

Reducibility
Part I

Deciders

● Some Turing machines always halt; they never
go into an infinite loop.

● Turing machines of this sort are called
deciders.

● For deciders, accepting is the same as not
rejecting and rejecting is the same as not
accepting.

Accept

Reject
 halts (always)

does not accept

does not reject

Decidable Languages

● A language L is called decidable iff there is a
decider M such that (ℒ M) = L.

● Given a decider M, you can learn whether or not a
string w ∈ (ℒ M).

● Run M on w.
● Although it might take a staggeringly long time, M

will eventually accept or reject w.

● The set R is the set of all decidable languages.

L ∈ R iff L is decidable

Regular
Languages CFLs

All Languages

R RE

The Limits of Computability

A
TM

L
D

HALT

A
TM

L
D

ATM and HALT

● Both ATM and HALT are undecidable.

● There is no way to decide whether a TM will
accept or eventually terminate.

● However, both ATM and HALT are recognizable.

● We can always run a TM on a string w and
accept if that TM accepts or halts.

● Intuition: The only general way to learn what
a TM will do on a given string is to run it and
see what happens.

Resolving an Asymmetry

The Limits of Computability

The Limits of Computability

There is a TM M
where M accepts w

iff w ∈ L

The Limits of Computability

RE

There is a TM M
where M accepts w

iff w ∈ L

The Limits of Computability

RE

There is a TM M
where M accepts w

iff w ∈ L

A
TMHALT

L
D

The Limits of Computability

RE

There is a TM M
where M accepts w

iff w ∈ L

A
TMHALT

L
D

R

The Limits of Computability

RE

There is a TM M
where M accepts w

iff w ∈ L

A
TMHALT

L
D

R
ADD

0*1*

The Limits of Computability

RE

There is a TM M
where M accepts w

iff w ∈ L

There is a TM M
where M rejects w

iff w ∉ L

A
TMHALT

L
D

R
ADD

0*1*

The Limits of Computability

RE

There is a TM M
where M accepts w

iff w ∈ L

There is a TM M
where M rejects w

iff w ∉ L

A
TMHALT

L
D

?? R
ADD

0*1*

A New Complexity Class

● A language L is in RE iff there is a TM M such that
● if w ∈ L, then M accepts w.
● if w ∉ L, then M does not accept w.

● A TM M of this sort is called a recognizer, and L is
called recognizable.

● A language L is in co-RE iff there is a TM M such
that

● if w ∈ L, then M does not reject w.
● if w ∉ L, then M rejects w.

● A TM M of this sort is called a co-recognizer, and
L is called co-recognizable.

RE and co-RE

● Intuitively, RE consists of all problems where a
TM can exhaustively search for proof that
w ∈ L.
● If w ∈ L, the TM will find the proof.
● If w ∉ L, the TM cannot find a proof.

● Intuitively, co-RE consists of all problems
where a TM can exhaustively search for a
disproof that w ∈ L.
● If w ∈ L, the TM cannot find the disproof.
● If w ∉ L, the TM will find the disproof.

RE and co-RE Languages

● ATM is an RE language:

● Simulate the TM M on the string w.
● If you find that M accepts w, accept.
● If you find that M rejects w, reject.
● (If M loops, we implicitly loop forever)

● ATM is a co-RE language:

● Simulate the TM M on the string w.
● If you find that M accepts w, reject.
● If you find that M rejects w, accept.
● (If M loops, we implicitly loop forever)

RE and co-RE Languages

● LD is an RE language.

● Simulate M on ⟨M⟩.
● If you find that M accepts ⟨M⟩, accept.
● If you find that M rejects ⟨M⟩, reject.
● (If M loops, we implicitly loop forever)

● LD is a co-RE language.

● Simulate M on ⟨M⟩.
● If you find that M accepts ⟨M⟩, reject.
● If you find that M rejects ⟨M⟩, accept.
● (If M loops, we implicitly loop forever)

The Limits of Computability

RE

There is a TM M
where M accepts w

iff w ∈ L

There is a TM M
where M rejects w

iff w ∉ L

A
TMHALT

L
D

co-RE R
ADD

0*1*

A
TM

L
D

RE and co-RE

Theorem: L ∈ RE iff L ∈ co-RE.

Proof Sketch: Start with a recognizer M for L.
Then, flip its accepting and rejecting states to
make machine M'. Then

 The same approach works if we flip the accept
and reject states of a co-recognizer for L. ■

RE and co-RE

Theorem: L ∈ RE iff L ∈ co-RE.

Proof Sketch: Start with a recognizer M for L.
Then, flip its accepting and rejecting states to
make machine M'. Then

 The same approach works if we flip the accept
and reject states of a co-recognizer for L. ■

RE and co-RE

Theorem: L ∈ RE iff L ∈ co-RE.

Proof Sketch: Start with a recognizer M for L.
Then, flip its accepting and rejecting states to
make machine M'. Then

 The same approach works if we flip the accept
and reject states of a co-recognizer for L. ■

RE and co-RE

Theorem: L ∈ RE iff L ∈ co-RE.

Proof Sketch: Start with a recognizer M for L.
Then, flip its accepting and rejecting states to
make machine M'. Then

 The same approach works if we flip the accept
and reject states of a co-recognizer for L. ■

M' rejects w
iff M accepts w

iff w ∈ L
iff w ∉ L.

M' rejects w
iff M accepts w

iff w ∈ L
iff w ∉ L.

RE and co-RE

Theorem: L ∈ RE iff L ∈ co-RE.

Proof Sketch: Start with a recognizer M for L.
Then, flip its accepting and rejecting states to
make machine M'. Then

 The same approach works if we flip the accept
and reject states of a co-recognizer for L. ■

M' rejects w
iff M accepts w

iff w ∈ L
iff w ∉ L.

M' rejects w
iff M accepts w

iff w ∈ L
iff w ∉ L.

RE and co-RE

Theorem: L ∈ RE iff L ∈ co-RE.

Proof Sketch: Start with a recognizer M for L.
Then, flip its accepting and rejecting states to
make machine M'. Then

 The same approach works if we flip the accept
and reject states of a co-recognizer for L. ■

M' rejects w
iff M accepts w

iff w ∈ L
iff w ∉ L.

M' rejects w
iff M accepts w

iff w ∈ L
iff w ∉ L.

RE and co-RE

Theorem: L ∈ RE iff L ∈ co-RE.

Proof Sketch: Start with a recognizer M for L.
Then, flip its accepting and rejecting states to
make machine M'. Then

 The same approach works if we flip the accept
and reject states of a co-recognizer for L. ■

M' rejects w
iff M accepts w

iff w ∈ L
iff w ∉ L.

M' rejects w
iff M accepts w

iff w ∈ L
iff w ∉ L.

RE and co-RE

Theorem: L ∈ RE iff L ∈ co-RE.

Proof Sketch: Start with a recognizer M for L.
Then, flip its accepting and rejecting states to
make machine M'. Then

 The same approach works if we flip the accept
and reject states of a co-recognizer for L. ■

M' rejects w
iff M accepts w

iff w ∈ L
iff w ∉ L.

M' rejects w
iff M accepts w

iff w ∈ L
iff w ∉ L.

M' does not reject w
iff M' accepts w or M' loops on w
iff M rejects w or M loops on w

iff w ∉ L
iff w ∈ L.

M' does not reject w
iff M' accepts w or M' loops on w
iff M rejects w or M loops on w

iff w ∉ L
iff w ∈ L.

RE and co-RE

Theorem: L ∈ RE iff L ∈ co-RE.

Proof Sketch: Start with a recognizer M for L.
Then, flip its accepting and rejecting states to
make machine M'. Then

 The same approach works if we flip the accept
and reject states of a co-recognizer for L. ■

M' rejects w
iff M accepts w

iff w ∈ L
iff w ∉ L.

M' rejects w
iff M accepts w

iff w ∈ L
iff w ∉ L.

M' does not reject w
iff M' accepts w or M' loops on w
iff M rejects w or M loops on w

iff w ∉ L
iff w ∈ L.

M' does not reject w
iff M' accepts w or M' loops on w
iff M rejects w or M loops on w

iff w ∉ L
iff w ∈ L.

RE and co-RE

Theorem: L ∈ RE iff L ∈ co-RE.

Proof Sketch: Start with a recognizer M for L.
Then, flip its accepting and rejecting states to
make machine M'. Then

 The same approach works if we flip the accept
and reject states of a co-recognizer for L. ■

M' rejects w
iff M accepts w

iff w ∈ L
iff w ∉ L.

M' rejects w
iff M accepts w

iff w ∈ L
iff w ∉ L.

M' does not reject w
iff M' accepts w or M' loops on w
iff M rejects w or M loops on w

iff w ∉ L
iff w ∈ L.

M' does not reject w
iff M' accepts w or M' loops on w
iff M rejects w or M loops on w

iff w ∉ L
iff w ∈ L.

RE and co-RE

Theorem: L ∈ RE iff L ∈ co-RE.

Proof Sketch: Start with a recognizer M for L.
Then, flip its accepting and rejecting states to
make machine M'. Then

 The same approach works if we flip the accept
and reject states of a co-recognizer for L. ■

M' rejects w
iff M accepts w

iff w ∈ L
iff w ∉ L.

M' rejects w
iff M accepts w

iff w ∈ L
iff w ∉ L.

M' does not reject w
iff M' accepts w or M' loops on w
iff M rejects w or M loops on w

iff w ∉ L
iff w ∈ L.

M' does not reject w
iff M' accepts w or M' loops on w
iff M rejects w or M loops on w

iff w ∉ L
iff w ∈ L.

RE and co-RE

Theorem: L ∈ RE iff L ∈ co-RE.

Proof Sketch: Start with a recognizer M for L.
Then, flip its accepting and rejecting states to
make machine M'. Then

 The same approach works if we flip the accept
and reject states of a co-recognizer for L. ■

M' rejects w
iff M accepts w

iff w ∈ L
iff w ∉ L.

M' rejects w
iff M accepts w

iff w ∈ L
iff w ∉ L.

M' does not reject w
iff M' accepts w or M' loops on w
iff M rejects w or M loops on w

iff w ∉ L
iff w ∈ L.

M' does not reject w
iff M' accepts w or M' loops on w
iff M rejects w or M loops on w

iff w ∉ L
iff w ∈ L.

RE and co-RE

Theorem: L ∈ RE iff L ∈ co-RE.

Proof Sketch: Start with a recognizer M for L.
Then, flip its accepting and rejecting states to
make machine M'. Then

 The same approach works if we flip the accept
and reject states of a co-recognizer for L. ■

M' rejects w
iff M accepts w

iff w ∈ L
iff w ∉ L.

M' rejects w
iff M accepts w

iff w ∈ L
iff w ∉ L.

M' does not reject w
iff M' accepts w or M' loops on w
iff M rejects w or M loops on w

iff w ∉ L
iff w ∈ L.

M' does not reject w
iff M' accepts w or M' loops on w
iff M rejects w or M loops on w

iff w ∉ L
iff w ∈ L.

RE and co-RE

Theorem: L ∈ RE iff L ∈ co-RE.

Proof Sketch: Start with a recognizer M for L.
Then, flip its accepting and rejecting states to
make machine M'. Then

 The same approach works if we flip the accept
and reject states of a co-recognizer for L. ■

M' rejects w
iff M accepts w

iff w ∈ L
iff w ∉ L.

M' rejects w
iff M accepts w

iff w ∈ L
iff w ∉ L.

M' does not reject w
iff M' accepts w or M' loops on w
iff M rejects w or M loops on w

iff w ∉ L
iff w ∈ L.

M' does not reject w
iff M' accepts w or M' loops on w
iff M rejects w or M loops on w

iff w ∉ L
iff w ∈ L.

RE and co-RE

Theorem: L ∈ RE iff L ∈ co-RE.

Proof Sketch: Start with a recognizer M for L.
Then, flip its accepting and rejecting states to
make machine M'. Then

 The same approach works if we flip the accept
and reject states of a co-recognizer for L. ■

M' rejects w
iff M accepts w

iff w ∈ L
iff w ∉ L.

M' rejects w
iff M accepts w

iff w ∈ L
iff w ∉ L.

M' does not reject w
iff M' accepts w or M' loops on w
iff M rejects w or M loops on w

iff w ∉ L
iff w ∈ L.

M' does not reject w
iff M' accepts w or M' loops on w
iff M rejects w or M loops on w

iff w ∉ L
iff w ∈ L.

RE and co-RE

Theorem: L ∈ RE iff L ∈ co-RE.

Proof Sketch: Start with a recognizer M for L.
Then, flip its accepting and rejecting states to
make machine M'. Then

 The same approach works if we flip the accept
and reject states of a co-recognizer for L. ■

M' rejects w
iff M accepts w

iff w ∈ L
iff w ∉ L.

M' rejects w
iff M accepts w

iff w ∈ L
iff w ∉ L.

M' does not reject w
iff M' accepts w or M' loops on w
iff M rejects w or M loops on w

iff w ∉ L
iff w ∈ L.

M' does not reject w
iff M' accepts w or M' loops on w
iff M rejects w or M loops on w

iff w ∉ L
iff w ∈ L.

The Limits of Computability

RE

There is a TM M
where M accepts w

iff w ∈ L

There is a TM M
where M rejects w

iff w ∉ L

A
TMHALT

L
D

co-RE R
ADD

0*1*

A
TM

L
D

HALT

R, RE, and co-RE

● Every language in R is in both RE and
co-RE.

● Why?
● A decider for L accepts all w ∈ L and rejects

all w ∉ L.

● In other words, R ⊆ RE ∩ co-RE.
● Question: Does R = RE ∩ co-RE?

Which Picture is Correct?

RE

There is a TM M
where M accepts w

iff w ∈ L

There is a TM M
where M rejects w

iff w ∉ L

A
TMHALT

L
D

co-RE R
ADD

0*1*

A
TMHALT

L
D

Which Picture is Correct?

RE

There is a TM M
where M accepts w

iff w ∈ L

There is a TM M
where M rejects w

iff w ∉ L

A
TMHALT

L
D

co-RE R
ADD

0*1*

A
TMHALT

L
D

R, RE, and co-RE

● Theorem: If L ∈ RE and L ∈ co-RE, then
 L ∈ R.

Proof sketch: Since L ∈ RE, there is a
recognizer M for it. Since L ∈ co-RE,
there is a co-recognizer M for it.

This TM D is a decider for L:

R, RE, and co-RE

● Theorem: If L ∈ RE and L ∈ co-RE, then
 L ∈ R.

● Proof sketch: Since L ∈ RE, there is a
recognizer M for it. Since L ∈ co-RE,
there is a co-recognizer M for it.

This TM D is a decider for L:

R, RE, and co-RE

● Theorem: If L ∈ RE and L ∈ co-RE, then
 L ∈ R.

● Proof sketch: Since L ∈ RE, there is a
recognizer M for it. Since L ∈ co-RE,
there is a co-recognizer M for it.

This TM D is a decider for L:

R, RE, and co-RE

● Theorem: If L ∈ RE and L ∈ co-RE, then
 L ∈ R.

● Proof sketch: Since L ∈ RE, there is a
recognizer M for it. Since L ∈ co-RE,
there is a co-recognizer M for it.

This TM D is a decider for L:

R, RE, and co-RE

● Theorem: If L ∈ RE and L ∈ co-RE, then
 L ∈ R.

● Proof sketch: Since L ∈ RE, there is a
recognizer M for it. Since L ∈ co-RE,
there is a co-recognizer M for it.

This TM D is a decider for L:

 D = “On input w:
Run M on w and M on w in parallel.
If M accepts w, accept.
If M rejects w, reject.

 D = “On input w:
Run M on w and M on w in parallel.
If M accepts w, accept.
If M rejects w, reject.

The Limits of Computability

RE

There is a TM M
where M accepts w

iff w ∈ L

There is a TM M
where M rejects w

iff w ∉ L

A
TMHALT

L
D

co-RE R
ADD

0*1*

A
TMHALT

L
D

What's out here?

Time-Out For Announcements!

Friday Four Square!
Today at 4:15PM outside Gates

Two Handouts Online

● 24: Additional Proofs on TMs
● See alternate proofs of why various

languages are or are not R, RE, or co-RE.

● 25: Extra Practice Problems
● By popular demand, extra questions on

topics you'd like some more practice with!
● Solutions released Monday.

Picking up Problem Sets

● If you pick up problem sets from the
filing cabinet,

please put all other papers back into
the filing cabinet when you're done!

● If you don't:
● they get mixed with problem sets from other

classes and lost,
● it causes a fire hazard, and
● I get flak from the building managers about

making a mess.

Your Questions

“Can you recommend software for
designing and / or simulating Turing

machines?”

http://www.jflap.org/http://www.jflap.org/

http://www.jflap.org/
http://www.jflap.org/

“Is there a difference between when a TM
“runs” another TM as a subroutine vs.

when it “simulates running” another TM?”

“Sometime my brain is stuck and I make
silly and stupid mistakes [...]. What [do]

you do when you are stuck on a problem?”

Back to CS103!

A Repeating Pattern

Recognizer
for ATM

Yes

No

⟨M⟩

ε

Machine R

H = “On input ⟨M⟩:

· Construct the string ⟨M, ε⟩.

· Run R on ⟨M, ε⟩.

· If R accepts ⟨M, ε⟩, then H accepts ⟨M, ε⟩.

· If R rejects ⟨M, ε⟩, then H rejects ⟨M, ε⟩.”

H = “On input ⟨M⟩:

· Construct the string ⟨M, ε⟩.

· Run R on ⟨M, ε⟩.

· If R accepts ⟨M, ε⟩, then H accepts ⟨M, ε⟩.

· If R rejects ⟨M, ε⟩, then H rejects ⟨M, ε⟩.”

Construct ⟨M, ε⟩ ⟨M⟩

H

L = { ⟨M⟩ | M is a TM that accepts ε }

Recognizer
for ATM

Yes

No

⟨M⟩

⟨M⟩

Machine R

H = “On input ⟨M⟩:

· Construct the string ⟨M, ⟨M⟩⟩.

· Run R on ⟨M, ⟨M⟩⟩.

· If R accepts ⟨M, ⟨M⟩⟩, then H accepts ⟨M, ⟨M⟩⟩.

· If R rejects ⟨M, ⟨M⟩⟩, then H rejects ⟨M, ⟨M⟩⟩.”

H = “On input ⟨M⟩:

· Construct the string ⟨M, ⟨M⟩⟩.

· Run R on ⟨M, ⟨M⟩⟩.

· If R accepts ⟨M, ⟨M⟩⟩, then H accepts ⟨M, ⟨M⟩⟩.

· If R rejects ⟨M, ⟨M⟩⟩, then H rejects ⟨M, ⟨M⟩⟩.”

Construct ⟨M, ⟨M⟩⟩ ⟨M⟩

H

From ATM to LD

Decider for
HALT

Yes

No

⟨M'⟩

w

Machine D

H = “On input ⟨M, w⟩:

· Build M into M' so M' loops when M rejects.

· Run D on ⟨M', w⟩.

· If D accepts ⟨M', w⟩, then H accepts ⟨M, w⟩.

· If D rejects ⟨M', w⟩, then H rejects ⟨M, w⟩.”

H = “On input ⟨M, w⟩:

· Build M into M' so M' loops when M rejects.

· Run D on ⟨M', w⟩.

· If D accepts ⟨M', w⟩, then H accepts ⟨M, w⟩.

· If D rejects ⟨M', w⟩, then H rejects ⟨M, w⟩.”

Change M so M
loops whenever M

it would reject.

w

⟨M⟩

H

From HALT to ATM

Subroutine
TM

Machine R

YES

NO

Compute f
f(w)w

Machine H

The General Pattern

Subroutine
TM

Machine R

YES

NO

Compute f
f(w)w

Machine H

The General Pattern

H = “On input w:

· Transform the input w into f(w).

· Run machine R on f(w).

· If R accepts f(w), then H accepts w.

· If R rejects f(w), then H rejects w.”

H = “On input w:

· Transform the input w into f(w).

· Run machine R on f(w).

· If R accepts f(w), then H accepts w.

· If R rejects f(w), then H rejects w.”

Reductions

● Intuitively, problem A reduces to
problem B iff a solver for B can be used
to solve problem A.

Is (ℒ D) = Σ*? Is (ℒ D₁) equal
to Σ* - (ℒ D₂)?

Can be converted to

Can be used to solve

Problem A Problem B

Reductions

● Intuitively, problem A reduces to
problem B iff a solver for B can be used
to solve problem A.

Is (ℒ G) = Ø? Is (ℒ G₁) ⊆ (ℒ G₂)?

Can be converted to

Can be used to solve

Problem A Problem B

Reductions

● Intuitively, problem A reduces to
problem B iff a solver for B can be used
to solve problem A.

LD ATM

Can be converted to

Can be used to solve

Problem A Problem B

Reductions

● Intuitively, problem A reduces to
problem B iff a solver for B can be used
to solve problem A.

ATM HALT

Can be converted to

Can be used to solve

Problem A Problem B

Reductions

● Intuitively, problem A reduces to
problem B iff a solver for B can be used
to solve problem A.

● Reductions can be used to show certain
problems are “solvable:”

If A reduces to B and B is “solvable,”
then A is “solvable.”

Formalizing Reductions

● In order to make the previous intuition
more rigorous, we need to formally define
reductions.

● There are many ways to do this; we'll
explore two:
● Mapping reducibility (today / Monday), and
● Polynomial-time reducibility (next week).

Defining Reductions

● A reduction from A to B is a function
f : Σ1* → Σ2* such that

 For any w ∈ Σ1*, w ∈ A iff f(w) ∈ B

Σ
1
* Σ

2
*

Defining Reductions

● A reduction from A to B is a function
f : Σ1* → Σ2* such that

 For any w ∈ Σ1*, w ∈ A iff f(w) ∈ B

NO
Σ

1
* Σ

2
*

YES

Defining Reductions

● A reduction from A to B is a function
f : Σ1* → Σ2* such that

 For any w ∈ Σ1*, w ∈ A iff f(w) ∈ B

NO
Σ

1
* Σ

2
*

YES YES

NO

f(w)

f(w)

Defining Reductions

● A reduction from A to B is a function
f : Σ1* → Σ2* such that

 For any w ∈ Σ1*, w ∈ A iff f(w) ∈ B

● Every w ∈ A maps to some f(w) ∈ B.
● Every w ∉ A maps to some f(w) ∉ B.
● f does not have to be injective or

surjective.

Why Reductions Matter

● If language A reduces to language B, we
can use a recognizer / co-recognizer /
decider for B to recognize /
co-recognize / decide problem A.
● (There's a slight catch – we'll talk about this

in a second).

● How is this possible?

w ∈ A iff f(w) ∈ B

TM for
language B

YES

NO

w

w ∈ A iff f(w) ∈ B

TM for
language B

Machine R

YES

NO

w

w ∈ A iff f(w) ∈ B

TM for
language B

Machine R

YES

NO

w

w ∈ A iff f(w) ∈ B

TM for
language B

Machine R

YES

NO

Compute f
f(w)w

w ∈ A iff f(w) ∈ B

TM for
language B

Machine R

YES

NO

Compute f
f(w)w

Machine H

w ∈ A iff f(w) ∈ B

TM for
language B

Machine R

YES

NO

Compute f
f(w)w

Machine H

w ∈ A iff f(w) ∈ B

H = “On input w:

· Transform the input w into f(w).

· Run machine R on f(w).

· If R accepts f(w), then H accepts w.

· If R rejects f(w), then H rejects w.”

H = “On input w:

· Transform the input w into f(w).

· Run machine R on f(w).

· If R accepts f(w), then H accepts w.

· If R rejects f(w), then H rejects w.”

TM for
language B

Machine R

YES

NO

Compute f
f(w)w

Machine H

w ∈ A iff f(w) ∈ B

H = “On input w:

· Transform the input w into f(w).

· Run machine R on f(w).

· If R accepts f(w), then H accepts w.

· If R rejects f(w), then H rejects w.”

H = “On input w:

· Transform the input w into f(w).

· Run machine R on f(w).

· If R accepts f(w), then H accepts w.

· If R rejects f(w), then H rejects w.”

H accepts w

iff

R accepts f(w)

 iff

f(w) ∈ B

iff

w ∈ A

H accepts w

iff

R accepts f(w)

 iff

f(w) ∈ B

iff

w ∈ A

TM for
language B

Machine R

YES

NO

Compute f
f(w)w

Machine H

w ∈ A iff f(w) ∈ B

H = “On input w:

· Transform the input w into f(w).

· Run machine R on f(w).

· If R accepts f(w), then H accepts w.

· If R rejects f(w), then H rejects w.”

H = “On input w:

· Transform the input w into f(w).

· Run machine R on f(w).

· If R accepts f(w), then H accepts w.

· If R rejects f(w), then H rejects w.”

H accepts w

iff

R accepts f(w)

 iff

f(w) ∈ B

iff

w ∈ A

H accepts w

iff

R accepts f(w)

 iff

f(w) ∈ B

iff

w ∈ A

TM for
language B

Machine R

YES

NO

Compute f
f(w)w

Machine H

w ∈ A iff f(w) ∈ B

H = “On input w:

· Transform the input w into f(w).

· Run machine R on f(w).

· If R accepts f(w), then H accepts w.

· If R rejects f(w), then H rejects w.”

H = “On input w:

· Transform the input w into f(w).

· Run machine R on f(w).

· If R accepts f(w), then H accepts w.

· If R rejects f(w), then H rejects w.”

H accepts w

iff

R accepts f(w)

 iff

f(w) ∈ B

iff

w ∈ A

H accepts w

iff

R accepts f(w)

 iff

f(w) ∈ B

iff

w ∈ A

TM for
language B

Machine R

YES

NO

Compute f
f(w)w

Machine H

w ∈ A iff f(w) ∈ B

H = “On input w:

· Transform the input w into f(w).

· Run machine R on f(w).

· If R accepts f(w), then H accepts w.

· If R rejects f(w), then H rejects w.”

H = “On input w:

· Transform the input w into f(w).

· Run machine R on f(w).

· If R accepts f(w), then H accepts w.

· If R rejects f(w), then H rejects w.”

H accepts w

iff

R accepts f(w)

 iff

f(w) ∈ B

iff

w ∈ A

H accepts w

iff

R accepts f(w)

 iff

f(w) ∈ B

iff

w ∈ A

TM for
language B

Machine R

YES

NO

Compute f
f(w)w

Machine H

w ∈ A iff f(w) ∈ B

H = “On input w:

· Transform the input w into f(w).

· Run machine R on f(w).

· If R accepts f(w), then H accepts w.

· If R rejects f(w), then H rejects w.”

H = “On input w:

· Transform the input w into f(w).

· Run machine R on f(w).

· If R accepts f(w), then H accepts w.

· If R rejects f(w), then H rejects w.”

ℒ(H) = Aℒ(H) = A

TM for
language B

Machine R

YES

NO

Compute f
f(w)w

Machine H

w ∈ A iff f(w) ∈ B

H = “On input w:

· Transform the input w into f(w).

· Run machine R on f(w).

· If R accepts f(w), then H accepts w.

· If R rejects f(w), then H rejects w.”

H = “On input w:

· Transform the input w into f(w).

· Run machine R on f(w).

· If R accepts f(w), then H accepts w.

· If R rejects f(w), then H rejects w.”

ℒ(H) = Aℒ(H) = A

Thanks to Alan Kaptanoglu for this image.

A Problem

● Recall: f is a reduction from A to B iff

w ∈ A iff f(w) ∈ B
● Under this definition, any language A reduces to any

language B unless B = Ø or Σ*.

● Since B ≠ Ø and B ≠ Σ*, there is some wyes ∈ B and
some wno ∉ B.

● Define f : Σ1* → Σ2* as follows:

● Then f is a reduction from A to B.

f (w)={wyes if w∈A
wno if w∉A

A Problem

● Example: let's reduce LD to 0*1*.

● Take wyes = 01, wno = 10.

● Then f(w) is defined as

● There is no TM that can actually evaluate
the function f(w) on all inputs, since no
TM can decide whether or not w ∈ LD.

f (w)={01 if w∈LD

10 if w∉LD

A Problem

● Example: let's reduce LD to 0*1*.

● Take wyes = 01, wno = 10.

● Then f(w) is defined as

● There is no TM that can actually evaluate
the function f(w) on all inputs, since no
TM can decide whether or not w ∈ LD.

f (w)={01 if w∈LD

10 if w∉LD

That's bad!

Computable Functions

● This general reduction is mathematically well-defined,
but might be impossible to actually compute!

● To fix our definition, we need to introduce the idea of a
computable function.

● A function f : Σ1* → Σ2* is called a computable
function if there is some TM M with the following
behavior:

 “On input w:

 Compute f(w) and write it on the tape.

 Move the tape head to the start of f(w).

 Halt.”

Computable Functions

f(1n) = 13n+1

… 1 1 1 …

Computable Functions

… 1 1 1 1 1 1 1 1 1 1 …

f(1n) = 13n+1

Computable Functions

f(w) =
 1mn if w = 1n×1m

 ε otherwise

… 1 1 1 × 1 1 1 …

Computable Functions

… 1 1 1 1 1 1 1 1 1 …

f(w) =
 1mn if w = 1n×1m

 ε otherwise

Computable Functions

f(⟨M⟩) = ⟨M, ⟨M⟩⟩

… 1 0 0 …

Computable Functions

… 1 1 0 0 0 0 0 1 1 0 0 …

f(⟨M⟩) = ⟨M, ⟨M⟩⟩

Mapping Reductions

● A function f : Σ1* → Σ2* is called a
mapping reduction from A to B iff
● For any w ∈ Σ1*, w ∈ A iff f(w) ∈ B.

● f is a computable function.

● Intuitively, a mapping reduction from A
to B says that a computer can transform
any instance of A into an instance of B
such that the answer to B is the answer
to A.

Mapping Reducibility

● If there is a mapping reduction from language
A to language B, we say that language A is
mapping reducible to language B.

● Notation: A ≤M B iff language A is mapping
reducible to language B.

● Note that we reduce languages, not
machines.

TM for
language B

Machine R

YES

NO

Compute f
f(w)w

Machine H

A ≤M B

H = “On input w:

· Compute f(w).

· Run machine R on f(w).

· If R accepts f(w), then
 H accepts w.

· If R rejects f(w), then
 H rejects w.”

H = “On input w:

· Compute f(w).

· Run machine R on f(w).

· If R accepts f(w), then
 H accepts w.

· If R rejects f(w), then
 H rejects w.”

TM for
language B

Machine R

YES

NO

Compute f
f(w)w

Machine H

A ≤M B

H = “On input w:

· Compute f(w).

· Run machine R on f(w).

· If R accepts f(w), then
 H accepts w.

· If R rejects f(w), then
 H rejects w.”

H = “On input w:

· Compute f(w).

· Run machine R on f(w).

· If R accepts f(w), then
 H accepts w.

· If R rejects f(w), then
 H rejects w.”

If R is a decider for B,
then H is a decider for A.

If R is a recognizer for B,
then H is a recognizer for A.

If R is a co-recognizer for B,
then H is a co-recognizer for A.

If R is a decider for B,
then H is a decider for A.

If R is a recognizer for B,
then H is a recognizer for A.

If R is a co-recognizer for B,
then H is a co-recognizer for A.

TM for
language B

Machine R

YES

NO

Compute f
f(w)w

Machine H

A ≤M B

H = “On input w:

· Compute f(w).

· Run machine R on f(w).

· If R accepts f(w), then
 H accepts w.

· If R rejects f(w), then
 H rejects w.”

H = “On input w:

· Compute f(w).

· Run machine R on f(w).

· If R accepts f(w), then
 H accepts w.

· If R rejects f(w), then
 H rejects w.”

If R is a decider for B,
then H is a decider for A.

If R is a recognizer for B,
then H is a recognizer for A.

If R is a co-recognizer for B,
then H is a co-recognizer for A.

If R is a decider for B,
then H is a decider for A.

If R is a recognizer for B,
then H is a recognizer for A.

If R is a co-recognizer for B,
then H is a co-recognizer for A.

TM for
language B

Machine R

YES

NO

Compute f
f(w)w

Machine H

A ≤M B

H = “On input w:

· Compute f(w).

· Run machine R on f(w).

· If R accepts f(w), then
 H accepts w.

· If R rejects f(w), then
 H rejects w.”

H = “On input w:

· Compute f(w).

· Run machine R on f(w).

· If R accepts f(w), then
 H accepts w.

· If R rejects f(w), then
 H rejects w.”

If R is a decider for B,
then H is a decider for A.

If R is a recognizer for B,
then H is a recognizer for A.

If R is a co-recognizer for B,
then H is a co-recognizer for A.

If R is a decider for B,
then H is a decider for A.

If R is a recognizer for B,
then H is a recognizer for A.

If R is a co-recognizer for B,
then H is a co-recognizer for A.

TM for
language B

Machine R

YES

NO

Compute f
f(w)w

Machine H

A ≤M B

H = “On input w:

· Compute f(w).

· Run machine R on f(w).

· If R accepts f(w), then
 H accepts w.

· If R rejects f(w), then
 H rejects w.”

H = “On input w:

· Compute f(w).

· Run machine R on f(w).

· If R accepts f(w), then
 H accepts w.

· If R rejects f(w), then
 H rejects w.”

If R is a decider for B,
then H is a decider for A.

If R is a recognizer for B,
then H is a recognizer for A.

If R is a co-recognizer for B,
then H is a co-recognizer for A.

If R is a decider for B,
then H is a decider for A.

If R is a recognizer for B,
then H is a recognizer for A.

If R is a co-recognizer for B,
then H is a co-recognizer for A.

Why Mapping Reducibility Matters

● Theorem: If B ∈ R and A ≤M B, then
 A ∈ R.

● Theorem: If B ∈ RE and A ≤M B, then
 A ∈ RE.

● Theorem: If B ∈ co-RE and A ≤M B, then
 A ∈ co-RE.

● Intuitively: A ≤M B means “A is not
harder than B.”

Why Mapping Reducibility Matters

● Theorem: If A ∉ R and A ≤M B, then
 B ∉ R.

● Theorem: If A ∉ RE and A ≤M B, then
 B ∉ RE.

● Theorem: If A ∉ co-RE and A ≤M B, then
 B ∉ co-RE.

● Intuitively: A ≤M B means “B is at at least
as hard as A.”

Why Mapping Reducibility Matters

≤MA B

If this one is “easy”
(R, RE, co-RE)…

If this one is “easy”
(R, RE, co-RE)…

… then this one is
“easy” (R, RE,
co-RE) too.

… then this one is
“easy” (R, RE,
co-RE) too.

Why Mapping Reducibility Matters

≤MA B

If this one is “hard”
(not R, not RE, or not

co-RE)…

If this one is “hard”
(not R, not RE, or not

co-RE)…

… then this one is
“hard” (not R, not
RE, or not co-RE)

too.

… then this one is
“hard” (not R, not
RE, or not co-RE)

too.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105

