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Defining Reductions

● A reduction from A to B is a function
f : Σ1* → Σ2* such that

 For any w ∈ Σ1*, w ∈ A iff f(w) ∈ B      

● Every w ∈ A maps to some f(w) ∈ B.
● Every w ∉ A maps to some f(w) ∉ B.
● f does not have to be injective or 

surjective.
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Mapping Reductions

● A function f : Σ1* → Σ2* is called a 
mapping reduction from A to B iff
● For any w ∈ Σ1*, w ∈ A iff f(w) ∈ B.

● f is a computable function.

● Intuitively, a mapping reduction from A 
to B says that a computer can transform 
any instance of A into an instance of B 
such that the answer to B is the answer 
to A.



  

Mapping Reducibility

● If there is a mapping reduction from language 
A to language B, we say that language A is 
mapping reducible to language B.

● Notation: A ≤M B iff language A is mapping 
reducible to language B.

● Note that we reduce languages, not 
machines.



  

Why Mapping Reducibility Matters

● Theorem: If B ∈ R and A ≤M B, then
                  A ∈ R.

● Theorem: If B ∈ RE and A ≤M B, then
                  A ∈ RE.

● Theorem: If B ∈ co-RE and A ≤M B, then
                  A ∈ co-RE.

● Intuitively: A ≤M B means “A is not 
harder than B.”
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                  B ∉ R.

● Theorem: If A ∉ RE and A ≤M B, then
                  B ∉ RE.

● Theorem: If A ∉ co-RE and A ≤M B, then
                  B ∉ co-RE.

● Intuitively: A ≤M B means “B is at at least 
as hard as A.”
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Why Mapping Reducibility Matters
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(not R, not RE, or not 

co-RE)…

… then this one is 
“hard” (not R, not 
RE, or not co-RE) 

too.

… then this one is 
“hard” (not R, not 
RE, or not co-RE) 

too.



  

Using Mapping Reductions



  

Revisiting our Proofs

● Consider the language

L = { ⟨M⟩ | M is a TM and M accepts ε } 

● We have already proven that this language is 
in RE by building a TM for it.

● Let's repeat this proof using mapping 
reductions.

● Specifically, we will prove

L ≤M ATM



  

L = { ⟨M⟩ | M is a TM and M accepts ε }

● To prove L ≤M ATM, we will need to find a 
computable function f such that

⟨M⟩ ∈ L    iff    f(⟨M⟩)  ∈ ATM   

● Since ATM is a language of TM/string pairs, let's 
assume f(⟨M⟩) = ⟨N, w⟩ for some TM N and string 
w (which we'll pick later):

⟨M⟩ ∈ L   iff   ⟨N, w⟩ ∈ ATM    

● Substituting definitions:

M accepts ε   iff   N accepts w   

● Choose N = M, w = ε.  So f(⟨M⟩) = ⟨M, ε⟩.
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L = { ⟨M⟩ | M is a TM that accepts ε }
  

Theorem: L ∈ RE.
Proof: We will prove that L ≤M ATM. Since ATM ∈ RE, this

proves L ∈ RE as well.
 

To prove this, we will give a mapping reduction from
L to ATM. For any TM ⟨M⟩, let f(⟨M⟩) = ⟨M, ε⟩. This
function can be computed by a Turing machine.

 

Now, we will prove that f is a mapping reduction by
proving for all TMs ⟨M⟩ that ⟨M⟩ ∈ L iff ⟨M, ε⟩ ∈ ATM.
To do this, consider any TM ⟨M⟩. Note that by the
definition of L, we see ⟨M⟩ ∈ L iff M accepts ε. By the
definition of ATM, we know that M accepts ε iff
⟨M, ε⟩ ∈ ATM. Combining these statements together,
we have that ⟨M⟩ ∈ L iff ⟨M, ε⟩ ∈ ATM.

 

This means that f is a mapping reduction from L to
ATM, so L ≤M ATM, as required. ■
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Interpreting Mapping Reductions

● If A ≤M B, there is a known construction to 
turn a TM for B into a TM for A.

● When doing proofs with mapping 
reductions, you do not need to show the 
overall construction.

● You just need to prove that
● f is a computable function, and
● w ∈ A  iff  f(w) ∈ B.



  

Another Mapping Reduction



  

LD and ATM

● Earlier, we proved ATM ∉ RE by proving that

If ATM ∈ RE, then LD ∈ RE.   

● The proof constructed this TM, assuming R was a 
recognizer for ATM.

● Let's do another proof using mapping reductions.

 

H = “On input ⟨M⟩:
 

  · Construct the string ⟨M, ⟨M⟩⟩.
 

  · Run R on ⟨M, ⟨M⟩⟩.
 

  · If R accepts ⟨M, ⟨M⟩⟩, then H accepts ⟨M⟩.
 

  · If R rejects ⟨M, ⟨M⟩⟩, then H rejects ⟨M⟩.”
 

 

H = “On input ⟨M⟩:
 

  · Construct the string ⟨M, ⟨M⟩⟩.
 

  · Run R on ⟨M, ⟨M⟩⟩.
 

  · If R accepts ⟨M, ⟨M⟩⟩, then H accepts ⟨M⟩.
 

  · If R rejects ⟨M, ⟨M⟩⟩, then H rejects ⟨M⟩.”
 



  

LD ≤M ATM

● To prove that ATM ∉ RE, we will prove

LD ≤M ATM    

● By our earlier theorem, since LD ∉ RE, 
we have that ATM ∉ RE.

● Intuitively: ATM is “at least as hard” as LD, 
and since LD ∉ RE, this means ATM ∉ RE.



  

LD ≤M ATM

● Goal: Find a computable function f such that

⟨M⟩ ∈ LD     iff     f(⟨M⟩) ∈ ATM  

● Simplifying this using the definition of LD

M does not accept ⟨M⟩      iff     f(⟨M⟩) ∈ ATM      

● Let's assume that f(⟨M⟩) has the form ⟨N, w⟩ for some TM N 
and string w.  This means that

    M does not accept ⟨M⟩     iff     ⟨N, w⟩ ∈ ATM                 

M does not accept ⟨M⟩     iff     N does not accept w
● If we can choose w and N such that the above is true, we will 

have our reduction from LD to ATM.

● Choose N = M and w = ⟨M⟩.
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Theorem: ATM ∉ RE.
Proof: We will prove that LD ≤M ATM. Since LD ∉ RE, this

proves that ATM ∉ RE.
 

To show that LD ≤M ATM, we will give a mapping reduction
from LD to ATM. For any TM M, let f(⟨M⟩) = ⟨M, ⟨M⟩⟩. This
function f is computable.

 

To prove that f is a mapping reduction from LD to ATM, we
will prove for all TMs M that ⟨M⟩ ∈ LD iff ⟨M, ⟨M⟩⟩ ∈ ATM.
By the definition of LD, we know ⟨M⟩ ∈ LD iff M does not
accept ⟨M⟩. Similarly, by definition of ATM, we know that M
does not accept ⟨M⟩ iff ⟨M, ⟨M⟩⟩ ∈ ATM. Combining these
statements together, we see ⟨M⟩ ∈ LD iff ⟨M, ⟨M⟩⟩ ∈ ATM.
Thus f is a mapping reduction from LD to ATM, so LD ≤ ATM,
as required. ■



  

The Amplifier Machine



  

TMs in TMs

● As we've seen, Turing machines can run 
other Turing machines as subroutines.

● In order to reduce certain problems to 
one another, it is useful / necessary to 
embed Turing machines inside of one 
another.
● We'll see an example in a second.

● One construction, in particular, is useful 
for reductions like these.



  

For any TM M and string w, let Amp(M, w) be this TM:
 

Amp(M, w) = “On input x:
Ignore x.
Run M on w.
If M accepts w, then Amp(M, w) accepts x.
If M rejects w, then Amp(M, w) rejects x.”

 

Theorem 1: If M accepts w, then (Amp(ℒ M, w)) = Σ*. If M
does not accept w, then (Amp(ℒ M, w)) = Ø.

Corollary 1: M accepts w iff (Amp(ℒ M, w)) = Σ*

Corollary 2: M does not accept w iff (Amp(ℒ M, w)) = Ø.

Theorem 2: The function f(⟨M, w⟩) = ⟨Amp(M, w)⟩ is
computable.

The Amplifier Machine

Machine
M

w
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For any TM M and string w, let Amp(M, w) be the following TM:
 

Amp(M, w) = “On input x:
Ignore x.
Run M on w.
If M accepts w, then Amp(M, w) accepts x.
If M rejects w, then Amp(M, w) rejects x.”

 

Theorem: If M accepts w, then (Amp(ℒ M, w)) = Σ*. If M does not
accept w, then (Amp(ℒ M, w)) = Ø.

 

Proof: First, we consider what happens if M accepts w. In this
case, consider what happens when we run Amp(M, w) on an
arbitrary input string x. Amp(M, w) will run M on w, and since
M accepts w, Amp(M, w) accepts x. Since our choice of x was
arbitrary, we see that Amp(M, w) accepts any input, so

(Amp(ℒ M, w)) = Σ*.
 

Otherwise, M does not accept w, so M rejects w or M loops on
w. Consider the result of running Amp(M, w) on an arbitrary
string x. If M rejects w, then Amp(M, w) rejects x. Otherwise,
Amp(M, w) loops on x. In both cases, Amp(M, w) doesn't accept
x. Since our choice of x was arbitrary, we see that Amp(M, w)
never accepts any input, so (Amp(ℒ M, w)) = Ø. ■
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Using the Amplifier



  

A More Elaborate Reduction

● Since ATM ∉ RE, there is no algorithm for 
determining whether a TM will not accept a 
given string.

● Could we check instead whether a TM 
never accepts a string?

● Consider the language

Le = { ⟨M⟩ | M is a TM and ℒ(M) = Ø }  

● How “hard” is Le?  Is it R, RE, co-RE, or 
none of these?



  

Building an Intuition

● Before we even try to prove how “hard” this 
language is, we should build an intuition for its 
difficulty.

● Le is probably not in RE, since if we were 
convinced a TM never accepted, it would be 
hard to find positive evidence of this.

● Le is probably in co-RE, since if we were 
convinced that a TM did accept some string, 
we could exhaustively search over all strings 
and try to find the string it accepts.

● Best guess: Le ∈ co-RE – R.



  

ATM ≤M Le

● We will prove that Le ∉ RE by showing that ATM ≤M Le.  
(This also proves Le ∉ R).

● We want to find a function f such that

⟨M, w⟩ ∈ ATM     iff     f(⟨M, w⟩) ∈ Le

● Since Le is a language of TM descriptions, let's assume 
f(⟨M, w⟩) = ⟨N⟩ for some TM N.  Then 

⟨M, w⟩ ∈ ATM     iff     ⟨N⟩ ∈ Le

● Expanding out definitions, we get

M doesn't accept w  iff  ℒ(N) = Ø

● How do we pick the machine N?



  

The Reduction

● Choose N such that this holds:

M doesn't accept w  iff  ℒ(N) = Ø    
● We can pick N = Amp(M, w).

● Recall: (Amp(ℒ M, w)) = Ø iff M doesn't 
accept w.

● Since f(⟨M, w⟩) = ⟨Amp(M, w)⟩ is computable, 
this is the mapping reduction we need!
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Theorem: Lₑ ∉ RE
Proof: We will prove ATM ≤M Lₑ. Since ATM ∉ RE, this proves

that Lₑ ∉ RE, as required. To do so, we will exhibit a
mapping reduction from ATM to Lₑ. For any TM/string pair
⟨M, w⟩, let f(⟨M, w⟩) = ⟨Amp(M, w)⟩. By our earlier
theorem, this function is computable.

We claim this is a mapping reduction from ATM to Lₑ. To
prove this, we will prove that ⟨M, w⟩ ∈ ATM iff
⟨Amp(M, w)⟩ ∈ Lₑ. By definition of ATM, we see ⟨M, w⟩ iff
M does not accept w. By our earlier theorem, M does not
accept w iff (Amp(ℒ M, w)) = Ø. Finally, by definition of Lₑ,
we see (Amp(ℒ M, w)) = Ø iff ⟨Amp(M, w)⟩ ∈ Lₑ. Taken
together, we see that ⟨M, w⟩ ∈ ATM iff ⟨Amp(M, w)⟩ ∈ Lₑ, so
f is a mapping reduction from ATM to Lₑ. Therefore, we see
ATM ≤M Lₑ, as required. ■
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Time-Out For Announcements



  

Problem Set 6 Graded

● On-time Problem Set 6's have all been 
graded and should be returned after 
lecture today.
● Online submissions: contact us if you don't 

hear back soon.

● Late Problem Set 6's will be returned this 
Wednesday.



  

Problem Set 8 Out

● Problem Set 8 goes out right now. It's due 
the Monday after Thanksgiving break 
(December 2).

● Some contradictory information:
● This is the last problem set on which you can 

use a late period.
● We strongly recommend that you don't, since 

you'll be pinched trying to finish Problem Set 9 
if you do.

● TAs and I will figure out an OH schedule 
during Thanksgiving week.



  

Your Questions



  

“The fact we can't create a TM for ATM and 
LD is very cool. But it is tough to see why 
we would want to solve those problems in 
the first place – what are problems that we 
actually want to solve but can't, because of 

limits of computability?”



  

“Aren't there some cases where we can 
know a TM is infinite looping? Couldn't we 
modify the UTM so it keeps a record of IDs 

and then if it sees the same one twice know 
it was in a loop? This doesn't guarantee to 

find all loops, but would it be useful?”



  

“What's the difference between a language 
being decidable and having a decider for a 

language?”



  

“The generalized hailstone sequence 
terminating is proven to be undecidable
(http://link.springer.com/chapter/10.1007%2F978-3-540-72504-6_49). 

What purpose is there to prove something 
as undecidable? Is undecidable better than 

not solvable?”

http://link.springer.com/chapter/10.1007%2F978-3-540-72504-6_49


  

Back to CS103



  

The Limits of Computability
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RE ∪ co-RE is Not Everything

● Using the same reasoning as the first day 
of lecture, we can show that there must 
be problems that are neither RE nor 
co-RE.

● There are more sets of strings than TMs.
● There are more sets of strings than twice 

the number of TMs.
● What do these languages look like?



  

TM Equality

● There are infinitely many pairs of Turing 
machines with the same language as one 
another.
● Good exercise: think about why this is.

● Consider the following language:

  EQTM = { ⟨M₁, M₂⟩ | M₁ and M₂ are TMs 
                                 and ℒ(M₁) = ℒ(M₂) }

● Questions:

● Is EQTM ∈ co-RE?

● Is EQTM ∈ RE?



  

Is EQTM ∈ co-RE?

● Intuitively, would we expect EQTM to be a 
co-RE language?

● Suppose TM M₁ accepts a string w. We'd 
need to know whether M₂ accepts w as 
well.

● Co-recognizing this would require us to 
have a corecognizer that detects whether 
⟨M₂, w⟩ ∈ ATM, but that's not an co-RE 
language!

● Our guess: EQTM is probably not co-RE.



  

Proving EQTM ∉ co-RE

● To prove that EQTM ∉ co-RE, we can try 
to find a language L where
● L ∉ co-RE, and

● L ≤M EQTM

● A good candidate would be something 
like ATM, which is a “canonical” 
non-co-RE languages.

● Goal: Prove ATM ≤M EQTM.



  

Proving ATM ≤M EQTM

● Goal: Find a computable function f where

⟨M, w⟩ ∈ ATM iff f(⟨M, w⟩) ∈ EQTM  

● Since EQTM is a language of pairs of TMs, let's 
assume f(⟨M⟩) = ⟨M₁, M₂⟩. Then we want to pick M₁ 
and M₂ such that

⟨M, w⟩ ∈ ATM iff ⟨M₁, M₂⟩ ∈ EQTM  

● Substituting definitions, we want

M accepts w iff ℒ(M₁) = ℒ(M₂)  

● What do we do now?



  

Using the Amplifier

● We want

M accepts w iff ℒ(M₁) = ℒ(M₂) 
● What happens if we pick M₁ to be 

Amp(M, w)?
● If M accepts w, then (ℒ M₁) = Σ*.
● If M does not accept w, then (ℒ M₁) = Ø.

● Choose M₁ to be the amplifier machine 
and M₂ to be any TM with language Σ*. 
Then the above statement is true!



  

What's Going On?

● Suppose we have an oracle for EQTM.

● We want to know whether M accepts w.
● To do this:

● Find a TM S we know has language Σ*.
● Ask the oracle “does TM Amp(M, w) have the 

same language as TM S?”
● If so, then M accepts w.
● If not, then M does not accept w.



  

Theorem: EQTM ∉ co-RE.

Proof: We will prove ATM ≤M EQTM. Since ATM ∉ co-RE, this
proves that EQTM ∉ co-RE. To show ATM ≤M EQTM, we will
exhibit a mapping reduction from ATM to EQTM.

For any TM/string pair ⟨M, w⟩, define f(⟨M, w⟩) to be the 
pair of TMs ⟨Amp(M, w), S⟩, where S is the TM “On input 
x, accept x.” This function is computable, and note that 

(ℒ S) = Σ*.

We claim that ⟨M, w⟩ ∈ ATM iff ⟨Amp(M, w), E⟩ ∈ EQTM. To 
see this, note by definition of ATM that ⟨M, w⟩ ∈ ATM iff M 
accepts w. By our earlier theorem, M accepts w iff 

(Amp(ℒ M, w)) = Σ*. Since (ℒ S) = Σ*, we see M accepts w 
iff (Amp(ℒ M, w)) = (ℒ S). Finally, by definition of EQTM, 

(Amp(ℒ M, w)) = (ℒ S) iff ⟨Amp(M, w), S⟩ ∈ EQTM. 
Collectively, we see ⟨M, w⟩ ∈ ATM iff ⟨Amp(M, w), S⟩ ∈ EQTM.

Thus f is a mapping reduction from ATM to EQTM, so
ATM ≤M EQTM, as required. ■



  

Is EQTM ∈ RE?

● Intuitively, would we expect EQTM to be a 
RE language?

● Suppose TM M₁ doesn't accept a string 
w. We'd need to know whether M₂ also 
doesn't accept w.

● Recognizing this would require us to 
have a recognizer that detects whether 
⟨M₂, w⟩ ∈ ATM, but that's not an RE 
language!

● Our guess: EQTM is probably not RE.



  

Proving ATM ≤M EQTM

● Goal: Find a computable function f where

⟨M, w⟩ ∈ ATM iff f(⟨M, w⟩) ∈ EQTM  

● Since EQTM is a language of pairs of TMs, let's 
assume f(⟨M⟩) = ⟨M₁, M₂⟩. Then we want to pick M₁ 
and M₂ such that

⟨M, w⟩ ∈ ATM iff ⟨M₁, M₂⟩ ∈ EQTM  

● Substituting definitions, we want

M does not accept w iff ℒ(M₁) = ℒ(M₂)  

● What do we do now?



  

Using the Amplifier

● We want

M does not accept w iff ℒ(M₁) = ℒ(M₂) 
● What happens if we pick M₁ to be 

Amp(M, w)?
● If M accepts w, then (ℒ M₁) = Σ*.
● If M does not accept w, then (ℒ M₁) = Ø.

● Choose M₁ to be the amplifier machine 
and M₂ to be any TM with language Ø. 
Then the above statement is true!



  

What's Going On?

● Suppose we have an oracle for EQTM.

● We want to know whether M accepts w.
● To do this:

● Find a TM E we know has language Ø.
● Ask the oracle “does TM Amp(M, w) have the 

same language as TM E?”
● If so, then M does not accept w.
● If not, then M accepts w.



  

Theorem: EQTM ∉ RE.

Proof: We will prove ATM ≤M EQTM. Since ATM ∉ RE, this proves
that EQTM ∉ RE. To show ATM ≤M EQTM, we will exhibit a
mapping reduction from ATM to EQTM.

For any TM/string pair ⟨M, w⟩, define f(⟨M, w⟩) to be the 
pair of TMs ⟨Amp(M, w), E⟩, where E is the TM “On input 
x, reject x.” This function is computable, and note that 

(ℒ E) = Ø.

We claim that ⟨M, w⟩ ∈ ATM iff ⟨Amp(M, w), E⟩ ∈ EQTM. To 
see this, note by definition of ATM that ⟨M, w⟩ ∈ ATM iff M 
does not accept w. By our theorem, M does not accept w 
iff (Amp(ℒ M, w)) = Ø. Since (ℒ E) = Ø, we see M does not 
accept w iff (Amp(ℒ M, w)) = (ℒ E). Finally, by definition of 
EQTM, (Amp(ℒ M, w)) = (ℒ E) iff ⟨Amp(M, w), E⟩ ∈ EQTM. 
Collectively, we see ⟨M, w⟩ ∈ ATM iff ⟨Amp(M, w), E⟩ ∈ EQTM.

Thus f is a mapping reduction from ATM to EQTM, so
ATM ≤M EQTM, as required. ■
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