
  

Unsolvable Problems

Problem Set Six 
is due in the 
box up front.

Problem Set Six 
is due in the 
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Encodings



  

Notation for Encodings

● For any object O, we will denote a string encoding 
of O by writing O in angle brackets: O is encoded 
as ⟨O⟩.

● This makes it much easier to specify languages.

● Examples:

     { ⟨R⟩ | R is a regular expression that matches ε }

     { ⟨n⟩ | n ∈ ℕ and the hailstone sequence
               terminates for n.}

● The encoding scheme can make a difference when 
trying to determine whether a language is regular or 
context-free because of the relative weakness of DFAs 
and CFGs.



  

Encoding Multiple Objects

● Given several different objects O1, …, On, 
we can represent the encoding of those n 
objects as ⟨O1, O2, …, On⟩.

● Examples:
● { ⟨m, n, mn⟩ | m, n ∈ ℕ }
● { ⟨G, w⟩ | G is a context-free grammar that

                generates w }



  

Encoding Turing Machines

● Critically important fact: Any Turing machine 
can be represented as a string.

● One way to do this: encode each state and its 
transitions in a list.

● Stronger claim: Any TM M can be represented 
as a string in M's alphabet.

● Analogy: program source code.
● All data fed into a program is encoded using the 

binary alphabet Σ = {0, 1}.
● A program's source code is itself represented in 

binary on disk.



  

We can now encode TMs as strings.

TMs can accept strings as input.

What can we do with this knowledge?



  

Universal Machines



  

Universal Machines and Programs

● Theorem: There is a Turing machine UTM called the 
universal Turing machine that, when run on ⟨M, w⟩, 
where M is a Turing machine and w is a string, simulates 
M running on w.

● As a high-level description:

UTM = “On input ⟨M, w⟩, where M is a TM and w ∈ Σ*

              Run M on w.

              If M accepts w, UTM accepts ⟨M, w⟩.

              If M rejects w, UTM rejects ⟨M, w⟩.”

If M loops on w, then UTM loops as 
well. This is subtly but implicitly 

given in the description.

If M loops on w, then UTM loops as 
well. This is subtly but implicitly 

given in the description.



  

An Intuition for UTM

● You can think of UTM as a general-purpose, 
programmable computer.

● Rather than purchasing one TM for each 
language, just purchase UTM and program in 
the “software” corresponding to the TM you 
actually want.

● UTM is a powerful machine: it can perform any 
computation that could be performed by any 
feasible computing device!



  

Building a Universal TM
Space for ⟨M⟩ Space to simulate M's tape.… …

UTM = “On input ⟨M, w⟩:
 

· Copy M to one part of the tape and w to another.
 

· Place a marker in w to track M's current state and the
  position of its tape head.

 

· Repeat the following:
 

· If the simulated version of M has entered an accepting
  state, accept.

 

· If the simulated version of M has entered a rejecting
  state, reject.

 

· Otherwise:
 

· Consult M's simulated tape to determine what symbol
  is currently being read.

 

· Consult the encoding of M to determine how to
  simulate the transition.

 

· Simulate that transition.”
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· If the simulated version of M has entered a rejecting
  state, reject.
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· Consult M's simulated tape to determine what symbol
  is currently being read.

 

· Consult the encoding of M to determine how to
  simulate the transition.

 

· Simulate that transition.”



  

The Language of UTM

● Recall: For any TM M, the language of M, denoted 
(ℒ M), is the set

ℒ(M) = { w ∈ Σ* | M accepts w }

● What is the language of UTM?

● UTM accepts ⟨M, w⟩ iff M is a TM that accepts w.

● Therefore:

ℒ(UTM) = { ⟨M, w⟩ | M is a TM and M accepts w }  

ℒ(UTM) = { ⟨M, w⟩ | M is a TM and w ∈ ℒ(M) }  

● For simplicity, define ATM = ℒ(UTM).  We will use the 
language ATM extensively.
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Computing on Turing Machines



  

Computing on Turing Machines

● Given a Turing machine M, we might be interested in 
answering some questions about M.

● Sample questions:

● Does M accept the empty string?

● Does M every accept any strings at all?

● Does M accept the same set of strings as a TM M'?

● Does M enter an infinite loop on any string?

● Each of these questions has a definitive yes or no answer.

● Major question: What sorts of questions about Turing 
machines can be answered by Turing machines?

● In other words: What questions can Turing machines answer 
about themselves?



  

Accepting the Empty String

● Given a TM M, that TM either accepts ε or it 
does not accept ε.
● Recall: M does not accept ε iff M either rejects ε 

or it loops on ε.

● Consider the language

L = { ⟨M⟩ | M is a TM and M accepts ε }   
● Is L ∈ RE?  That is, is there a Turing machine 

M such that (ℒ M) = L?



  

L = { ⟨M⟩ | M is a TM and M accepts ε }
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L = { ⟨M⟩ | M is a TM and M accepts ε }
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L = { ⟨M⟩ | M is a TM and M accepts ε }

H = “On input ⟨M⟩, where M is a Turing machine:
 

· Construct the string ⟨M, ε⟩.
 

· Run UTM on ⟨M, ε⟩.
 

· If UTM accepts ⟨M, ε⟩, H accepts ⟨M⟩.
 

· If UTM rejects ⟨M, ε⟩, H rejects ⟨M⟩.”

H = “On input ⟨M⟩, where M is a Turing machine:
 

· Construct the string ⟨M, ε⟩.
 

· Run UTM on ⟨M, ε⟩.
 

· If UTM accepts ⟨M, ε⟩, H accepts ⟨M⟩.
 

· If UTM rejects ⟨M, ε⟩, H rejects ⟨M⟩.”
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H = “On input ⟨M⟩, where M is a Turing machine:
 

· Construct the string ⟨M, ε⟩.
 

· Run UTM on ⟨M, ε⟩.
 

· If UTM accepts ⟨M, ε⟩, H accepts ⟨M⟩.
 

· If UTM rejects ⟨M, ε⟩, H rejects ⟨M⟩.”

H = “On input ⟨M⟩, where M is a Turing machine:
 

· Construct the string ⟨M, ε⟩.
 

· Run UTM on ⟨M, ε⟩.
 

· If UTM accepts ⟨M, ε⟩, H accepts ⟨M⟩.
 

· If UTM rejects ⟨M, ε⟩, H rejects ⟨M⟩.”

L = { ⟨M⟩ | M is a TM and M accepts ε }



  

H = “On input ⟨M⟩, where M is a Turing machine:
 

· Construct the string ⟨M, ε⟩.
 

· Run UTM on ⟨M, ε⟩.
 

· If UTM accepts ⟨M, ε⟩, H accepts ⟨M⟩.
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H = “On input ⟨M⟩, where M is a Turing machine:
 

· Construct the string ⟨M, ε⟩.
 

· Run UTM on ⟨M, ε⟩.
 

· If UTM accepts ⟨M, ε⟩, H accepts ⟨M⟩.
 

· If UTM rejects ⟨M, ε⟩, H rejects ⟨M⟩.”

What does H do on input ⟨M⟩ if M accepts ε?  Accepts.
 

What does H do on input ⟨M⟩ if M rejects ε?  Rejects.
 

What does H do on input ⟨M⟩ if M loops on ε?  Loops.

H accepts ⟨M⟩ iff UTM accepts ⟨M, ε⟩ iff M accepts ε iff ⟨M⟩ ∈ L.
 

Therefore, ℒ(H) = L.

L = { ⟨M⟩ | M is a TM and M accepts ε }
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TMs that Run Other TMs

● The description of the TM from the previous slide 
was very explicit about the operation of the 
machine:

● The key idea here is that H tries to run the TM M 
on the string ε.  The details of how H does this are 
not particularly relevant.

H = “On input ⟨M⟩, where M is a Turing machine:
 

· Construct the string ⟨M, ε⟩.
 

· Run UTM on ⟨M, ε⟩.
 

· If UTM accepts ⟨M, ε⟩, H accepts ⟨M⟩.
 

· If UTM rejects ⟨M, ε⟩, H rejects ⟨M⟩.”

H = “On input ⟨M⟩, where M is a Turing machine:
 

· Construct the string ⟨M, ε⟩.
 

· Run UTM on ⟨M, ε⟩.
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· If UTM rejects ⟨M, ε⟩, H rejects ⟨M⟩.”



  

TMs that Run Other TMs

● Here is a different high-level description of the TM 
H that is totally acceptable:

● This makes clear what the major point of the TM 
is.  We can fill in the details if we want if we're 
curious how it would work, but it's not necessary.

 H = “On input ⟨M⟩, where M is a Turing machine:
 

· Run M on ε.
 

· If M accepts ε, then H accepts ⟨M⟩.
 

· If M rejects ε, then H rejects ⟨M⟩. 

 H = “On input ⟨M⟩, where M is a Turing machine:
 

· Run M on ε.
 

· If M accepts ε, then H accepts ⟨M⟩.
 

· If M rejects ε, then H rejects ⟨M⟩. 



  

A More Complex Application

● Given a TM M, that TM either accepts at least one 
string or it does not accept at least one string.

● We can consider the language of all TMs that do 
accept at least one string:

      Lne = { ⟨M⟩ | M is a TM that accepts at
                          least one string }

● Question: Could we build a TM that can recognize 
TMs that accept at least one input?

● Equivalently, is Lne ∈ RE?



  

An Interesting Observation

      Lne = { ⟨M⟩ | M is a TM that accepts at
                           least one string }

● Suppose you are given a TM M that accepts at 
least one string.

● If you knew what that string was, could you 
confirm that the TM indeed accepted it?

● Yes: Just run the TM and wait for it to accept!



  

Designing an NTM

      Lne = { ⟨M⟩ | M is a TM that accepts at
                           least one string }

● We can build an NTM for Lne that works as follows:

● Nondeterministically guess a string w.
● Deterministically run M on w and accept if M 

accepts w.
  

H = “On input ⟨M⟩, where M is a Turing machine:
 

· Nondeterministically guess a string w.
  

· Run M on w.
 

· If M accepts w, then H accepts ⟨M⟩.
 

· If M rejects w, then H rejects ⟨M⟩. 
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· If M rejects w, then H rejects ⟨M⟩. 

  



  

The Story So Far

● We can now encode arbitrary objects, 
including Turing machines, as strings.

● Turing machines are capable of running 
other Turing machines specified through 
TM encodings.

● Some properties of TMs are RE – there 
exists a TM that can confirm when other 
TMs have that property.



  

Timeline of CS103

● Lecture 00: Unsolvable problems exist.

● Lecture 09: Proof by diagonalization.

● Lecture 19: TMs formalize computation.

● Lecture 20: TMs can be encoded as strings.

We are finally ready to start answering the 
following question:

What problems cannot be
solved by a computer?



  

Languages, TMs, and TM Encodings

● Recall: The language of a TM M is the set

ℒ(M) = { w ∈ Σ* | M accepts w }  
● Some of the strings in this set might be 

descriptions of TMs.
● What happens if we just focus on the set 

of strings that are legal TM descriptions?
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“The language of all
TMs that do not accept
their own description.”
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Diagonalization Revisited

● The diagonalization language, which we 
denote LD, is defined as

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M)

● That is, LD is the set of descriptions of 
Turing machines that do not accept 
themselves. 



  

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.
Proof: By contradiction; assume that LD ∈ RE. Then there must

be some TM R such that (ℒ R) = LD. We know that either
⟨R⟩ ∉ (ℒ R) or ⟨R⟩ ∈ (ℒ R). We consider each case separately:

  

Case 1: ⟨R⟩ ∉ (ℒ R). By definition of LD, since ⟨R⟩ ∉ (ℒ R), we
see that ⟨R⟩ ∈ LD. Since ⟨R⟩ ∉ (ℒ R) and ⟨R⟩ ∈ LD, we learn
that (ℒ R) ≠ LD. 

 

Case 2: ⟨R⟩ ∈ (ℒ R). By definition of LD, since ⟨R⟩ ∈ (ℒ R), we
know that ⟨R⟩ ∉ LD. Since ⟨R⟩ ∈ (ℒ R) and ⟨R⟩ ∉ LD, we learn
that (ℒ R) ≠ LD.

 

In both of these cases, we see that (ℒ R) ≠ LD, contradicting
the fact that (ℒ R) = LD. We have reached a contradiction, so
our assumption must have been wrong. Thus LD ∉ RE. ■
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Time Out For Announcements!



  

Problem Set Seven

● Problem Set Seven goes out right now and 
is due next Monday.
● Design some Turing machines!
● Explore the properties of the RE languages!
● Explore the borders of what's possible with 

computers!

● Two questions rely on material from 
Wednesday; they're marked as such. Sorry 
about that!



  

Problem Set Return

● Problem Set Four graded; will be 
returned at end of lecture today.

● Aiming to get Problem Set Five graded 
and returned by Wednesday.

● Sorry for the delays!
● One unnamed problem set: Contact us 

if you can't find your problem set.



  

Your Questions



  

“What were your favorite classes as an 
undergrad here at Stanford?”



  

“Are there any rules to determine if a 
language is context-free? Does it have

to do with whether you can solve it
using recursion/induction?”



  

“Turing machines are an expansion of FAs 
that use infinite memory. Couldn't we 
expand on FAs by giving them infinite 
states as well? Would that somehow 

expand the power of such a method of 
computation?”
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Back to CS103!



  

Additional Unsolvable Problems



  

Finding Unsolvable Problems

● We can use the fact that LD ∉ RE to show that 
other languages are also not RE.

● General proof approach: to show that some 
language L is not RE, we will do the following:

● Assume for the sake of contradiction that L ∈ RE, 
meaning that there is some TM M for it.

● Show that we can build a TM that uses M as a 
subroutine in order to recognize LD.

● Reach a contradiction, since no TM recognizes LD.

● Conclude, therefore, that L ∉ RE. 



  

The Complement of ATM

● Recall: the language ATM is the language of the 
universal Turing machine UTM:

  ATM = ℒ(UTM) = { ⟨M, w⟩ | M is a TM and
                                           M accepts w }

● The complement of ATM (denoted ATM) is the 
language of all strings not contained in ATM.

● Questions:
● What language is this?
● Is this language RE?



  

ATM and ATM

● The language ATM is defined as

 {⟨M, w⟩ | M is a TM that accepts w}

● Equivalently:

        {x | x = ⟨M, w⟩ for some TM M
              and string w, and M accepts w}

● Thus ATM is

   {x | x ≠ ⟨M, w⟩ for any TM M and string w,
         or M is a TM that does not accept w}



  

ATM and ATM

● The language ATM is defined as

 {⟨M, w⟩ | M is a TM that accepts w}

● Equivalently:

        {x | x = ⟨M, w⟩ for some TM M
              and string w, and M accepts w}

● Thus ATM is

   {x | x ≠ ⟨M, w⟩ for any TM M and string w,
         or M is a TM that does not accept w}

That looks hard.



  

Cheating With Math

● As a mathematical simplification, we will assume 
the following:

Every string can be decoded
into any collection of objects.

● Every string is an encoding of some TM M.

● Every string is an encoding of some TM M and 
string w.

● Can do this as follows:
● If the string is a legal encoding, go with that 

encoding.
● Otherwise, pretend the string decodes to some 

predetermined group of objects.



  

Cheating With Math

● Example: Every string will be a valid C++ 
program.

● If it's already a C++ program, just 
compile it.

● Otherwise, pretend it's this program:
int main() {

    return 0;

}



  

ATM and ATM

● The language ATM is defined as

 {⟨M, w⟩ | M is a TM that accepts w}

● Thus ATM is the language

{⟨M, w⟩ | M is a TM that doesn't accept w}



  

ATM ∉ RE

● Although the language ATM is in RE (since it's 
the language of UTM), its complement ATM is not 
in RE.

● We will prove this as follows:

● Assume, for contradiction, that ATM ∈ RE.

● This means there is a TM R for ATM.

● Using R as a subroutine, we will build a TM H 
that will recognize LD.

● This is impossible, since LD ∉ RE.

● Conclude, therefore, that ATM ∉ RE.



  

Comparing LD and ATM

● The languages LD and ATM are closely 
related:

● LD: Does M not accept ⟨M⟩?

● ATM: Does M not accept string w?

● Given this connection, we will show how 
to turn a hypothetical recognizer for ATM 
into a hypothetical recognizer for LD.
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H = “On input ⟨M⟩:
  · Construct the string
     ⟨M, ⟨M⟩⟩.

 

  · Run R on ⟨M, ⟨M⟩⟩.
 

  · If R accepts ⟨M, ⟨M⟩⟩,
    then H accepts ⟨M⟩.

 

  · If R rejects ⟨M, ⟨M⟩⟩,
    then H rejects ⟨M⟩.”
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Run R on ⟨M, ⟨M⟩⟩.
If R accepts ⟨M, ⟨M⟩⟩, H accepts ⟨M⟩.
If R rejects ⟨M, ⟨M⟩⟩, H rejects ⟨M⟩.”

 

We claim that (ℒ H) = LD.  We will prove this by showing that ⟨M⟩ ∈ LD

iff H accepts ⟨M⟩.
 

By construction we have that H accepts ⟨M⟩ iff R accepts ⟨M, ⟨M⟩⟩. 
Since R is a recognizer for ATM, R accepts ⟨M, ⟨M⟩⟩ iff M does not
accept ⟨M⟩.  Finally, note that M does not accept ⟨M⟩ iff ⟨M⟩ ∈ LD. 
Therefore, we have H accepts ⟨M⟩ iff ⟨M⟩ ∈ LD, so (ℒ H) = LD.  But this
is impossible, since LD ∉ RE.

 

We have reached a contradiction, so our assumption must have been
incorrect. Thus ATM ∉ RE, as required. ■



  

Regular
Languages CFLs

All Languages

RE

L
D

 

A
TM

 



  

Why All This Matters

● We finally have found concrete examples 
of unsolvable problems!

● We are starting to see a line of reasoning 
we can use to find unsolvable problems:
● Start with a known unsolvable problem.
● Try to show that the unsolvability of that 

problem entails the unsolvability of other 
problems.

● We will see this used extensively in the 
upcoming weeks.



  

Next Time

● Decidability
● What is an algorithm?

● Undecidability
● What problems can't be solved by 

algorithms?

● co-Recognizability
● How do we resolve the asymmetry of RE?
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