
  

Decidability

Problem Set Six is due 
in the box up front if 
using a late period.

Problem Set Six is due 
in the box up front if 
using a late period.



  

The Language of UTM

● Recall: For any TM M, the language of M, denoted 
(ℒ M), is the set

ℒ(M) = { w ∈ Σ* | M accepts w }

● UTM accepts ⟨M, w⟩ iff M is a TM that accepts w. 
Therefore:

ℒ(UTM) = { ⟨M, w⟩ | M is a TM and M accepts w }  

ℒ(UTM) = { ⟨M, w⟩ | M is a TM and w ∈ ℒ(M) }  

● For simplicity, define ATM = ℒ(UTM).  We will use the 
language ATM extensively.



  

Diagonalization Revisited

● The diagonalization language, which we 
denote LD, is defined as

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M)

● That is, LD is the set of descriptions of 
Turing machines that do not accept 
themselves. 

● Theorem: LD ∉ RE.



  

ATM and ATM

● The language ATM is defined as

 {⟨M, w⟩ | M is a TM that accepts w}

● Thus ATM is the language

{⟨M, w⟩ | M is a TM that doesn't accept w}

● Theorem: ATM ∉ RE.
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Why All This Matters

● We finally have found concrete examples 
of unsolvable problems!

● We are starting to see a line of reasoning 
we can use to find unsolvable problems:
● Start with a known unsolvable problem.
● Try to show that the unsolvability of that 

problem entails the unsolvability of other 
problems.

● We will see this used extensively in the 
upcoming weeks.



  

Revisiting RE



  

Recall: Language of a TM

● The language of a Turing machine M, denoted 
(ℒ M), is the set of all strings that M accepts:

ℒ(M) = { w ∈ Σ* | M accepts w }

● For any w ∈ (ℒ M), M accepts w.

● For any w ∉ (ℒ M), M does not accept w.
● It might loop forever, or it might explicitly reject.

● A language is called recognizable if it is the 
language of some TM.

● Notation: RE is the set of all recognizable 
languages.

L ∈ RE  iff   L is recognizable    



  

Why “Recognizable?”

● Given TM M with language ℒ(M), running M on a 
string w will not necessarily tell you whether 
w ∈  (ℒ M).

● If the machine is running, you can't tell whether

● It is eventually going to halt, but just needs more time, or

● It is never going to halt.

● However, if you know for a fact that w ∈ (ℒ M), then the 
machine can confirm this (it eventually accepts).

● The machine can't decide whether or not w ∈ (ℒ M), 
but it can recognize strings that are in the language.

● We sometimes call a TM for a language L a recognizer 
for L.



  

Deciders

● Some Turing machines always halt; they never 
go into an infinite loop.

● Turing machines of this sort are called 
deciders.

● For deciders, accepting is the same as not 
rejecting and rejecting is the same as not 
accepting.

Accept

Reject
                          halts (always)

does not accept                                   

does not reject                                   



  

Decidable Languages

● A language L is called decidable iff there is a 
decider M such that (ℒ M) = L.

● Given a decider M, you can learn whether or not a 
string w ∈ (ℒ M).

● Run M on w.
● Although it might take a staggeringly long time, M 

will eventually accept or reject w.

● The set R is the set of all decidable languages.

L ∈ R   iff   L is decidable



  

R and RE Languages

● Intuitively, a language is in RE if there is 
some way that you could exhaustively 
search for a proof that w ∈ L.
● If you find it, accept!
● If you don't find one, keep looking!

● Intuitively, a language is in R if there is a 
concrete algorithm that can determine 
whether w ∈ L.
● It tends to be much harder to show that a 

language is in R than in RE.



  

Examples of R Languages

● All regular languages are in R.
● If L is regular, we can run the DFA for L on a 

string w and then either accept or reject w 
based on what state it ends in.

● { 0n1n | n ∈ ℕ } is in R.
● The TM we built last Monday is a decider.

● Verifying multiplication is in R.
● The TM we built last Monday is a decider.



  

CFLs and R

● Using an NTM, we sketched a proof that 
all CFLs are in RE.
● Nondeterministically guess a derivation, 

then deterministically check that derivation.

● Harder result: all CFLs are in R.
● Read Sipser, Ch. 4.1 for details.
● Or come talk to me after lecture!



  

Why R Matters

● If a language is in R, there is an algorithm that can 
decide membership in that language.

● Run the decider and see what it says.

● If there is an algorithm that can decide membership in 
a language, that language is in R.

● By the Church-Turing thesis, any effective model of 
computation is equivalent in power to a Turing machine.

● Therefore, if there is any algorithm for deciding 
membership in the language, there is a decider for it.

● Therefore, the language is in R.

● A language is in R iff there is an algorithm for 
deciding membership in that language.



  

R  ≟ RE

● Every decider is a Turing machine, but not 
every Turing machine is a decider.

● Thus R ⊆ RE.

● Hugely important theoretical question:

Is R = RE?  
● That is, if we can verify that a string is in a 

language, can we decide whether that string is 
in the language?
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An Important Observation



  

R is Closed Under Complementation

If L ∈ R, then L ∈ R as well.

Decider
for L

w            

M

M' = “On input w:
  Run M on w.
  If M accepts w, reject.
  If M rejects w, accept.”

Will this work if M is 
a recognizer, rather 

than a decider?

Will this work if M is 
a recognizer, rather 

than a decider?



  

Theorem: R is closed under complementation.
Proof: Consider any L ∈ R.  We will prove that L ∈ R by constructing a

decider M' such that (ℒ M') = L.
 

Let M be a decider for L.  Then construct the machine M' as follows:
 

M' = “On input w ∈ Σ*:
Run M on w.
If M accepts w, reject.
If M rejects w, accept.”

 

We need to show that M' is a decider and that (ℒ M') = L.
 

To show that M' is a decider, we will prove that it always halts.  
Consider what happens if we run M' on any input w.  First, M' runs
M on w.  Since M is a decider, M either accepts w or rejects w.  If
M accepts w, M' rejects w.  If M rejects w, M' accepts w.  Thus M'
always accepts or rejects, so M' is a decider.

 

To show that (ℒ M') = L, we will prove that M' accepts w iff w ∈ L. 
Note that M' accepts w iff w ∈ Σ* and M rejects w.  Since M is a
decider, M rejects w iff M does not accept w.  M does not accept w iff
w ∉ (ℒ M).  Thus M' accepts w iff w ∈ Σ* and w ∉ (ℒ M), so M' accepts
w iff w ∈ L.  Therefore, (ℒ M') = L.

 

Since M' is a decider with (ℒ M') = L, we have L ∈ R, as required. ■



  

● We can now resolve the question of
R  ≟ RE.

● If R = RE, we need to show that if there 
is a recognizer for any RE language L, 
there has to be a decider for L.

● If R ≠ RE, we just need to find a single 
language in RE that is not in R.

R ≟ RE



  

ATM

● Recall: the language ATM is the language 
of the universal Turing machine UTM.

● Consequently, ATM ∈ RE.

● Is ATM ∈ R?



  

Theorem: ATM ∉ R.
Proof: By contradiction; assume ATM ∈ R.  Since R

is closed under complementation, this means
that ATM ∈ R.  Since R ⊆ RE, this means that
ATM ∈ RE.  But this is impossible, since we
know ATM ∉ RE.

We have reached a contradiction, so our
assumption must have been incorrect.  Thus
ATM ∉ R, as required. ■
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What this Means

● Major result: R ≠ RE.
● There are some problems where we can 

only verify yes answers but cannot 
decide whether the answer is yes or no.

● In a sense, it is fundamentally harder 
to solve a problem than it is to check 
a solution!



  

What this Means, Part II

● The undecidability of ATM means that we cannot 
“cheat” with Turing machines.

● We cannot necessarily build a TM to do an exhaustive 
search over a space (i.e. a recognizer), then decide 
whether it accepts without running it.

● Intuition: In most cases, you cannot decide what a TM 
will do without running it to see what happens.

● In some cases, you can recognize when a TM has 
performed some task.

● In some cases, you can do neither.  For example, you 
cannot always recognize that a TM will not accept a 
string.



  

Time Out For Announcements!



  

Problem Set Five Graded

● We've just finished grading on-time 
Problem Set Five submissions; they'll be 
returned at the end of lecture today.

● Electronic submissions: Let us know if 
you don't hear back by 5PM today.



  

Your Questions



  

“Can we use known unsolvable 
problems as encryption and 

security mechanisms? If so, how?”

More on that in 
Week Ten!

More on that in 
Week Ten!



  

“Is the human brain equivalent to a
Turing Machine? If not, what makes

it different?”

“Because we can program a Turing 
machine to pretty much do any 

computation, is there any list of steps 
human beings can do, which Turing 

machines cannot?”



  

“Now that we now how to find unsolvable 
problems, can we define the boundary 

between the solvable, and the unsolvable? 
Do we know with certainty what the limits 
are of the RE languages? If so, what are 

those problems?”



  

Another Undecidable Problem



  

LD Revisited

● The diagonalization language LD is the 
language

LD = {⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M)} 

● As we saw before, LD ∉ RE.

● But what about LD?



  

LD

● The language LD is the language

LD = {⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M)} 

● Therefore, LD is the language

LD = {⟨M⟩ | M is a TM and ⟨M⟩ ∈ ℒ(M)} 

● Two questions:
● What is this language?
● Is this language RE?
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and ⟨M⟩ ∈ ℒ(M) }



  

LD ∈ RE

● Here's an TM for LD:

        R = “On input ⟨M⟩:

                   Run M on ⟨M⟩.

                   If M accepts ⟨M⟩, accept.

                   If M rejects ⟨M⟩, reject.”
● Then R accepts ⟨M⟩ iff ⟨M⟩ ∈ (ℒ M) iff 

⟨M⟩ ∈ LD, so (ℒ R) = LD.



  

Is LD Decidable?

● We know that LD ∈ RE.  Is LD ∈ R?

● No: by a similar argument from before.
● If LD ∈ R, then LD = LD ∈ R.

● Since R ⊂ RE, this means that LD ∈ RE.

● This contradicts that LD ∉ RE.

● So our assumption is wrong and LD ∉ R.
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Finding Unsolvable Problems

A
TML

D
A

TM

Not RE Not RE Not R

L
D

Not R



  

The Halting Problem



  

The Halting Problem

● The halting problem is the following problem:

Given a TM M and string w,
does M halt on w? 

● Note that M doesn't have to accept w; it just 
has to halt on w.

● As a formal language:

HALT = { ⟨M, w⟩ | M is a TM and
                                 M halts on w. }  

● Is HALT ∈ R?  Is HALT ∈ RE?



  

HALT ∈ RE

● Consider this Turing machine:

H = “On input ⟨M, w⟩:

             Run M on w.

             If M accepts, accept.

             If M rejects, accept.”

● Then H accepts ⟨M, w⟩ iff M halts on w.
● Thus (ℒ H) = HALT, so HALT ∈ RE.



  

Theorem: HALT ∉ R.

(The halting problem is undecidable)



  

Proving HALT ∉ R

● Our proof will work as follows:
● Suppose that HALT ∈ R.
● Using a decider for HALT, construct a 

decider for ATM.

● Reach a contradiction, since there is no 
decider for ATM (ATM ∉ R).

● Conclude, therefore, that HALT ∉ R.



  

Accepting, Rejecting, and Looping

● Suppose we have a TM M and a string w.
● Then M either

● Accepts, 
● Rejects, or
● Loops

● What if M never rejects?
● Then M either

● Accepts, or
● Loops.



  

The Key Insight

● If M never rejects, then

M accepts w   iff   M halts on w 
● In other words, if M never rejects, then

⟨M, w⟩ ∈ ATM   iff   ⟨M, w⟩ ∈ HALT  

● If we can modify an arbitrary TM M so 
that M never rejects, then a decider for 
HALT can be made to decide ATM.

● Since ATM ∉ R, this is a contradiction!



  

Decider for
HALT

Yes

No

⟨M'⟩ 

w  

Machine D

 

H = “On input ⟨M, w⟩:
 

· Transform M into M' by 
  making M loop instead of
  rejecting.

 

· Run D on ⟨M', w⟩.
 

· If D accepts ⟨M', w⟩, then
  H accepts ⟨M, w⟩.

 

· If D rejects ⟨M', w⟩, then
  H rejects ⟨M, w⟩.”

 

H = “On input ⟨M, w⟩:
 

· Transform M into M' by 
  making M loop instead of
  rejecting.

 

· Run D on ⟨M', w⟩.
 

· If D accepts ⟨M', w⟩, then
  H accepts ⟨M, w⟩.

 

· If D rejects ⟨M', w⟩, then
  H rejects ⟨M, w⟩.”

Change M so M
loops whenever M

it would reject.

w                                         

⟨M⟩      

H

What happens if...

  M accepts w? Accept
  M loops on w? Reject
  M rejects w? Reject

What happens if...

  M accepts w? Accept
  M loops on w? Reject
  M rejects w? Reject

Machine H is a decider 
for ATM!

Machine H is a decider 
for ATM!
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H = “On input ⟨M, w⟩:
 

· Transform M into M' by 
  making M loop instead of
  rejecting.

 

· Run D on ⟨M', w⟩.
 

· If D accepts ⟨M', w⟩, then
  H accepts ⟨M, w⟩.

 

· If D rejects ⟨M', w⟩, then
  H rejects ⟨M, w⟩.”

 

H = “On input ⟨M, w⟩:
 

· Transform M into M' by 
  making M loop instead of
  rejecting.

 

· Run D on ⟨M', w⟩.
 

· If D accepts ⟨M', w⟩, then
  H accepts ⟨M, w⟩.

 

· If D rejects ⟨M', w⟩, then
  H rejects ⟨M, w⟩.”

Change M so M
loops whenever M

it would reject.

w                                         

⟨M⟩      

H

What happens if...

  M accepts w? Accept
  M loops on w? Reject
  M rejects w? Reject

What happens if...

  M accepts w? Accept
  M loops on w? Reject
  M rejects w? Reject

Machine H is a decider 
for ATM!

Machine H is a decider 
for ATM!

 

How is it possible to
 build this part of the 

machine?
 

 

How is it possible to
 build this part of the 

machine?
 



  

Clear a
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1
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Go to
start
Go to
start

start

0 → , R☐                        0 → 0, R
                       1 → 1, R

                     → ☐ ☐, L

1 → , L☐0 → 0, L                       
1 → 1, L                       

                     → ☐ ☐, R

q
acc

q
acc

 → ☐ ☐, R                     

q
acc

q
rej

1 → , R☐

 → ☐ ☐, R
0 → 0, R
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Go to
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start

start

0 → , R☐                        0 → 0, R
                       1 → 1, R

                     → ☐ ☐, L

1 → , L☐0 → 0, L                       
1 → 1, L                       

                     → ☐ ☐, R

q
acc

q
acc

 → ☐ ☐, R                     

q
loop

1 → , R☐

 → ☐ ☐, R
0 → 0, R

0 → 0, R                       
1 → 1, R                       
 → ☐ ☐, R                         



  

Theorem: HALT ∉ R.
Proof: By contradiction; assume HALT ∈ R.  Then there must be some
   decider D for HALT.  Consider the following TM H:
 

H = “On input ⟨M, w⟩, where M is a TM and w is a string:
Transform M into M' by making M' loop whenever M rejects.
Run D on ⟨M', w⟩.
If D accepts ⟨M', w⟩, then H accepts ⟨M, w⟩.
If D rejects ⟨M', w⟩, then H rejects ⟨M, w⟩.”

 

   We claim that H is a decider for ATM.  This means that ATM ∈ R, which
   contradicts the fact that ATM ∉ R.  This means our assumption was
   wrong, and so HALT ∉ R, as required.
 

   First, we prove H is a decider.  Note that on any input ⟨M, w⟩, H
   constructs the machine M' (which can be done in finite time), then runs
   D on ⟨M', w⟩.  Since D is a decider, D always halts.  Since H halts as
   soon as D halts, we know H halts on ⟨M, w⟩.  Since our choice of ⟨M, w⟩
   was arbitrary, this means that H halts on all inputs, so H is a decider.
 

   Next, we prove that (ℒ H) = ATM.  To see this, note that H accepts ⟨M, w⟩
   iff D accepts ⟨M', w⟩.  Since D decides HALT, D accepts ⟨M', w⟩ iff M'
   halts on w.  By construction, M' halts iff it accepts, so M' halts on w iff
   M' accepts w.  Again by construction, M' accepts w iff M accepts w.
   Finally, M accepts w iff ⟨M, w⟩ ∈ ATM.  Thus H accepts ⟨M, w⟩ iff
   ⟨M, w⟩ ∈ ATM, and so (ℒ H) = ATM, as required. ■
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ATM and HALT

● Both ATM and HALT are undecidable.

● There is no way to decide whether a TM will 
accept or eventually terminate.

● However, both ATM and HALT are recognizable.

● We can always run a TM on a string w and 
accept if that TM accepts or halts.

● Intuition: The only general way to learn what 
a TM will do on a given string is to run it and 
see what happens.



  

Next Time

● Co-recognizability
● Resolving an asymmetry with R and RE.

● Mapping Reductions I
● A powerful tool for finding impossible 

problems.
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