

Reducibility
Part II

Problem Set 7
due in the box

up front.

Problem Set 7
due in the box

up front.

Subroutine
TM

Machine R

YES

NO

Compute f
f(w)w

Machine H

The General Pattern

H = “On input w:

· Transform the input w into f(w).

· Run machine R on f(w).

· If R accepts f(w), then H accepts w.

· If R rejects f(w), then H rejects w.”

H = “On input w:

· Transform the input w into f(w).

· Run machine R on f(w).

· If R accepts f(w), then H accepts w.

· If R rejects f(w), then H rejects w.”

Defining Reductions

● A reduction from A to B is a function
f : Σ1* → Σ2* such that

 For any w ∈ Σ1*, w ∈ A iff f(w) ∈ B

Σ
1
* Σ

2
*

Defining Reductions

● A reduction from A to B is a function
f : Σ1* → Σ2* such that

 For any w ∈ Σ1*, w ∈ A iff f(w) ∈ B

NO
Σ
1
* Σ

2
*

YES

Defining Reductions

● A reduction from A to B is a function
f : Σ1* → Σ2* such that

 For any w ∈ Σ1*, w ∈ A iff f(w) ∈ B

NO
Σ
1
* Σ

2
*

YES YES

NO

f(w)

f(w)

Defining Reductions

● A reduction from A to B is a function
f : Σ1* → Σ2* such that

 For any w ∈ Σ1*, w ∈ A iff f(w) ∈ B

● Every w ∈ A maps to some f(w) ∈ B.
● Every w ∉ A maps to some f(w) ∉ B.
● f does not have to be injective or

surjective.

TM for
language B

Machine R

YES

NO

Compute f
f(w)w

Machine H

w ∈ A iff f(w) ∈ B

H = “On input w:

· Transform the input w into f(w).

· Run machine R on f(w).

· If R accepts f(w), then H accepts w.

· If R rejects f(w), then H rejects w.”

H = “On input w:

· Transform the input w into f(w).

· Run machine R on f(w).

· If R accepts f(w), then H accepts w.

· If R rejects f(w), then H rejects w.”

H accepts w

iff

R accepts f(w)

 iff

f(w) ∈ B

iff

w ∈ A

H accepts w

iff

R accepts f(w)

 iff

f(w) ∈ B

iff

w ∈ A

Mapping Reductions

● A function f : Σ1* → Σ2* is called a
mapping reduction from A to B iff
● For any w ∈ Σ1*, w ∈ A iff f(w) ∈ B.

● f is a computable function.

● Intuitively, a mapping reduction from A
to B says that a computer can transform
any instance of A into an instance of B
such that the answer to B is the answer
to A.

Mapping Reducibility

● If there is a mapping reduction from language
A to language B, we say that language A is
mapping reducible to language B.

● Notation: A ≤M B iff language A is mapping
reducible to language B.

● Note that we reduce languages, not
machines.

Why Mapping Reducibility Matters

● Theorem: If B ∈ R and A ≤M B, then
 A ∈ R.

● Theorem: If B ∈ RE and A ≤M B, then
 A ∈ RE.

● Theorem: If B ∈ co-RE and A ≤M B, then
 A ∈ co-RE.

● Intuitively: A ≤M B means “A is not
harder than B.”

Why Mapping Reducibility Matters

● Theorem: If A ∉ R and A ≤M B, then
 B ∉ R.

● Theorem: If A ∉ RE and A ≤M B, then
 B ∉ RE.

● Theorem: If A ∉ co-RE and A ≤M B, then
 B ∉ co-RE.

● Intuitively: A ≤M B means “B is at at least
as hard as A.”

Why Mapping Reducibility Matters

≤MA B

If this one is “easy”
(R, RE, co-RE)…

If this one is “easy”
(R, RE, co-RE)…

… then this one is
“easy” (R, RE,
co-RE) too.

… then this one is
“easy” (R, RE,
co-RE) too.

Why Mapping Reducibility Matters

≤MA B

If this one is “hard”
(not R, not RE, or not

co-RE)…

If this one is “hard”
(not R, not RE, or not

co-RE)…

… then this one is
“hard” (not R, not
RE, or not co-RE)

too.

… then this one is
“hard” (not R, not
RE, or not co-RE)

too.

Using Mapping Reductions

Revisiting our Proofs

● Consider the language

L = { ⟨M⟩ | M is a TM and M accepts ε }

● We have already proven that this language is
in RE by building a TM for it.

● Let's repeat this proof using mapping
reductions.

● Specifically, we will prove

L ≤M ATM

L = { ⟨M⟩ | M is a TM and M accepts ε }

● To prove L ≤M ATM, we will need to find a
computable function f such that

⟨M⟩ ∈ L iff f(⟨M⟩) ∈ ATM

● Since ATM is a language of TM/string pairs, let's
assume f(⟨M⟩) = ⟨N, w⟩ for some TM N and string
w (which we'll pick later):

⟨M⟩ ∈ L iff ⟨N, w⟩ ∈ ATM

● Substituting definitions:

M accepts ε iff N accepts w

● Choose N = M, w = ε. So f(⟨M⟩) = ⟨M, ε⟩.

One Interpretation of the Reduction

Recognizer
for ATM

Machine R

YES

NO

Compute f
⟨M, ε⟩⟨M⟩

Machine H

One Interpretation of the Reduction

Recognizer
for ATM

Machine R

YES

NO

Compute f
⟨M, ε⟩⟨M⟩

Machine H

H = “On input ⟨M⟩:

· Run machine R on ⟨M, ε⟩.

· If R accepts ⟨M, ε⟩, then
 H accepts w.

· If R rejects ⟨M, ε⟩, then
 H rejects w.”

H = “On input ⟨M⟩:

· Run machine R on ⟨M, ε⟩.

· If R accepts ⟨M, ε⟩, then
 H accepts w.

· If R rejects ⟨M, ε⟩, then
 H rejects w.”

One Interpretation of the Reduction

Recognizer
for ATM

Machine R

YES

NO

Compute f
⟨M, ε⟩⟨M⟩

Machine H

H = “On input ⟨M⟩:

· Run machine R on ⟨M, ε⟩.

· If R accepts ⟨M, ε⟩, then
 H accepts w.

· If R rejects ⟨M, ε⟩, then
 H rejects w.”

H = “On input ⟨M⟩:

· Run machine R on ⟨M, ε⟩.

· If R accepts ⟨M, ε⟩, then
 H accepts w.

· If R rejects ⟨M, ε⟩, then
 H rejects w.”

H accepts ⟨M⟩

iff

R accepts ⟨M, ε⟩

iff

M accepts ε

iff

M ∈ L

H accepts ⟨M⟩

iff

R accepts ⟨M, ε⟩

iff

M accepts ε

iff

M ∈ L

One Interpretation of the Reduction

Recognizer
for ATM

Machine R

YES

NO

Compute f
⟨M, ε⟩⟨M⟩

Machine H

H = “On input ⟨M⟩:

· Run machine R on ⟨M, ε⟩.

· If R accepts ⟨M, ε⟩, then
 H accepts w.

· If R rejects ⟨M, ε⟩, then
 H rejects w.”

H = “On input ⟨M⟩:

· Run machine R on ⟨M, ε⟩.

· If R accepts ⟨M, ε⟩, then
 H accepts w.

· If R rejects ⟨M, ε⟩, then
 H rejects w.”

H accepts ⟨M⟩

iff

R accepts ⟨M, ε⟩

iff

M accepts ε

iff

M ∈ L

H accepts ⟨M⟩

iff

R accepts ⟨M, ε⟩

iff

M accepts ε

iff

M ∈ L

One Interpretation of the Reduction

Recognizer
for ATM

Machine R

YES

NO

Compute f
⟨M, ε⟩⟨M⟩

Machine H

H = “On input ⟨M⟩:

· Run machine R on ⟨M, ε⟩.

· If R accepts ⟨M, ε⟩, then
 H accepts w.

· If R rejects ⟨M, ε⟩, then
 H rejects w.”

H = “On input ⟨M⟩:

· Run machine R on ⟨M, ε⟩.

· If R accepts ⟨M, ε⟩, then
 H accepts w.

· If R rejects ⟨M, ε⟩, then
 H rejects w.”

H accepts ⟨M⟩

iff

R accepts ⟨M, ε⟩

iff

M accepts ε

iff

M ∈ L

H accepts ⟨M⟩

iff

R accepts ⟨M, ε⟩

iff

M accepts ε

iff

M ∈ L

One Interpretation of the Reduction

Recognizer
for ATM

Machine R

YES

NO

Compute f
⟨M, ε⟩⟨M⟩

Machine H

H = “On input ⟨M⟩:

· Run machine R on ⟨M, ε⟩.

· If R accepts ⟨M, ε⟩, then
 H accepts w.

· If R rejects ⟨M, ε⟩, then
 H rejects w.”

H = “On input ⟨M⟩:

· Run machine R on ⟨M, ε⟩.

· If R accepts ⟨M, ε⟩, then
 H accepts w.

· If R rejects ⟨M, ε⟩, then
 H rejects w.”

H accepts ⟨M⟩

iff

R accepts ⟨M, ε⟩

iff

M accepts ε

iff

⟨M⟩ ∈ L

H accepts ⟨M⟩

iff

R accepts ⟨M, ε⟩

iff

M accepts ε

iff

⟨M⟩ ∈ L

One Interpretation of the Reduction

Recognizer
for ATM

Machine R

YES

NO

Compute f
⟨M, ε⟩⟨M⟩

Machine H

H = “On input ⟨M⟩:

· Run machine R on ⟨M, ε⟩.

· If R accepts ⟨M, ε⟩, then
 H accepts w.

· If R rejects ⟨M, ε⟩, then
 H rejects w.”

H = “On input ⟨M⟩:

· Run machine R on ⟨M, ε⟩.

· If R accepts ⟨M, ε⟩, then
 H accepts w.

· If R rejects ⟨M, ε⟩, then
 H rejects w.”

H accepts ⟨M⟩

iff

R accepts ⟨M, ε⟩

iff

M accepts ε

iff

⟨M⟩ ∈ L

H accepts ⟨M⟩

iff

R accepts ⟨M, ε⟩

iff

M accepts ε

iff

⟨M⟩ ∈ L

L = { ⟨M⟩ | M is a TM that accepts ε }

Theorem: L ∈ RE.
Proof: We will prove that L ≤M ATM. Since ATM ∈ RE, this

proves L ∈ RE as well.

To prove this, we will give a mapping reduction from
L to ATM. For any TM ⟨M⟩, let f(⟨M⟩) = ⟨M, ε⟩. This
function can be computed by a Turing machine.

Now, we will prove that f is a mapping reduction by
proving for all TMs ⟨M⟩ that ⟨M⟩ ∈ L iff ⟨M, ε⟩ ∈ ATM.
To do this, consider any TM ⟨M⟩. Note that by the
definition of L, we see ⟨M⟩ ∈ L iff M accepts ε. By the
definition of ATM, we know that M accepts ε iff
⟨M, ε⟩ ∈ ATM. Combining these statements together,
we have that ⟨M⟩ ∈ L iff ⟨M, ε⟩ ∈ ATM.

This means that f is a mapping reduction from L to
ATM, so L ≤M ATM, as required. ■

L = { ⟨M⟩ | M is a TM that accepts ε }

Theorem: L ∈ RE.
Proof: We will prove that L ≤M ATM. Since ATM ∈ RE, this

proves L ∈ RE as well.

To prove this, we will give a mapping reduction from
L to ATM. For any TM ⟨M⟩, let f(⟨M⟩) = ⟨M, ε⟩. This
function can be computed by a Turing machine.

Now, we will prove that f is a mapping reduction by
proving for all TMs ⟨M⟩ that ⟨M⟩ ∈ L iff ⟨M, ε⟩ ∈ ATM.
To do this, consider any TM ⟨M⟩. Note that by the
definition of L, we see ⟨M⟩ ∈ L iff M accepts ε. By the
definition of ATM, we know that M accepts ε iff
⟨M, ε⟩ ∈ ATM. Combining these statements together,
we have that ⟨M⟩ ∈ L iff ⟨M, ε⟩ ∈ ATM.

This means that f is a mapping reduction from L to
ATM, so L ≤M ATM, as required. ■

L = { ⟨M⟩ | M is a TM that accepts ε }

Theorem: L ∈ RE.
Proof: We will prove that L ≤M ATM. Since ATM ∈ RE, this

proves L ∈ RE as well.

To prove this, we will give a mapping reduction from
L to ATM. For any TM ⟨M⟩, let f(⟨M⟩) = ⟨M, ε⟩. This
function can be computed by a Turing machine.

Now, we will prove that f is a mapping reduction by
proving for all TMs ⟨M⟩ that ⟨M⟩ ∈ L iff ⟨M, ε⟩ ∈ ATM.
To do this, consider any TM ⟨M⟩. Note that by the
definition of L, we see ⟨M⟩ ∈ L iff M accepts ε. By the
definition of ATM, we know that M accepts ε iff
⟨M, ε⟩ ∈ ATM. Combining these statements together,
we have that ⟨M⟩ ∈ L iff ⟨M, ε⟩ ∈ ATM.

This means that f is a mapping reduction from L to
ATM, so L ≤M ATM, as required. ■

L = { ⟨M⟩ | M is a TM that accepts ε }

Theorem: L ∈ RE.
Proof: We will prove that L ≤M ATM. Since ATM ∈ RE, this

proves L ∈ RE as well.

To prove this, we will give a mapping reduction from
L to ATM. For any TM ⟨M⟩, let f(⟨M⟩) = ⟨M, ε⟩. This
function can be computed by a Turing machine.

Now, we will prove that f is a mapping reduction by
proving for all TMs ⟨M⟩ that ⟨M⟩ ∈ L iff ⟨M, ε⟩ ∈ ATM.
To do this, consider any TM ⟨M⟩. Note that by the
definition of L, we see ⟨M⟩ ∈ L iff M accepts ε. By the
definition of ATM, we know that M accepts ε iff
⟨M, ε⟩ ∈ ATM. Combining these statements together,
we have that ⟨M⟩ ∈ L iff ⟨M, ε⟩ ∈ ATM.

This means that f is a mapping reduction from L to
ATM, so L ≤M ATM, as required. ■

L = { ⟨M⟩ | M is a TM that accepts ε }

Theorem: L ∈ RE.
Proof: We will prove that L ≤M ATM. Since ATM ∈ RE, this

proves L ∈ RE as well.

To prove this, we will give a mapping reduction from
L to ATM. For any TM M, let f(⟨M⟩) = ⟨M, ε⟩. This
function can be computed by a Turing machine.

Now, we will prove that f is a mapping reduction by
proving for all TMs ⟨M⟩ that ⟨M⟩ ∈ L iff ⟨M, ε⟩ ∈ ATM.
To do this, consider any TM ⟨M⟩. Note that by the
definition of L, we see ⟨M⟩ ∈ L iff M accepts ε. By the
definition of ATM, we know that M accepts ε iff
⟨M, ε⟩ ∈ ATM. Combining these statements together,
we have that ⟨M⟩ ∈ L iff ⟨M, ε⟩ ∈ ATM.

This means that f is a mapping reduction from L to
ATM, so L ≤M ATM, as required. ■

L = { ⟨M⟩ | M is a TM that accepts ε }

Theorem: L ∈ RE.
Proof: We will prove that L ≤M ATM. Since ATM ∈ RE, this

proves L ∈ RE as well.

To prove this, we will give a mapping reduction from
L to ATM. For any TM M, let f(⟨M⟩) = ⟨M, ε⟩. This
function can be computed by a Turing machine.

Now, we will prove that f is a mapping reduction by
proving for all TMs M that ⟨M⟩ ∈ L iff ⟨M, ε⟩ ∈ ATM.
To do this, consider any TM ⟨M⟩. Note that by the
definition of L, we see ⟨M⟩ ∈ L iff M accepts ε. By the
definition of ATM, we know that M accepts ε iff
⟨M, ε⟩ ∈ ATM. Combining these statements together,
we have that ⟨M⟩ ∈ L iff ⟨M, ε⟩ ∈ ATM.

This means that f is a mapping reduction from L to
ATM, so L ≤M ATM, as required. ■

L = { ⟨M⟩ | M is a TM that accepts ε }

Theorem: L ∈ RE.
Proof: We will prove that L ≤M ATM. Since ATM ∈ RE, this

proves L ∈ RE as well.

To prove this, we will give a mapping reduction from
L to ATM. For any TM M, let f(⟨M⟩) = ⟨M, ε⟩. This
function can be computed by a Turing machine.

Now, we will prove that f is a mapping reduction by
proving for all TMs M that ⟨M⟩ ∈ L iff ⟨M, ε⟩ ∈ ATM.
To do this, consider any TM M. Note that by the
definition of L, we see ⟨M⟩ ∈ L iff M accepts ε. By the
definition of ATM, we know that M accepts ε iff
⟨M, ε⟩ ∈ ATM. Combining these statements together,
we have that ⟨M⟩ ∈ L iff ⟨M, ε⟩ ∈ ATM.

This means that f is a mapping reduction from L to
ATM, so L ≤M ATM, as required. ■

L = { ⟨M⟩ | M is a TM that accepts ε }

Theorem: L ∈ RE.
Proof: We will prove that L ≤M ATM. Since ATM ∈ RE, this

proves L ∈ RE as well.

To prove this, we will give a mapping reduction from
L to ATM. For any TM M, let f(⟨M⟩) = ⟨M, ε⟩. This
function can be computed by a Turing machine.

Now, we will prove that f is a mapping reduction by
proving for all TMs M that ⟨M⟩ ∈ L iff ⟨M, ε⟩ ∈ ATM.
To do this, consider any TM M. Note that by the
definition of L, we see ⟨M⟩ ∈ L iff M accepts ε. By the
definition of ATM, we know that M accepts ε iff
⟨M, ε⟩ ∈ ATM. Combining these statements together,
we have that ⟨M⟩ ∈ L iff ⟨M, ε⟩ ∈ ATM.

This means that f is a mapping reduction from L to
ATM, so L ≤M ATM, as required. ■

L = { ⟨M⟩ | M is a TM that accepts ε }

Theorem: L ∈ RE.
Proof: We will prove that L ≤M ATM. Since ATM ∈ RE, this

proves L ∈ RE as well.

To prove this, we will give a mapping reduction from
L to ATM. For any TM M, let f(⟨M⟩) = ⟨M, ε⟩. This
function can be computed by a Turing machine.

Now, we will prove that f is a mapping reduction by
proving for all TMs M that ⟨M⟩ ∈ L iff ⟨M, ε⟩ ∈ ATM.
To do this, consider any TM M. Note that by the
definition of L, we see ⟨M⟩ ∈ L iff M accepts ε. By the
definition of ATM, we know that M accepts ε iff
⟨M, ε⟩ ∈ ATM. Combining these statements together,
we have that ⟨M⟩ ∈ L iff ⟨M, ε⟩ ∈ ATM.

This means that f is a mapping reduction from L to
ATM, so L ≤M ATM, as required. ■

L = { ⟨M⟩ | M is a TM that accepts ε }

Theorem: L ∈ RE.
Proof: We will prove that L ≤M ATM. Since ATM ∈ RE, this

proves L ∈ RE as well.

To prove this, we will give a mapping reduction from
L to ATM. For any TM M, let f(⟨M⟩) = ⟨M, ε⟩. This
function can be computed by a Turing machine.

Now, we will prove that f is a mapping reduction by
proving for all TMs M that ⟨M⟩ ∈ L iff ⟨M, ε⟩ ∈ ATM.
To do this, consider any TM M. Note that by the
definition of L, we see ⟨M⟩ ∈ L iff M accepts ε. By the
definition of ATM, we know that M accepts ε iff
⟨M, ε⟩ ∈ ATM. Combining these statements together,
we have that ⟨M⟩ ∈ L iff ⟨M, ε⟩ ∈ ATM.

This means that f is a mapping reduction from L to
ATM, so L ≤M ATM, as required. ■

L = { ⟨M⟩ | M is a TM that accepts ε }

Theorem: L ∈ RE.
Proof: We will prove that L ≤M ATM. Since ATM ∈ RE, this

proves L ∈ RE as well.

To prove this, we will give a mapping reduction from
L to ATM. For any TM M, let f(⟨M⟩) = ⟨M, ε⟩. This
function can be computed by a Turing machine.

Now, we will prove that f is a mapping reduction by
proving for all TMs M that ⟨M⟩ ∈ L iff ⟨M, ε⟩ ∈ ATM.
To do this, consider any TM M. Note that by the
definition of L, we see ⟨M⟩ ∈ L iff M accepts ε. By the
definition of ATM, we know that M accepts ε iff
⟨M, ε⟩ ∈ ATM. Combining these statements together,
we have that ⟨M⟩ ∈ L iff ⟨M, ε⟩ ∈ ATM.

This means that f is a mapping reduction from L to
ATM, so L ≤M ATM, as required. ■

L = { ⟨M⟩ | M is a TM that accepts ε }

Theorem: L ∈ RE.
Proof: We will prove that L ≤M ATM. Since ATM ∈ RE, this

proves L ∈ RE as well.

To prove this, we will give a mapping reduction from
L to ATM. For any TM M, let f(⟨M⟩) = ⟨M, ε⟩. This
function can be computed by a Turing machine.

Now, we will prove that f is a mapping reduction by
proving for all TMs M that ⟨M⟩ ∈ L iff ⟨M, ε⟩ ∈ ATM.
To do this, consider any TM M. Note that by the
definition of L, we see ⟨M⟩ ∈ L iff M accepts ε. By the
definition of ATM, we know that M accepts ε iff
⟨M, ε⟩ ∈ ATM. Combining these statements together,
we have that ⟨M⟩ ∈ L iff ⟨M, ε⟩ ∈ ATM.

This means that f is a mapping reduction from L to
ATM, so L ≤M ATM, as required. ■

What Did We Prove?

Recognizer
for ATM

Machine R

YES

NO

Compute f
⟨M, ε⟩⟨M⟩

Machine H

H = “On input ⟨M⟩:

· Run machine R on ⟨M, ε⟩.

· If R accepts ⟨M, ε⟩, then
 H accepts w.

· If R rejects ⟨M, ε⟩, then
 H rejects w.”

H = “On input ⟨M⟩:

· Run machine R on ⟨M, ε⟩.

· If R accepts ⟨M, ε⟩, then
 H accepts w.

· If R rejects ⟨M, ε⟩, then
 H rejects w.”

H accepts ⟨M⟩

iff

R accepts ⟨M, ε⟩

iff

M accepts ε

iff

⟨M⟩ ∈ L

H accepts ⟨M⟩

iff

R accepts ⟨M, ε⟩

iff

M accepts ε

iff

⟨M⟩ ∈ L

What Did We Prove?

Recognizer
for ATM

Machine R

YES

NO

Compute f
⟨M, ε⟩⟨M⟩

Machine H

H = “On input ⟨M⟩:

· Run machine R on ⟨M, ε⟩.

· If R accepts ⟨M, ε⟩, then
 H accepts w.

· If R rejects ⟨M, ε⟩, then
 H rejects w.”

H = “On input ⟨M⟩:

· Run machine R on ⟨M, ε⟩.

· If R accepts ⟨M, ε⟩, then
 H accepts w.

· If R rejects ⟨M, ε⟩, then
 H rejects w.”

H accepts ⟨M⟩

iff

R accepts ⟨M, ε⟩

iff

M accepts ε

iff

⟨M⟩ ∈ L

H accepts ⟨M⟩

iff

R accepts ⟨M, ε⟩

iff

M accepts ε

iff

⟨M⟩ ∈ L

Interpreting Mapping Reductions

● If A ≤M B, there is a known construction to
turn a TM for B into a TM for A.

● When doing proofs with mapping
reductions, you do not need to show the
overall construction.

● You just need to prove that
● f is a computable function, and
● w ∈ A iff f(w) ∈ B.

Another Mapping Reduction

LD and ATM

● Earlier, we proved ATM ∉ RE by proving that

If ATM ∈ RE, then LD ∈ RE.

● The proof constructed this TM, assuming R was a
recognizer for ATM.

● Let's do another proof using mapping reductions.

H = “On input ⟨M⟩:

 · Construct the string ⟨M, ⟨M⟩⟩.

 · Run R on ⟨M, ⟨M⟩⟩.

 · If R accepts ⟨M, ⟨M⟩⟩, then H accepts ⟨M⟩.

 · If R rejects ⟨M, ⟨M⟩⟩, then H rejects ⟨M⟩.”

H = “On input ⟨M⟩:

 · Construct the string ⟨M, ⟨M⟩⟩.

 · Run R on ⟨M, ⟨M⟩⟩.

 · If R accepts ⟨M, ⟨M⟩⟩, then H accepts ⟨M⟩.

 · If R rejects ⟨M, ⟨M⟩⟩, then H rejects ⟨M⟩.”

LD ≤M ATM

● To prove that ATM ∉ RE, we will prove

LD ≤M ATM

● By our earlier theorem, since LD ∉ RE,
we have that ATM ∉ RE.

● Intuitively: ATM is “at least as hard” as LD,
and since LD ∉ RE, this means ATM ∉ RE.

LD ≤M ATM

● Goal: Find a computable function f such that

⟨M⟩ ∈ LD iff f(⟨M⟩) ∈ ATM

● Simplifying this using the definition of LD

M does not accept ⟨M⟩ iff f(⟨M⟩) ∈ ATM

● Let's assume that f(⟨M⟩) has the form ⟨N, w⟩ for some TM N
and string w. This means that

 M does not accept ⟨M⟩ iff ⟨N, w⟩ ∈ ATM

M does not accept ⟨M⟩ iff N does not accept w
● If we can choose w and N such that the above is true, we will

have our reduction from LD to ATM.

● Choose N = M and w = ⟨M⟩.

One Interpretation of the Reduction

Recognizer
for ATM

Machine R

YES

NO

Compute f
⟨M, ⟨M⟩⟩⟨M⟩

Machine H

One Interpretation of the Reduction

Recognizer
for ATM

Machine R

YES

NO

Compute f
⟨M, ⟨M⟩⟩⟨M⟩

Machine H

H = “On input ⟨M⟩:

· Run machine R on ⟨M, ⟨M⟩⟩.

· If R accepts ⟨M, ⟨M⟩⟩, then
 H accepts w.

· If R rejects ⟨M, ⟨M⟩⟩, then
 H rejects w.”

H = “On input ⟨M⟩:

· Run machine R on ⟨M, ⟨M⟩⟩.

· If R accepts ⟨M, ⟨M⟩⟩, then
 H accepts w.

· If R rejects ⟨M, ⟨M⟩⟩, then
 H rejects w.”

One Interpretation of the Reduction

Recognizer
for ATM

Machine R

YES

NO

Compute f
⟨M, ⟨M⟩⟩⟨M⟩

Machine H

H = “On input ⟨M⟩:

· Run machine R on ⟨M, ⟨M⟩⟩.

· If R accepts ⟨M, ⟨M⟩⟩, then
 H accepts w.

· If R rejects ⟨M, ⟨M⟩⟩, then
 H rejects w.”

H = “On input ⟨M⟩:

· Run machine R on ⟨M, ⟨M⟩⟩.

· If R accepts ⟨M, ⟨M⟩⟩, then
 H accepts w.

· If R rejects ⟨M, ⟨M⟩⟩, then
 H rejects w.”

H accepts ⟨M⟩

iff

R accepts ⟨M, ⟨M⟩⟩

iff

M does not accept ⟨M⟩

iff

M ∈ LD

H accepts ⟨M⟩

iff

R accepts ⟨M, ⟨M⟩⟩

iff

M does not accept ⟨M⟩

iff

M ∈ LD

One Interpretation of the Reduction

Recognizer
for ATM

Machine R

YES

NO

Compute f
⟨M, ⟨M⟩⟩⟨M⟩

Machine H

H = “On input ⟨M⟩:

· Run machine R on ⟨M, ⟨M⟩⟩.

· If R accepts ⟨M, ⟨M⟩⟩, then
 H accepts w.

· If R rejects ⟨M, ⟨M⟩⟩, then
 H rejects w.”

H = “On input ⟨M⟩:

· Run machine R on ⟨M, ⟨M⟩⟩.

· If R accepts ⟨M, ⟨M⟩⟩, then
 H accepts w.

· If R rejects ⟨M, ⟨M⟩⟩, then
 H rejects w.”

H accepts ⟨M⟩

iff

R accepts ⟨M, ⟨M⟩⟩

iff

M does not accept ⟨M⟩

iff

M ∈ LD

H accepts ⟨M⟩

iff

R accepts ⟨M, ⟨M⟩⟩

iff

M does not accept ⟨M⟩

iff

M ∈ LD

One Interpretation of the Reduction

Recognizer
for ATM

Machine R

YES

NO

Compute f
⟨M, ⟨M⟩⟩⟨M⟩

Machine H

H = “On input ⟨M⟩:

· Run machine R on ⟨M, ⟨M⟩⟩.

· If R accepts ⟨M, ⟨M⟩⟩, then
 H accepts w.

· If R rejects ⟨M, ⟨M⟩⟩, then
 H rejects w.”

H = “On input ⟨M⟩:

· Run machine R on ⟨M, ⟨M⟩⟩.

· If R accepts ⟨M, ⟨M⟩⟩, then
 H accepts w.

· If R rejects ⟨M, ⟨M⟩⟩, then
 H rejects w.”

H accepts ⟨M⟩

iff

R accepts ⟨M, ⟨M⟩⟩

iff

M does not accept ⟨M⟩

iff

M ∈ LD

H accepts ⟨M⟩

iff

R accepts ⟨M, ⟨M⟩⟩

iff

M does not accept ⟨M⟩

iff

M ∈ LD

One Interpretation of the Reduction

Recognizer
for ATM

Machine R

YES

NO

Compute f
⟨M, ⟨M⟩⟩⟨M⟩

Machine H

H = “On input ⟨M⟩:

· Run machine R on ⟨M, ⟨M⟩⟩.

· If R accepts ⟨M, ⟨M⟩⟩, then
 H accepts w.

· If R rejects ⟨M, ⟨M⟩⟩, then
 H rejects w.”

H = “On input ⟨M⟩:

· Run machine R on ⟨M, ⟨M⟩⟩.

· If R accepts ⟨M, ⟨M⟩⟩, then
 H accepts w.

· If R rejects ⟨M, ⟨M⟩⟩, then
 H rejects w.”

H accepts ⟨M⟩

iff

R accepts ⟨M, ⟨M⟩⟩

iff

M does not accept ⟨M⟩

iff

⟨M⟩ ∈ LD

H accepts ⟨M⟩

iff

R accepts ⟨M, ⟨M⟩⟩

iff

M does not accept ⟨M⟩

iff

⟨M⟩ ∈ LD

One Interpretation of the Reduction

Recognizer
for ATM

Machine R

YES

NO

Compute f
⟨M, ⟨M⟩⟩⟨M⟩

Machine H

H = “On input ⟨M⟩:

· Run machine R on ⟨M, ⟨M⟩⟩.

· If R accepts ⟨M, ⟨M⟩⟩, then
 H accepts w.

· If R rejects ⟨M, ⟨M⟩⟩, then
 H rejects w.”

H = “On input ⟨M⟩:

· Run machine R on ⟨M, ⟨M⟩⟩.

· If R accepts ⟨M, ⟨M⟩⟩, then
 H accepts w.

· If R rejects ⟨M, ⟨M⟩⟩, then
 H rejects w.”

H accepts ⟨M⟩

iff

R accepts ⟨M, ⟨M⟩⟩

iff

M does not accept ⟨M⟩

iff

⟨M⟩ ∈ LD

H accepts ⟨M⟩

iff

R accepts ⟨M, ⟨M⟩⟩

iff

M does not accept ⟨M⟩

iff

⟨M⟩ ∈ LD

Theorem: ATM ∉ RE.
Proof: We will prove that LD ≤M ATM. Since LD ∉ RE, this

proves that ATM ∉ RE.

To show that LD ≤M ATM, we will give a mapping reduction
from LD to ATM. For any TM M, let f(⟨M⟩) = ⟨M, ⟨M⟩⟩. This
function f is computable.

To prove that f is a mapping reduction from LD to ATM, we
will prove for all TMs M that ⟨M⟩ ∈ LD iff ⟨M, ⟨M⟩⟩ ∈ ATM.
By the definition of LD, we know ⟨M⟩ ∈ LD iff M does not
accept ⟨M⟩. Similarly, by definition of ATM, we know that M
does not accept ⟨M⟩ iff ⟨M, ⟨M⟩⟩ ∈ ATM. Combining these
statements together, we see ⟨M⟩ ∈ LD iff ⟨M, ⟨M⟩⟩ ∈ ATM.
Thus f is a mapping reduction from LD to ATM, so LD ≤ ATM,
as required. ■

The Amplifier Machine

TMs in TMs

● As we've seen, Turing machines can run
other Turing machines as subroutines.

● In order to reduce certain problems to
one another, it is useful / necessary to
embed Turing machines inside of one
another.
● We'll see an example in a second.

● One construction, in particular, is useful
for reductions like these.

For any TM M and string w, let Amp(M, w) be this TM:

Amp(M, w) = “On input x:
Ignore x.
Run M on w.
If M accepts w, then Amp(M, w) accepts x.
If M rejects w, then Amp(M, w) rejects x.”

Theorem 1: If M accepts w, then (Amp(ℒ M, w)) = Σ*. If M
does not accept w, then (Amp(ℒ M, w)) = Ø.

Corollary 1: M accepts w iff (Amp(ℒ M, w)) = Σ*

Corollary 2: M does not accept w iff (Amp(ℒ M, w)) = Ø.

Theorem 2: The function f(⟨M, w⟩) = ⟨Amp(M, w)⟩ is
computable.

The Amplifier Machine

Machine
M

w

For any TM M and string w, let Amp(M, w) be this TM:

Amp(M, w) = “On input x:
Ignore x.
Run M on w.
If M accepts w, then Amp(M, w) accepts x.
If M rejects w, then Amp(M, w) rejects x.”

Theorem 1: If M accepts w, then (Amp(ℒ M, w)) = Σ*. If M
does not accept w, then (Amp(ℒ M, w)) = Ø.

Corollary 1: M accepts w iff (Amp(ℒ M, w)) = Σ*

Corollary 2: M does not accept w iff (Amp(ℒ M, w)) = Ø.

Theorem 2: The function f(⟨M, w⟩) = ⟨Amp(M, w)⟩ is
computable.

The Amplifier Machine

Machine
M

(ignored)
x w

For any TM M and string w, let Amp(M, w) be this TM:

Amp(M, w) = “On input x:
Ignore x.
Run M on w.
If M accepts w, then Amp(M, w) accepts x.
If M rejects w, then Amp(M, w) rejects x.”

Theorem 1: If M accepts w, then (Amp(ℒ M, w)) = Σ*. If M
does not accept w, then (Amp(ℒ M, w)) = Ø.

Corollary 1: M accepts w iff (Amp(ℒ M, w)) = Σ*

Corollary 2: M does not accept w iff (Amp(ℒ M, w)) = Ø.

Theorem 2: The function f(⟨M, w⟩) = ⟨Amp(M, w)⟩ is
computable.

The Amplifier Machine

For any TM M and string w, let Amp(M, w) be the following TM:

Amp(M, w) = “On input x:
Ignore x.
Run M on w.
If M accepts w, then Amp(M, w) accepts x.
If M rejects w, then Amp(M, w) rejects x.”

Theorem: If M accepts w, then (Amp(ℒ M, w)) = Σ*. If M does not
accept w, then (Amp(ℒ M, w)) = Ø.

Proof: First, we consider what happens if M accepts w. In this
case, consider what happens when we run Amp(M, w) on an
arbitrary input string x. Amp(M, w) will run M on w, and since
M accepts w, Amp(M, w) accepts x. Since our choice of x was
arbitrary, we see that Amp(M, w) accepts any input, so

(Amp(ℒ M, w)) = Σ*.

Otherwise, M does not accept w, so M rejects w or M loops on
w. Consider the result of running Amp(M, w) on an arbitrary
string x. If M rejects w, then Amp(M, w) rejects x. Otherwise,
Amp(M, w) loops on x. In both cases, Amp(M, w) doesn't accept
x. Since our choice of x was arbitrary, we see that Amp(M, w)
never accepts any input, so (Amp(ℒ M, w)) = Ø. ■

For any TM M and string w, let Amp(M, w) be this TM:

Amp(M, w) = “On input x:
Ignore x.
Run M on w.
If M accepts w, then Amp(M, w) accepts x.
If M rejects w, then Amp(M, w) rejects x.”

Theorem 1: If M accepts w, then (Amp(ℒ M, w)) = Σ*. If M
does not accept w, then (Amp(ℒ M, w)) = Ø.

Corollary 1: M accepts w iff (Amp(ℒ M, w)) = Σ*

Corollary 2: M does not accept w iff (Amp(ℒ M, w)) = Ø.

Theorem 2: The function f(⟨M, w⟩) = ⟨Amp(M, w)⟩ is
computable.

The Amplifier Machine

qstart qacc

qrej

qacc

qrej

 M

start

“On input x:

· Ignore x.

· Run M on w.

· If M accepts w,
 we accept x.

· If M rejects w,
 we reject x.”

“On input x:

· Ignore x.

· Run M on w.

· If M accepts w,
 we accept x.

· If M rejects w,
 we reject x.”

qstart qacc

qrej

qacc

qrej

 M

start

“On input x:

· Ignore x.

· Run M on w.

· If M accepts w,
 we accept x.

· If M rejects w,
 we reject x.”

“On input x:

· Ignore x.

· Run M on w.

· If M accepts w,
 we accept x.

· If M rejects w,
 we reject x.”

Hypothetically,
assume that w is the

string 1101.

Hypothetically,
assume that w is the

string 1101.

qstart qacc

qrej

qacc

qrej

 M

start

“On input x:

· Ignore x.

· Run M on w.

· If M accepts w,
 we accept x.

· If M rejects w,
 we reject x.”

“On input x:

· Ignore x.

· Run M on w.

· If M accepts w,
 we accept x.

· If M rejects w,
 we reject x.”

Hypothetically,
assume that w is the

string 1101.

Hypothetically,
assume that w is the

string 1101.

qstart qacc

qrej

qacc

qrej

 M

start

“On input x:

· Ignore x.

· Run M on w.

· If M accepts w,
 we accept x.

· If M rejects w,
 we reject x.”

“On input x:

· Ignore x.

· Run M on w.

· If M accepts w,
 we accept x.

· If M rejects w,
 we reject x.”

Hypothetically,
assume that w is the

string 1101.

Hypothetically,
assume that w is the

string 1101.

qstart qacc

qrej

qacc

qrej

 M

start

… 1 0 1 0 …

“On input x:

· Ignore x.

· Run M on w.

· If M accepts w,
 we accept x.

· If M rejects w,
 we reject x.”

“On input x:

· Ignore x.

· Run M on w.

· If M accepts w,
 we accept x.

· If M rejects w,
 we reject x.”

Hypothetically,
assume that w is the

string 1101.

Hypothetically,
assume that w is the

string 1101.

qstart qacc

qrej

qacc

qrej

 M

start

… 1 0 1 0 …

start

“On input x:

· Ignore x.

· Run M on w.

· If M accepts w,
 we accept x.

· If M rejects w,
 we reject x.”

“On input x:

· Ignore x.

· Run M on w.

· If M accepts w,
 we accept x.

· If M rejects w,
 we reject x.”

Hypothetically,
assume that w is the

string 1101.

Hypothetically,
assume that w is the

string 1101.

qstart qacc

qrej

qacc

qrej

 M

start

… 1 0 1 0 …

start

Erase

“On input x:

· Ignore x.

· Run M on w.

· If M accepts w,
 we accept x.

· If M rejects w,
 we reject x.”

“On input x:

· Ignore x.

· Run M on w.

· If M accepts w,
 we accept x.

· If M rejects w,
 we reject x.”

Hypothetically,
assume that w is the

string 1101.

Hypothetically,
assume that w is the

string 1101.

qstart qacc

qrej

qacc

qrej

 M

start

… 1 0 1 0 …

start

Erase

“On input x:

· Ignore x.

· Run M on w.

· If M accepts w,
 we accept x.

· If M rejects w,
 we reject x.”

“On input x:

· Ignore x.

· Run M on w.

· If M accepts w,
 we accept x.

· If M rejects w,
 we reject x.”

Hypothetically,
assume that w is the

string 1101.

Hypothetically,
assume that w is the

string 1101.

qstart qacc

qrej

qacc

qrej

 M

start

… 1 0 1 0 …

start

0 → , R☐
1 → , R☐

Erase

“On input x:

· Ignore x.

· Run M on w.

· If M accepts w,
 we accept x.

· If M rejects w,
 we reject x.”

“On input x:

· Ignore x.

· Run M on w.

· If M accepts w,
 we accept x.

· If M rejects w,
 we reject x.”

Hypothetically,
assume that w is the

string 1101.

Hypothetically,
assume that w is the

string 1101.

qstart qacc

qrej

qacc

qrej

 M

start

… 0 1 0 …

start

0 → , R☐
1 → , R☐

Erase

“On input x:

· Ignore x.

· Run M on w.

· If M accepts w,
 we accept x.

· If M rejects w,
 we reject x.”

“On input x:

· Ignore x.

· Run M on w.

· If M accepts w,
 we accept x.

· If M rejects w,
 we reject x.”

Hypothetically,
assume that w is the

string 1101.

Hypothetically,
assume that w is the

string 1101.

qstart qacc

qrej

qacc

qrej

 M

start

… 1 0 …

start

0 → , R☐
1 → , R☐

Erase

“On input x:

· Ignore x.

· Run M on w.

· If M accepts w,
 we accept x.

· If M rejects w,
 we reject x.”

“On input x:

· Ignore x.

· Run M on w.

· If M accepts w,
 we accept x.

· If M rejects w,
 we reject x.”

Hypothetically,
assume that w is the

string 1101.

Hypothetically,
assume that w is the

string 1101.

qstart qacc

qrej

qacc

qrej

 M

start

… 0 …

start

0 → , R☐
1 → , R☐

Erase

“On input x:

· Ignore x.

· Run M on w.

· If M accepts w,
 we accept x.

· If M rejects w,
 we reject x.”

“On input x:

· Ignore x.

· Run M on w.

· If M accepts w,
 we accept x.

· If M rejects w,
 we reject x.”

Hypothetically,
assume that w is the

string 1101.

Hypothetically,
assume that w is the

string 1101.

qstart qacc

qrej

qacc

qrej

 M

start

… …

start

0 → , R☐
1 → , R☐

Erase

“On input x:

· Ignore x.

· Run M on w.

· If M accepts w,
 we accept x.

· If M rejects w,
 we reject x.”

“On input x:

· Ignore x.

· Run M on w.

· If M accepts w,
 we accept x.

· If M rejects w,
 we reject x.”

Hypothetically,
assume that w is the

string 1101.

Hypothetically,
assume that w is the

string 1101.

qstart qacc

qrej

qacc

qrej

 M

start

… …

start

0 → , R☐
1 → , R☐

Erase

“On input x:

· Ignore x.

· Run M on w.

· If M accepts w,
 we accept x.

· If M rejects w,
 we reject x.”

“On input x:

· Ignore x.

· Run M on w.

· If M accepts w,
 we accept x.

· If M rejects w,
 we reject x.”

Hypothetically,
assume that w is the

string 1101.

Hypothetically,
assume that w is the

string 1101.

qstart qacc

qrej

qacc

qrej

 M

start

… …

start

0 → , R☐
1 → , R☐

1
 → ☐ 1, R

Erase

“On input x:

· Ignore x.

· Run M on w.

· If M accepts w,
 we accept x.

· If M rejects w,
 we reject x.”

“On input x:

· Ignore x.

· Run M on w.

· If M accepts w,
 we accept x.

· If M rejects w,
 we reject x.”

Hypothetically,
assume that w is the

string 1101.

Hypothetically,
assume that w is the

string 1101.

qstart qacc

qrej

qacc

qrej

 M

start

1… …

start

0 → , R☐
1 → , R☐

1
 → ☐ 1, R

Erase

“On input x:

· Ignore x.

· Run M on w.

· If M accepts w,
 we accept x.

· If M rejects w,
 we reject x.”

“On input x:

· Ignore x.

· Run M on w.

· If M accepts w,
 we accept x.

· If M rejects w,
 we reject x.”

Hypothetically,
assume that w is the

string 1101.

Hypothetically,
assume that w is the

string 1101.

qstart qacc

qrej

qacc

qrej

 M

start

1… …

start

0 → , R☐
1 → , R☐

1
 → ☐ 1, R

1111
 → ☐ 1, R

11011011011101

 → ☐ 0, R

11011
 → ☐ 1, R → ☐ ☐, L

Erase

“On input x:

· Ignore x.

· Run M on w.

· If M accepts w,
 we accept x.

· If M rejects w,
 we reject x.”

“On input x:

· Ignore x.

· Run M on w.

· If M accepts w,
 we accept x.

· If M rejects w,
 we reject x.”

Hypothetically,
assume that w is the

string 1101.

Hypothetically,
assume that w is the

string 1101.

qstart qacc

qrej

qacc

qrej

 M

start

1… 1 …

start

0 → , R☐
1 → , R☐

1
 → ☐ 1, R

11
 → ☐ 1, R

11011011011101

 → ☐ 0, R

11011
 → ☐ 1, R → ☐ ☐, L

11

Erase

“On input x:

· Ignore x.

· Run M on w.

· If M accepts w,
 we accept x.

· If M rejects w,
 we reject x.”

“On input x:

· Ignore x.

· Run M on w.

· If M accepts w,
 we accept x.

· If M rejects w,
 we reject x.”

Hypothetically,
assume that w is the

string 1101.

Hypothetically,
assume that w is the

string 1101.

qstart qacc

qrej

qacc

qrej

 M

start

1… 1 0 …

start

0 → , R☐
1 → , R☐

1
 → ☐ 1, R

1111
 → ☐ 1, R

11011011011101

 → ☐ 0, R

11011
 → ☐ 1, R → ☐ ☐, L

Erase

“On input x:

· Ignore x.

· Run M on w.

· If M accepts w,
 we accept x.

· If M rejects w,
 we reject x.”

“On input x:

· Ignore x.

· Run M on w.

· If M accepts w,
 we accept x.

· If M rejects w,
 we reject x.”

Hypothetically,
assume that w is the

string 1101.

Hypothetically,
assume that w is the

string 1101.

qstart qacc

qrej

qacc

qrej

 M

start

1… 1 0 1 …

start

0 → , R☐
1 → , R☐

1
 → ☐ 1, R

1111
 → ☐ 1, R

11011011011101

 → ☐ 0, R

11011
 → ☐ 1, R → ☐ ☐, L

Erase

“On input x:

· Ignore x.

· Run M on w.

· If M accepts w,
 we accept x.

· If M rejects w,
 we reject x.”

“On input x:

· Ignore x.

· Run M on w.

· If M accepts w,
 we accept x.

· If M rejects w,
 we reject x.”

Hypothetically,
assume that w is the

string 1101.

Hypothetically,
assume that w is the

string 1101.

qstart qacc

qrej

qacc

qrej

 M

start

1… 1 0 1 …

start

0 → , R☐
1 → , R☐

1
 → ☐ 1, R

1111
 → ☐ 1, R

11011011011101

 → ☐ 0, R

11011
 → ☐ 1, R → ☐ ☐, L

Erase

“On input x:

· Ignore x.

· Run M on w.

· If M accepts w,
 we accept x.

· If M rejects w,
 we reject x.”

“On input x:

· Ignore x.

· Run M on w.

· If M accepts w,
 we accept x.

· If M rejects w,
 we reject x.”

Hypothetically,
assume that w is the

string 1101.

Hypothetically,
assume that w is the

string 1101.

qstart qacc

qrej

qacc

qrej

 M

1… 1 0 1 …

start

0 → , R☐
1 → , R☐

1
 → ☐ 1, R

1111
 → ☐ 1, R

11011011011101

 → ☐ 0, R

11011
Back
Home

 → ☐ 1, R → ☐ ☐, L

0 → 0, L
1 → 1, L

 → ☐ ☐, R

Erase

“On input x:

· Ignore x.

· Run M on w.

· If M accepts w,
 we accept x.

· If M rejects w,
 we reject x.”

“On input x:

· Ignore x.

· Run M on w.

· If M accepts w,
 we accept x.

· If M rejects w,
 we reject x.”

Hypothetically,
assume that w is the

string 1101.

Hypothetically,
assume that w is the

string 1101.

qstart qacc

qrej

qacc

qrej

 M

1… 1 0 1 …

start

0 → , R☐
1 → , R☐

1
 → ☐ 1, R

1111
 → ☐ 1, R

11011011011101

 → ☐ 0, R

11011
Back
Home

 → ☐ 1, R → ☐ ☐, L

0 → 0, L
1 → 1, L

 → ☐ ☐, R

Using the Amplifier

A More Elaborate Reduction

● Since ATM ∉ RE, there is no algorithm for
determining whether a TM will not accept a
given string.

● Could we check instead whether a TM
never accepts a string?

● Consider the language

Le = { ⟨M⟩ | M is a TM and ℒ(M) = Ø }

● How “hard” is Le? Is it R, RE, co-RE, or
none of these?

Building an Intuition

● Before we even try to prove how “hard” this
language is, we should build an intuition for its
difficulty.

● Le is probably not in RE, since if we were
convinced a TM never accepted, it would be
hard to find positive evidence of this.

● Le is probably in co-RE, since if we were
convinced that a TM did accept some string,
we could exhaustively search over all strings
and try to find the string it accepts.

● Best guess: Le ∈ co-RE – R.

ATM ≤M Le

● We will prove that Le ∉ RE by showing that ATM ≤M Le.
(This also proves Le ∉ R).

● We want to find a function f such that

⟨M, w⟩ ∈ ATM iff f(⟨M, w⟩) ∈ Le

● Since Le is a language of TM descriptions, let's assume
f(⟨M, w⟩) = ⟨N⟩ for some TM N. Then

⟨M, w⟩ ∈ ATM iff ⟨N⟩ ∈ Le

● Expanding out definitions, we get

M doesn't accept w iff ℒ(N) = Ø

● How do we pick the machine N?

The Reduction

● Choose N such that this holds:

M doesn't accept w iff ℒ(N) = Ø
● We can pick N = Amp(M, w).

● Recall: (Amp(ℒ M, w)) = Ø iff M doesn't
accept w.

● Since f(⟨M, w⟩) = ⟨Amp(M, w)⟩ is computable,
this is the mapping reduction we need!

The Reduction

Machine for
Le

The Reduction

Machine for
Le

Construct
Amp(M, w)

 ⟨M, w⟩

The Reduction

Simulate
M on w

 x
(Ignored)

 Amp(M, w)

Machine for
Le

Construct
Amp(M, w)

 ⟨M, w⟩

The Reduction

Simulate
M on w

 x
(Ignored)

ℒ(Amp(M, w)) = Σ* if
M accepts w.

ℒ(Amp(M, w)) = Ø if
M does not accept w.

ℒ(Amp(M, w)) = Σ* if
M accepts w.

ℒ(Amp(M, w)) = Ø if
M does not accept w.

 Amp(M, w)

Machine for
Le

Construct
Amp(M, w)

 ⟨M, w⟩

The Reduction

Simulate
M on w

 x
(Ignored)

 Amp(M, w)

Machine for
Le

Construct
Amp(M, w)

⟨Amp(M, w)⟩ ⟨M, w⟩

The Reduction

Simulate
M on w

 x
(Ignored)

 Amp(M, w)

Machine for
Le

Construct
Amp(M, w)

⟨Amp(M, w)⟩ ⟨M, w⟩

Machine H

The Reduction

What does H
do if M does
not accept w?

What does H
do if M does
not accept w?

Simulate
M on w

 x
(Ignored)

 Amp(M, w)

Machine for
Le

Construct
Amp(M, w)

⟨Amp(M, w)⟩ ⟨M, w⟩

Machine H

The Reduction

What does H
do if M does
not accept w?

What does H
do if M does
not accept w?

Simulate
M on w

 x
(Ignored)

 Amp(M, w)

Machine for
Le

Construct
Amp(M, w)

⟨Amp(M, w)⟩ ⟨M, w⟩

Machine H

(Never
accepts)

The Reduction

Machine for
Le

Construct
Amp(M, w)

⟨Amp(M, w)⟩ ⟨M, w⟩

Machine H

(Never
accepts)

What does H
do if M does
not accept w?

What does H
do if M does
not accept w?

Simulate
M on w

 x
(Ignored)

 Amp(M, w)

The Reduction

Simulate
M on w

 x
(Ignored)

 Amp(M, w)

Machine for
Le

Construct
Amp(M, w)

⟨Amp(M, w)⟩ ⟨M, w⟩

Machine H

The Reduction

What does H
do if M
accepts w?

What does H
do if M
accepts w?

Simulate
M on w

 x
(Ignored)

 Amp(M, w)

Machine for
Le

Construct
Amp(M, w)

⟨Amp(M, w)⟩ ⟨M, w⟩

Machine H

The Reduction

What does H
do if M
accepts w?

What does H
do if M
accepts w?

Simulate
M on w

 x
(Ignored)

 Amp(M, w)

Machine for
Le

Construct
Amp(M, w)

⟨Amp(M, w)⟩ ⟨M, w⟩

Machine H

(Always
accepts)

The Reduction

What does H
do if M
accepts w?

What does H
do if M
accepts w?

(or loop
infinitely)

Simulate
M on w

 x
(Ignored)

 Amp(M, w)

Machine for
Le

Construct
Amp(M, w)

⟨Amp(M, w)⟩ ⟨M, w⟩

Machine H

(Always
accepts)

The Reduction

Simulate
M on w

 x
(Ignored)

 Amp(M, w)

Machine for
Le

Construct
Amp(M, w)

⟨Amp(M, w)⟩ ⟨M, w⟩

Machine H

The Reduction

Simulate
M on w

 x
(Ignored)

 Amp(M, w)

 ⟨M, w⟩

Machine H

The Reduction

What does H
do if M does
not accept w?

What does H
do if M does
not accept w?

Simulate
M on w

 x
(Ignored)

 Amp(M, w)

 ⟨M, w⟩

Machine H

The Reduction

What does H
do if M does
not accept w?

What does H
do if M does
not accept w?

Simulate
M on w

 x
(Ignored)

 Amp(M, w)

 ⟨M, w⟩

Machine H

The Reduction

Simulate
M on w

 x
(Ignored)

 Amp(M, w)

 ⟨M, w⟩

Machine H

The Reduction

What does H
do if M
accepts w?

What does H
do if M
accepts w?

Simulate
M on w

 x
(Ignored)

 Amp(M, w)

 ⟨M, w⟩

Machine H

The Reduction

What does H
do if M
accepts w?

What does H
do if M
accepts w?

(or loop
infinitely)

Simulate
M on w

 x
(Ignored)

 Amp(M, w)

 ⟨M, w⟩

Machine H

The Reduction

Simulate
M on w

 x
(Ignored)

 Amp(M, w)

Machine for
Le

Construct
Amp(M, w)

⟨Amp(M, w)⟩ ⟨M, w⟩

Machine H

The Reduction

This is a
recognizer for

ATM!

This is a
recognizer for

ATM!

Simulate
M on w

 x
(Ignored)

 Amp(M, w)

Machine for
Le

Construct
Amp(M, w)

⟨Amp(M, w)⟩ ⟨M, w⟩

Machine H

Theorem: Lₑ ∉ RE
Proof: We will prove ATM ≤M Lₑ. Since ATM ∉ RE, this proves

that Lₑ ∉ RE, as required. To do so, we will exhibit a
mapping reduction from ATM to Lₑ. For any TM/string pair
⟨M, w⟩, let f(⟨M, w⟩) = ⟨Amp(M, w)⟩. By our earlier
theorem, this function is computable.

We claim this is a mapping reduction from ATM to Lₑ. To
prove this, we will prove that ⟨M, w⟩ ∈ ATM iff
⟨Amp(M, w)⟩ ∈ Lₑ. By definition of ATM, we see ⟨M, w⟩ iff
M does not accept w. By our earlier theorem, M does not
accept w iff (Amp(ℒ M, w)) = Ø. Finally, by definition of Lₑ,
we see (Amp(ℒ M, w)) = Ø iff ⟨Amp(M, w)⟩ ∈ Lₑ. Taken
together, we see that ⟨M, w⟩ ∈ ATM iff ⟨Amp(M, w)⟩ ∈ Lₑ, so
f is a mapping reduction from ATM to Lₑ. Therefore, we see
ATM ≤M Lₑ, as required. ■

A Math Joke

A Math Joke

Time-Out For Announcements

Problem Set 6 Graded

● On-time Problem Set 6's have all been
graded and should be returned after
lecture today.
● Online submissions: contact us if you don't

hear back soon.

● Late Problem Set 6's will be returned this
Wednesday.

Problem Set 8 Out

● Problem Set 8 goes out right now. It's due
the Monday after Thanksgiving break
(December 2).

● Some contradictory information:
● This is the last problem set on which you can

use a late period.
● We strongly recommend that you don't, since

you'll be pinched trying to finish Problem Set 9
if you do.

● TAs and I will figure out an OH schedule
during Thanksgiving week.

Your Questions

“The fact we can't create a TM for ATM and
LD is very cool. But it is tough to see why
we would want to solve those problems in
the first place – what are problems that we
actually want to solve but can't, because of

limits of computability?”

“Aren't there some cases where we can
know a TM is infinite looping? Couldn't we
modify the UTM so it keeps a record of IDs

and then if it sees the same one twice know
it was in a loop? This doesn't guarantee to

find all loops, but would it be useful?”

“What's the difference between a language
being decidable and having a decider for a

language?”

“The generalized hailstone sequence
terminating is proven to be undecidable
(http://link.springer.com/chapter/10.1007%2F978-3-540-72504-6_49).

What purpose is there to prove something
as undecidable? Is undecidable better than

not solvable?”

http://link.springer.com/chapter/10.1007%2F978-3-540-72504-6_49

Back to CS103

The Limits of Computability

RE

A
TMHALT

L
D

co-RE R
ADD

0*1*

A
TMHALT

L
D

What's out here?

L
e

L
e

RE ∪ co-RE is Not Everything

● Using the same reasoning as the first day
of lecture, we can show that there must
be problems that are neither RE nor
co-RE.

● There are more sets of strings than TMs.
● There are more sets of strings than twice

the number of TMs.
● What do these languages look like?

TM Equality

● There are infinitely many pairs of Turing
machines with the same language as one
another.
● Good exercise: think about why this is.

● Consider the following language:

 EQTM = { ⟨M₁, M₂⟩ | M₁ and M₂ are TMs
 and ℒ(M₁) = ℒ(M₂) }

● Questions:

● Is EQTM ∈ co-RE?

● Is EQTM ∈ RE?

Is EQTM ∈ co-RE?

● Intuitively, would we expect EQTM to be a
co-RE language?

● Suppose TM M₁ accepts a string w. We'd
need to know whether M₂ accepts w as
well.

● Co-recognizing this would require us to
have a corecognizer that detects whether
⟨M₂, w⟩ ∈ ATM, but that's not an co-RE
language!

● Our guess: EQTM is probably not co-RE.

Proving EQTM ∉ co-RE

● To prove that EQTM ∉ co-RE, we can try
to find a language L where
● L ∉ co-RE, and

● L ≤M EQTM

● A good candidate would be something
like ATM, which is a “canonical”
non-co-RE languages.

● Goal: Prove ATM ≤M EQTM.

Proving ATM ≤M EQTM

● Goal: Find a computable function f where

⟨M, w⟩ ∈ ATM iff f(⟨M, w⟩) ∈ EQTM

● Since EQTM is a language of pairs of TMs, let's
assume f(⟨M⟩) = ⟨M₁, M₂⟩. Then we want to pick M₁
and M₂ such that

⟨M, w⟩ ∈ ATM iff ⟨M₁, M₂⟩ ∈ EQTM

● Substituting definitions, we want

M accepts w iff ℒ(M₁) = ℒ(M₂)

● What do we do now?

Using the Amplifier

● We want

M accepts w iff ℒ(M₁) = ℒ(M₂)
● What happens if we pick M₁ to be

Amp(M, w)?
● If M accepts w, then (ℒ M₁) = Σ*.
● If M does not accept w, then (ℒ M₁) = Ø.

● Choose M₁ to be the amplifier machine
and M₂ to be any TM with language Σ*.
Then the above statement is true!

What's Going On?

● Suppose we have an oracle for EQTM.

● We want to know whether M accepts w.
● To do this:

● Find a TM S we know has language Σ*.
● Ask the oracle “does TM Amp(M, w) have the

same language as TM S?”
● If so, then M accepts w.
● If not, then M does not accept w.

Theorem: EQTM ∉ co-RE.

Proof: We will prove ATM ≤M EQTM. Since ATM ∉ co-RE, this
proves that EQTM ∉ co-RE. To show ATM ≤M EQTM, we will
exhibit a mapping reduction from ATM to EQTM.

For any TM/string pair ⟨M, w⟩, define f(⟨M, w⟩) to be the
pair of TMs ⟨Amp(M, w), S⟩, where S is the TM “On input
x, accept x.” This function is computable, and note that

(ℒ S) = Σ*.

We claim that ⟨M, w⟩ ∈ ATM iff ⟨Amp(M, w), E⟩ ∈ EQTM. To
see this, note by definition of ATM that ⟨M, w⟩ ∈ ATM iff M
accepts w. By our earlier theorem, M accepts w iff

(Amp(ℒ M, w)) = Σ*. Since (ℒ S) = Σ*, we see M accepts w
iff (Amp(ℒ M, w)) = (ℒ S). Finally, by definition of EQTM,

(Amp(ℒ M, w)) = (ℒ S) iff ⟨Amp(M, w), S⟩ ∈ EQTM.
Collectively, we see ⟨M, w⟩ ∈ ATM iff ⟨Amp(M, w), S⟩ ∈ EQTM.

Thus f is a mapping reduction from ATM to EQTM, so
ATM ≤M EQTM, as required. ■

Is EQTM ∈ RE?

● Intuitively, would we expect EQTM to be a
RE language?

● Suppose TM M₁ doesn't accept a string
w. We'd need to know whether M₂ also
doesn't accept w.

● Recognizing this would require us to
have a recognizer that detects whether
⟨M₂, w⟩ ∈ ATM, but that's not an RE
language!

● Our guess: EQTM is probably not RE.

Proving ATM ≤M EQTM

● Goal: Find a computable function f where

⟨M, w⟩ ∈ ATM iff f(⟨M, w⟩) ∈ EQTM

● Since EQTM is a language of pairs of TMs, let's
assume f(⟨M⟩) = ⟨M₁, M₂⟩. Then we want to pick M₁
and M₂ such that

⟨M, w⟩ ∈ ATM iff ⟨M₁, M₂⟩ ∈ EQTM

● Substituting definitions, we want

M does not accept w iff ℒ(M₁) = ℒ(M₂)

● What do we do now?

Using the Amplifier

● We want

M does not accept w iff ℒ(M₁) = ℒ(M₂)
● What happens if we pick M₁ to be

Amp(M, w)?
● If M accepts w, then (ℒ M₁) = Σ*.
● If M does not accept w, then (ℒ M₁) = Ø.

● Choose M₁ to be the amplifier machine
and M₂ to be any TM with language Ø.
Then the above statement is true!

What's Going On?

● Suppose we have an oracle for EQTM.

● We want to know whether M accepts w.
● To do this:

● Find a TM E we know has language Ø.
● Ask the oracle “does TM Amp(M, w) have the

same language as TM E?”
● If so, then M does not accept w.
● If not, then M accepts w.

Theorem: EQTM ∉ RE.

Proof: We will prove ATM ≤M EQTM. Since ATM ∉ RE, this proves
that EQTM ∉ RE. To show ATM ≤M EQTM, we will exhibit a
mapping reduction from ATM to EQTM.

For any TM/string pair ⟨M, w⟩, define f(⟨M, w⟩) to be the
pair of TMs ⟨Amp(M, w), E⟩, where E is the TM “On input
x, reject x.” This function is computable, and note that

(ℒ E) = Ø.

We claim that ⟨M, w⟩ ∈ ATM iff ⟨Amp(M, w), E⟩ ∈ EQTM. To
see this, note by definition of ATM that ⟨M, w⟩ ∈ ATM iff M
does not accept w. By our theorem, M does not accept w
iff (Amp(ℒ M, w)) = Ø. Since (ℒ E) = Ø, we see M does not
accept w iff (Amp(ℒ M, w)) = (ℒ E). Finally, by definition of
EQTM, (Amp(ℒ M, w)) = (ℒ E) iff ⟨Amp(M, w), E⟩ ∈ EQTM.
Collectively, we see ⟨M, w⟩ ∈ ATM iff ⟨Amp(M, w), E⟩ ∈ EQTM.

Thus f is a mapping reduction from ATM to EQTM, so
ATM ≤M EQTM, as required. ■

The Limits of Computability

RE

A
TMHALT

L
D

co-RE R
ADD

0*1*

A
TMHALT

L
D

L
e

L
e

EQ
TM

EQ
TM

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134

