Reducibility Part I

Deciders

- Some Turing machines always halt; they never go into an infinite loop.
- Turing machines of this sort are called deciders.
- For deciders, accepting is the same as not rejecting and rejecting is the same as not accepting.

halts (always)

Decidable Languages

- A language L is called decidable iff there is a decider M such that $\mathscr{L}(M)=L$.
- Given a decider M, you can learn whether or not a string $w \in \mathscr{L}(M)$.
- Run M on w.
- Although it might take a staggeringly long time, M will eventually accept or reject w.
- The set \mathbf{R} is the set of all decidable languages.
$L \in \mathbf{R}$ iff L is decidable

The Limits of Computability $\bar{A}_{T M}$

Regular Languages

CFLs

All Languages

$\mathrm{A}_{\text {тм }}$ and HALT

- Both A_{TM} and HALT are undecidable.
- There is no way to decide whether a TM will accept or eventually terminate.
- However, both $\mathrm{A}_{\text {тм }}$ and HALT are recognizable.
- We can always run a TM on a string w and accept if that TM accepts or halts.
- Intuition: The only general way to learn what a TM will do on a given string is to run it and see what happens.

Resolving an Asymmetry

The Limits of Computability

The Limits of Computability

There is a TM M where M accepts w iff $w \in L$

The Limits of Computability

There is a TM M where M accepts w iff $w \in L$

The Limits of Computability

There is a TM M where M accepts w iff $w \in L$

The Limits of Computability

A New Complexity Class

- A language L is in $\mathbf{R E}$ iff there is a TM M such that
- if $w \in L$, then M accepts w.
- if $w \notin L$, then M does not accept w.
- A TM M of this sort is called a recognizer, and L is called recognizable.
- A language L is in co-RE iff there is a TM M such that
- if $w \in L$, then M does not reject w.
- if $w \notin L$, then M rejects w.
- A TM M of this sort is called a co-recognizer, and L is called co-recognizable.

RE and co-RE

- Intuitively, RE consists of all problems where a TM can exhaustively search for proof that $w \in L$.
- If $w \in L$, the TM will find the proof.
- If $w \notin L$, the TM cannot find a proof.
- Intuitively, co-RE consists of all problems where a TM can exhaustively search for a disproof that $w \in L$.
- If $w \in L$, the TM cannot find the disproof.
- If $w \notin L$, the TM will find the disproof.

RE and co-RE Languages

- A_{TM} is an RE language:
- Simulate the TM M on the string w.
- If you find that M accepts w, accept.
- If you find that M rejects w, reject.
- (If M loops, we implicitly loop forever)
- $\overline{\mathrm{A}}_{\mathrm{TM}}$ is a co-RE language:
- Simulate the TM M on the string w.
- If you find that M accepts w, reject.
- If you find that M rejects w, accept.
- (If M loops, we implicitly loop forever)

RE and co-RE Languages

- \bar{L}_{D} is an RE language.
- Simulate M on $\langle M\rangle$.
- If you find that M accepts $\langle M\rangle$, accept.
- If you find that M rejects $\langle M\rangle$, reject.
- (If M loops, we implicitly loop forever)
- L_{D} is a co-RE language.
- Simulate M on $\langle M\rangle$.
- If you find that M accepts $\langle M\rangle$, reject.
- If you find that M rejects $\langle M\rangle$, accept.
- (If M loops, we implicitly loop forever)

The Limits of Computability

$\mathbf{R E}$ and co-RE

Theorem: $L \in \mathbf{R E}$ iff $\bar{L} \in$ co-RE.

RE and co-RE

Theorem: $L \in \mathbf{R E}$ iff $\bar{L} \in$ co-RE. Proof Sketch: Start with a recognizer M for L.

RE and co-RE

Theorem: $L \in \mathbf{R E}$ iff $\bar{L} \in$ co-RE.
Proof Sketch: Start with a recognizer M for L. Then, flip its accepting and rejecting states to make machine M^{\prime}.

RE and co-RE

Theorem: $L \in \mathbf{R E}$ iff $\bar{L} \in$ co-RE.
Proof Sketch: Start with a recognizer M for L. Then, flip its accepting and rejecting states to make machine M^{\prime}. Then
M^{\prime} rejects w

RE and co-RE

Theorem: $L \in \mathbf{R E}$ iff $\bar{L} \in$ co-RE.
Proof Sketch: Start with a recognizer M for L. Then, flip its accepting and rejecting states to make machine M^{\prime}. Then
> M^{\prime} rejects w
> iff M accepts w

RE and co-RE

Theorem: $L \in \mathbf{R E}$ iff $\bar{L} \in$ co-RE.
Proof Sketch: Start with a recognizer M for L. Then, flip its accepting and rejecting states to make machine M^{\prime}. Then

```
        M' rejects w
    iff M accepts w
        iff w\inL
```


RE and co-RE

Theorem: $L \in \mathbf{R E}$ iff $\bar{L} \in$ co-RE.
Proof Sketch: Start with a recognizer M for L. Then, flip its accepting and rejecting states to make machine M^{\prime}. Then

```
        M' rejects w
    iff M accepts w
        iff w\inL
        iff w\not\in\overline{L}.
```


RE and co-RE

Theorem: $L \in \mathbf{R E}$ iff $\bar{L} \in$ co-RE.
Proof Sketch: Start with a recognizer M for L. Then, flip its accepting and rejecting states to make machine M^{\prime}. Then

```
M' rejects w
iff M accepts w
    iff w\inL
    iff w}\not\in\overline{L}
```


RE and co-RE

Theorem: $L \in \mathbf{R E}$ iff $\bar{L} \in$ co-RE.
Proof Sketch: Start with a recognizer M for L. Then, flip its accepting and rejecting states to make machine M^{\prime}. Then
M^{\prime} rejects w iff M accepts w iff $w \in L$ iff $w \notin \bar{L}$.

RE and co-RE

Theorem: $L \in \mathbf{R E}$ iff $\bar{L} \in$ co-RE.
Proof Sketch: Start with a recognizer M for L. Then, flip its accepting and rejecting states to make machine M^{\prime}. Then
M^{\prime} rejects w
iff M accepts w
iff $w \in L$
iff $w \notin \bar{L}$.
M^{\prime} does not reject w
iff M^{\prime} accepts w or M^{\prime} loops on w iff M rejects w or M loops on w

RE and co-RE

Theorem: $L \in \mathbf{R E}$ iff $\bar{L} \in$ co-RE.
Proof Sketch: Start with a recognizer M for L. Then, flip its accepting and rejecting states to make machine M^{\prime}. Then
M^{\prime} rejects w
iff M accepts w
iff $w \in L$
iff $w \notin \bar{L}$.
M^{\prime} does not reject w
iff M^{\prime} accepts w or M^{\prime} loops on w iff M rejects w or M loops on w iff $w \notin L$

RE and co-RE

Theorem: $L \in \mathbf{R E}$ iff $\bar{L} \in$ co-RE.
Proof Sketch: Start with a recognizer M for L. Then, flip its accepting and rejecting states to make machine M^{\prime}. Then

```
M' rejects w
iff M accepts w
    iff w\inL
    iff w\not\in\overline{L}.
```

M^{\prime} does not reject w
iff M^{\prime} accepts w or M^{\prime} loops on w iff M rejects w or M loops on w

$$
\begin{aligned}
& \text { iff } w \notin \frac{L}{L} \\
& \text { iff } w \in \frac{L}{2}
\end{aligned}
$$

RE and co-RE

Theorem: $L \in \mathbb{R E}$ iff $\bar{L} \in \operatorname{co-} \mathbb{R E}$.
Proof Sketch: Start with a recognizer M for L. Then, flip its accepting and rejecting states to make machine M^{\prime}. Then
M^{\prime} rejects w
M^{\prime} does not reject w
iff M^{\prime} accepts w or M^{\prime} loops on w iff M rejects w or M loops on w

$$
\begin{aligned}
& \text { iff } w \notin \frac{L}{\text { iff } w \in \bar{L}}
\end{aligned}
$$

RE and co-RE

Theorem: $L \in \mathbf{R E}$ iff $\bar{L} \in$ co-RE.
Proof Sketch: Start with a recognizer M for L. Then, flip its accepting and rejecting states to make machine M^{\prime}. Then

```
M' rejects w
iff M accepts w
    iff w\inL
    iff w\not\in\overline{L}.
```

M^{\prime} does not reject w
iff M^{\prime} accepts w or M^{\prime} loops on w iff M rejects w or M loops on w

$$
\begin{aligned}
& \text { iff } w \notin \frac{L}{L} \\
& \text { iff } w \in \frac{L}{2}
\end{aligned}
$$

RE and co-RE

Theorem: $L \in \mathbf{R E}$ iff $\bar{L} \in$ co-RE.
Proof Sketch: Start with a recognizer M for L. Then, flip its accepting and rejecting states to make machine M^{\prime}. Then
M^{\prime} rejects w iff M accepts w iff $w \in L$ iff $w \notin \bar{L}$.
M^{\prime} does not reject w iff M^{\prime} accepts w or M^{\prime} loops on w iff M rejects w or M loops on w

$$
\begin{aligned}
& \text { iff } w \notin \frac{L}{\text { iff } w \in \bar{L}}
\end{aligned}
$$

The same approach works if we flip the accept and reject states of a co-recognizer for \bar{L}.

RE and co-RE

Theorem: $L \in \mathbf{R E}$ iff $\bar{L} \in$ co-RE.
Proof Sketch: Start with a recognizer M for L. Then, flip its accepting and rejecting states to make machine M^{\prime}. Then
M^{\prime} rejects w iff M accepts w iff $w \in L$ iff $w \notin \bar{L}$.
M^{\prime} does not reject w iff M^{\prime} accepts w or M^{\prime} loops on w iff M rejects w or M loops on w

$$
\begin{aligned}
& \text { iff } w \notin \frac{L}{\text { iff } w \in \bar{L}}
\end{aligned}
$$

The same approach works if we flip the accept and reject states of a co-recognizer for \bar{L}. \square

The Limits of Computability

$\mathbf{R}, \mathbf{R E}$, and co-RE

- Every language in \mathbf{R} is in both $\mathbf{R E}$ and co-RE.
- Why?
- A decider for L accepts all $w \in L$ and rejects all $w \notin L$.
- In other words, $\mathbf{R} \subseteq \mathbf{R E} \cap$ co-RE.
- Question: Does $\mathbf{R}=\mathbf{R E} \cap$ co-RE?

Which Picture is Correct?

Which Picture is Correct?

$\mathbf{R}, \mathbf{R E}$, and co-RE

- Theorem: If $L \in \mathbf{R E}$ and $L \in$ co-RE, then $L \in \mathbf{R}$.

$\mathbf{R}, \mathbf{R E}$, and co-RE

- Theorem: If $L \in \mathbf{R E}$ and $L \in$ co-RE, then $L \in \mathbf{R}$.
- Proof sketch: Since $L \in$ RE, there is a recognizer M for it.

$\mathbf{R}, \mathbf{R E}$, and co-RE

- Theorem: If $L \in \mathbf{R E}$ and $L \in$ co-RE, then $L \in \mathbf{R}$.
- Proof sketch: Since $L \in$ RE, there is a recognizer M for it. Since $L \in$ co-RE, there is a co-recognizer \bar{M} for it.

$\mathbf{R}, \mathbf{R E}$, and co-RE

- Theorem: If $L \in \mathbf{R E}$ and $L \in$ co-RE, then $L \in \mathbf{R}$.
- Proof sketch: Since $L \in$ RE, there is a recognizer M for it. Since $L \in \operatorname{co}-\mathbf{R E}$, there is a co-recognizer \bar{M} for it. This TM D is a decider for L :

$\mathbf{R}, \mathbf{R E}$, and co-RE

- Theorem: If $L \in \mathbf{R E}$ and $L \in$ co-RE, then $L \in \mathbf{R}$.
- Proof sketch: Since $L \in$ RE, there is a recognizer M for it. Since $L \in$ co-RE, there is a co-recognizer \bar{M} for it. This TM D is a decider for L :
$D=$ "On input w :
Run M on w and \bar{M} on w in parallel. If \underline{M} accepts w, accept. If \bar{M} rejects w, reject.

The Limits of Computability

Time-Out For Announcements!

Friday Four Square! Today at 4:15PM outside Gates

Two Handouts Online

- 24: Additional Proofs on TMs
- See alternate proofs of why various languages are or are not $\mathbf{R}, \mathbf{R E}$, or co-RE.
- 25: Extra Practice Problems
- By popular demand, extra questions on topics you'd like some more practice with!
- Solutions released Monday.

Picking up Problem Sets

- If you pick up problem sets from the filing cabinet,
please put all other papers back into the filing cabinet when you're done!
- If you don't:
- they get mixed with problem sets from other classes and lost,
- it causes a fire hazard, and
- I get flak from the building managers about making a mess.

Your Questions

"Can you recommend software for designing and / or simulating Turing machines?"

http://www.jflap.org/

"Is there a difference between when a TM "runs" another TM as a subroutine vs. when it "simulates running" another TM?"
"Sometime my brain is stuck and I make silly and stupid mistakes [...]. What [do] you do when you are stuck on a problem?"

Back to CS103!

A Repeating Pattern

$L=\{\langle M\rangle \mid M$ is a TM that accepts $\varepsilon\}$

$H=$ "On input $\langle M\rangle$:

- Construct the string $\langle M, \varepsilon\rangle$.
- Run R on $\langle M, \varepsilon\rangle$.
- If R accepts $\langle M, \varepsilon\rangle$, then H accepts $\langle M, \varepsilon\rangle$.
- If R rejects $\langle M, \varepsilon\rangle$, then H rejects $\langle M, \varepsilon\rangle$."

From $\overline{\mathrm{A}}_{\mathrm{TM}}$ to L_{D}

$H=$ "On input $\langle M\rangle$:

- Construct the string $\langle M,\langle M\rangle\rangle$.
- Run R on $\langle M,\langle M\rangle\rangle$.
- If R accepts $\langle M,\langle M\rangle\rangle$, then H accepts $\langle M,\langle M\rangle\rangle$.
- If R rejects $\langle M,\langle M\rangle\rangle$, then H rejects $\langle M,\langle M\rangle\rangle$."

From HALT to $\mathrm{A}_{\text {тм }}$

$H=$ "On input $\langle M, w\rangle$:

- Build M into M^{\prime} so M^{\prime} loops when M rejects.
- Run D on $\left\langle M^{\prime}, w\right\rangle$.
- If D accepts $\left\langle M^{\prime}, w\right\rangle$, then H accepts $\langle M, w\rangle$.
- If D rejects $\left\langle M^{\prime}, w\right\rangle$, then H rejects $\langle M, w\rangle$."

The General Pattern

Machine H

The General Pattern

Machine H
$H=$ "On input w :

- Transform the input w into $f(w)$.
- Run machine R on $f(w)$.
- If R accepts $f(w)$, then H accepts w.
- If R rejects $f(w)$, then H rejects $w . "$

Reductions

- Intuitively, problem A reduces to problem B iff a solver for B can be used to solve problem A.

Reductions

- Intuitively, problem A reduces to problem B iff a solver for B can be used to solve problem A.

Reductions

- Intuitively, problem A reduces to problem B iff a solver for B can be used to solve problem A.

Reductions

- Intuitively, problem A reduces to problem B iff a solver for B can be used to solve problem A.

Reductions

- Intuitively, problem A reduces to problem B iff a solver for B can be used to solve problem A.
- Reductions can be used to show certain problems are "solvable:"

If A reduces to B and B is "solvable," then A is "solvable."

Formalizing Reductions

- In order to make the previous intuition more rigorous, we need to formally define reductions.
- There are many ways to do this; we'll explore two:
- Mapping reducibility (today / Monday), and - Polynomial-time reducibility (next week).

Defining Reductions

- A reduction from A to B is a function $f: \Sigma_{1}^{*} \rightarrow \Sigma_{2}{ }^{*}$ such that

For any $w \in \Sigma_{1}{ }^{*}, w \in A$ iff $f(w) \in B$
\square

Defining Reductions

- A reduction from A to B is a function $f: \Sigma_{1}{ }^{*} \rightarrow \Sigma_{2}{ }^{*}$ such that

For any $w \in \Sigma_{1}{ }^{*}, w \in A$ iff $f(w) \in B$

Defining Reductions

- A reduction from A to B is a function $f: \Sigma_{1}^{*} \rightarrow \Sigma_{2}{ }^{*}$ such that
For any $w \in \Sigma_{1}{ }^{*}, w \in A$ iff $f(w) \in B$

Defining Reductions

- A reduction from A to B is a function $f: \Sigma_{1}{ }^{*} \rightarrow \Sigma_{2}{ }^{*}$ such that

For any $w \in \Sigma_{1}{ }^{*}, w \in A$ iff $f(w) \in B$

- Every $w \in A$ maps to some $f(w) \in B$.
- Every w $\notin A$ maps to some $f(w) \notin B$.
- f does not have to be injective or surjective.

Why Reductions Matter

- If language A reduces to language B, we can use a recognizer / co-recognizer / decider for B to recognize / co-recognize / decide problem A.
- (There's a slight catch - we'll talk about this in a second).
- How is this possible?

$w \in A \quad$ iff $\quad f(w) \in B$

$w \in A \quad$ iff $\quad f(w) \in B$

$w \in A \quad$ iff $\quad f(w) \in B$

- YES

$w \in A \quad$ iff $\quad f(w) \in B$

$w \in A \quad$ iff $\quad f(w) \in B$

$w \in A \quad$ iff $\quad f(w) \in B$

Machine H

$w \in A \quad$ iff $\quad f(w) \in B$

Machine H
$H=$ "On input w :

- Transform the input w into $f(w)$.
- Run machine R on $f(w)$.
- If R accepts $f(w)$, then H accepts w.
- If R rejects $f(w)$, then H rejects w."

$w \in A \quad$ iff $\quad f(w) \in B$

Machine H
$H=$ "On input w :

- Transform the input w into $f(w)$.
- Run machine R on $f(w)$.
- If R accepts $f(w)$, then H accepts w.
- If R rejects $f(w)$, then H rejects $w . "$

$w \in A \quad$ iff $\quad f(w) \in B$

Machine H
$H=$ "On input w :

- Transform the input w into $f(w)$.

H accepts w
iff
R accepts $f(w)$

- Run machine R on $f(w)$.
- If R accepts $f(w)$, then H accepts w.
- If R rejects $f(w)$, then H rejects $w . "$

$w \in A \quad$ iff $\quad f(w) \in B$

Machine H
$H=$ "On input w :

- Transform the input w into $f(w)$.
- Run machine R on $f(w)$.
- If R accepts $f(w)$, then H accepts w.
- If R rejects $f(w)$, then H rejects w."

H accepts w iff
 R accepts $f(w)$
 iff
 $f(w) \in B$

$w \in A \quad$ iff $\quad f(w) \in B$

Machine H
$H=$ "On input w :

- Transform the input w into $f(w)$.
- Run machine R on $f(w)$.
- If R accepts $f(w)$, then H accepts w.
- If R rejects $f(w)$, then H rejects w. ."

H accepts w iff
 R accepts $\boldsymbol{f}(\boldsymbol{w})$
 iff
 $f(w) \in B$
 iff
 $w \in \mathbf{A}$

$w \in A \quad$ iff $\quad f(w) \in B$

Machine H
$H=$ "On input w :

- Transform the input w into $f(w)$.
- Run machine R on $f(w)$.
$\mathscr{L}(\boldsymbol{H})=\boldsymbol{A}$
- If R accepts $f(w)$, then H accepts w.
- If R rejects $f(w)$, then H rejects $w . "$

A Problem

- Recall: f is a reduction from A to B iff

$w \in A$ iff $f(w) \in B$

- Under this definition, any language A reduces to any language B unless $B=\varnothing$ or Σ^{*}.
- Since $B \neq \varnothing$ and $B \neq \Sigma^{*}$, there is some $w_{\text {yes }} \in B$ and some $w_{\text {по }} \notin B$.
- Define $f: \Sigma_{1}{ }^{*} \rightarrow \Sigma_{2}{ }^{*}$ as follows:

$$
f(w)= \begin{cases}w_{\text {yes }} & \text { if } w \in A \\ w_{\text {no }} & \text { if } w \notin A\end{cases}
$$

- Then f is a reduction from A to B.

A Problem

- Example: let's reduce L_{D} to $0^{*} 1^{*}$.
- Take $w_{\text {yes }}=01, w_{\text {no }}=10$.
- Then $f(w)$ is defined as

$$
f(w)= \begin{cases}01 & \text { if } w \in L_{\mathrm{D}} \\ 10 & \text { if } w \notin L_{\mathrm{D}}\end{cases}
$$

- There is no TM that can actually evaluate the function $f(w)$ on all inputs, since no TM can decide whether or not $w \in L_{D}$.

- There is no TM that can actually evaluate the function $f(w)$ on all inputs, since no TM can decide whether or not $w \in L_{D}$.

Computable Functions

- This general reduction is mathematically well-defined, but might be impossible to actually compute!
- To fix our definition, we need to introduce the idea of a computable function.
- A function $f: \Sigma_{1}{ }^{*} \rightarrow \Sigma_{2}{ }^{*}$ is called a computable function if there is some TM M with the following behavior:
"On input w :
Compute $f(w)$ and write it on the tape.
Move the tape head to the start of $f(w)$.
Halt."

Computable Functions

$$
f\left(1^{n}\right)=1^{3 n+1}
$$

..		1	1	1							

Computable Functions

$$
f\left(1^{n}\right)=1^{3 n+1}
$$

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline \ldots & & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline
\end{array}
$$

Computable Functions

$$
f(w)= \begin{cases}1^{m n} & \text { if } w=1^{n \times 1} \times 1^{m} \\ \varepsilon & \text { otherwise }\end{cases}
$$

Computable Functions

$$
f(w)= \begin{cases}1^{m n} & \text { if } w=1^{n \times 1} \times 1^{m} \\ \varepsilon & \text { otherwise }\end{cases}
$$

\section*{| ... | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | \ldots |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

Computable Functions

$$
f(\langle M\rangle)=\langle M,\langle M\rangle\rangle
$$

Computable Functions

$$
f(\langle M\rangle)=\langle M,\langle M\rangle\rangle
$$

Mapping Reductions

- A function $f: \Sigma_{1}^{*} \rightarrow \Sigma_{2}^{*}$ is called a mapping reduction from A to B iff
- For any $w \in \Sigma_{1}^{*}, w \in A$ iff $f(w) \in B$.
- f is a computable function.
- Intuitively, a mapping reduction from A to B says that a computer can transform any instance of A into an instance of B such that the answer to B is the answer to A.

Mapping Reducibility

- If there is a mapping reduction from language A to language B, we say that language A is mapping reducible to language B.
- Notation: $\boldsymbol{A} \leq_{\mathbf{M}} \boldsymbol{B}$ iff language A is mapping reducible to language B.
- Note that we reduce languages, not machines.

$\boldsymbol{A} \leq_{M} B$

Machine H
$H=$ "On input w :

- Compute $f(w)$.
- Run machine R on $f(w)$.
- If R accepts $f(w)$, then H accepts w.
- If R rejects $f(w)$, then H rejects w."

$\boldsymbol{A} \leq_{M} B$

Machine H
$H=$ "On input w :

- Compute $f(w)$.
- Run machine R on $f(w)$.
- If R accepts $f(w)$, then H accepts w.
- If R rejects $f(w)$, then H rejects $w . "$

If R is a decider for B, then H is a decider for A.

$\boldsymbol{A} \leq_{M} B$

- YES

Machine H
$H=$ "On input w :

- Compute $f(w)$.
- Run machine R on $f(w)$.
- If R accepts $f(w)$, then H accepts w.
- If R rejects $f(w)$, then H rejects w."

If R is a decider for B, then H is a decider for A.

If R is a recognizer for B, then H is a recognizer for A.

$\boldsymbol{A} \leq_{M} B$

- YES

Machine H
$H=$ "On input w:

- Compute $f(w)$.
- Run machine R on $f(w)$.
- If R accepts $f(w)$, then H accepts w.
- If R rejects $f(w)$, then H rejects $w . "$

If R is a decider for B, then H is a decider for A.

If R is a recognizer for B, then H is a recognizer for A.

If R is a co-recognizer for B, then H is a co-recognizer for A.

$H=$ "On input w :

- Compute $f(w)$.
- Run machine R on $f(w)$.
- If R accepts $f(w)$, then H accepts w.
- If R rejects $f(w)$, then H rejects w."

If R is a decider for B, then H is a decider for A.

If R is a recognizer for B, then H is a recognizer for A.

If R is a co-recognizer for B, then H is a co-recognizer for A.

Why Mapping Reducibility Matters

- Theorem: If $B \in \mathbf{R}$ and $A \leq_{\mathrm{M}} B$, then $A \in \mathbf{R}$.
- Theorem: If $B \in \mathbf{R E}$ and $A \leq_{\mathrm{M}} B$, then $A \in \mathbf{R E}$.
- Theorem: If $B \in \operatorname{co-RE}$ and $A \leq_{\mathrm{M}} B$, then

$$
A \in \operatorname{co}-\mathbf{R E}
$$

- Intuitively: $A \leq_{\mathrm{M}} B$ means " A is not harder than B."

Why Mapping Reducibility Matters

- Theorem: If $A \notin \mathbf{R}$ and $A \leq_{\mathrm{M}} B$, then $B \notin \mathbf{R}$.
- Theorem: If $A \notin \mathbf{R E}$ and $A \leq_{\mathrm{M}} B$, then $B \notin \mathbf{R E}$.
- Theorem: If $A \notin \operatorname{co-RE}$ and $A \leq_{M} B$, then $B \notin \mathrm{co}-\mathbf{R E}$.
- Intuitively: $A \leq_{\mathrm{M}} B$ means " B is at at least as hard as A."

Why Mapping Reducibility Matters

If this one is "easy" ($R, R E, C O-R E$)...

$$
A \leq_{\mathrm{M}} B
$$

... then this one is
"easy" ($R, R E$, co-RE) too.

Why Mapping Reducibility Matters

If this one is "hard"
(not R, not RE, or not

$$
c o-R E) . . .
$$

$$
A \leq_{\mathrm{M}} B
$$

then this one is "hard" (not R, not RE, or not co-RE) too.

