\mathrm{TM}}$

- Goal: Find a computable function f where

$$
\langle M, w\rangle \in \overline{\mathrm{A}}_{\mathrm{TM}} \text { iff } f(\langle M, w\rangle) \in \mathrm{EQ}_{\mathrm{TM}}
$$

- Since $E Q_{T M}$ is a language of pairs of TMs, let's assume $f(\langle M\rangle)=\left\langle M_{1}, M_{2}\right\rangle$. Then we want to pick M_{1} and M_{2} such that

$$
\langle M, w\rangle \in \overline{\mathbf{A}}_{\mathrm{TM}} \text { iff }\left\langle M_{1}, M_{2}\right\rangle \in E \mathbf{Q}_{\mathrm{TM}}
$$

- Substituting definitions, we want
M does not accept \boldsymbol{w} iff $\mathscr{L}\left(M_{1}\right)=\mathscr{L}\left(M_{2}\right)$
- What do we do now?

Using the Amplifier

- We want
M does not accept \boldsymbol{w} iff $\mathscr{L}\left(M_{1}\right)=\mathscr{L}\left(M_{2}\right)$
- What happens if we pick M_{1} to be $\operatorname{Amp}(M, w) ?$
- If M accepts w, then $\mathscr{L}\left(M_{1}\right)=\Sigma^{*}$.
- If M does not accept w, then $\mathscr{L}\left(M_{1}\right)=\varnothing$.
- Choose M_{1} to be the amplifier machine and M_{2} to be any TM with language \varnothing. Then the above statement is true!

What's Going On?

- Suppose we have an oracle for $E Q_{T M}$.
- We want to know whether M accepts w.
- To do this:
- Find a TM E we know has language \varnothing.
- Ask the oracle "does TM $\operatorname{Amp}(M, w)$ have the same language as TM E?"
- If so, then M does not accept w.
- If not, then M accepts w.

Theorem: $\mathrm{EQ}_{\mathrm{TM}} \notin \mathbf{R E}$.

Proof: We will prove $\overline{\mathrm{A}}_{\mathrm{TM}} \leq_{\mathrm{M}} \mathrm{EQ}_{\mathrm{TM}}$. Since $\overline{\mathrm{A}}_{\mathrm{TM}} \notin \mathbf{R E}$, this proves that $\mathrm{EQ}_{\mathrm{TM}} \notin \mathbf{R E}$. To show $\overline{\mathrm{A}}_{\mathrm{TM}} \leq_{\mathrm{M}} \mathrm{EQ}_{\mathrm{TM}}$, we will exhibit a mapping reduction from $\overline{\mathrm{A}}_{\mathrm{TM}}$ to $\mathrm{EQ}_{\mathrm{TM}}$.

For any TM/string pair $\langle M, w\rangle$, define $f(\langle M, w\rangle)$ to be the pair of TMs $\langle\operatorname{Amp}(M, w), E\rangle$, where E is the TM "On input x, reject x." This function is computable, and note that $\mathscr{L}(E)=\varnothing$.
We claim that $\langle M, w\rangle \in \overline{\mathrm{A}}_{\mathrm{TM}} \operatorname{iff}\langle\operatorname{Amp}(M, w), E\rangle \in \mathrm{EQ}_{\mathrm{TM}}$. To see this, note by definition of $\overline{\mathrm{A}}_{\mathrm{TM}}$ that $\langle M, w\rangle \in \overline{\mathrm{A}}_{\mathrm{TM}}$ iff M does not accept w. By our theorem, M does not accept w iff $\mathscr{L}(\operatorname{Amp}(M, w))=\varnothing$. Since $\mathscr{L}(E)=\varnothing$, we see M does not accept w iff $\mathscr{L}(\operatorname{Amp}(M, w))=\mathscr{L}(E)$. Finally, by definition of $\mathrm{EQ}_{\mathrm{TM}} \mathscr{L}(\operatorname{Amp}(M, w))=\mathscr{L}(E)$ iff $\langle\operatorname{Amp}(M, w), E\rangle \in \mathrm{EQ}_{\mathrm{TM}}$. Collectively, we see $\langle M, w\rangle \in \overline{\mathrm{A}}_{\mathrm{TM}}$ iff $\langle\operatorname{Amp}(M, w), E\rangle \in \mathrm{EQ}_{\mathrm{TM}}$. Thus f is a mapping reduction from $\overline{\mathrm{A}}_{\mathrm{TM}}$ to $\mathrm{EQ}_{\mathrm{TM}}$, so $\overline{\mathrm{A}}_{\mathrm{TM}} \leq_{\mathrm{M}} \mathrm{EQ}_{\mathrm{TM}^{\prime}}$, as required.

The Limits of Computability

 $\stackrel{50}{50}$

