

Unsolvable Problems

Problem Set Six
is due in the
box up front.

Problem Set Six
is due in the
box up front.

Encodings

Notation for Encodings

● For any object O, we will denote a string encoding
of O by writing O in angle brackets: O is encoded
as ⟨O⟩.

● This makes it much easier to specify languages.

● Examples:

 { ⟨R⟩ | R is a regular expression that matches ε }

 { ⟨n⟩ | n ∈ ℕ and the hailstone sequence
 terminates for n.}

● The encoding scheme can make a difference when
trying to determine whether a language is regular or
context-free because of the relative weakness of DFAs
and CFGs.

Encoding Multiple Objects

● Given several different objects O1, …, On,
we can represent the encoding of those n
objects as ⟨O1, O2, …, On⟩.

● Examples:
● { ⟨m, n, mn⟩ | m, n ∈ ℕ }
● { ⟨G, w⟩ | G is a context-free grammar that

 generates w }

Encoding Turing Machines

● Critically important fact: Any Turing machine
can be represented as a string.

● One way to do this: encode each state and its
transitions in a list.

● Stronger claim: Any TM M can be represented
as a string in M's alphabet.

● Analogy: program source code.
● All data fed into a program is encoded using the

binary alphabet Σ = {0, 1}.
● A program's source code is itself represented in

binary on disk.

We can now encode TMs as strings.

TMs can accept strings as input.

What can we do with this knowledge?

Universal Machines

Universal Machines and Programs

● Theorem: There is a Turing machine UTM called the
universal Turing machine that, when run on ⟨M, w⟩,
where M is a Turing machine and w is a string, simulates
M running on w.

● As a high-level description:

UTM = “On input ⟨M, w⟩, where M is a TM and w ∈ Σ*

 Run M on w.

 If M accepts w, UTM accepts ⟨M, w⟩.

 If M rejects w, UTM rejects ⟨M, w⟩.”

If M loops on w, then UTM loops as
well. This is subtly but implicitly

given in the description.

If M loops on w, then UTM loops as
well. This is subtly but implicitly

given in the description.

An Intuition for UTM

● You can think of UTM as a general-purpose,
programmable computer.

● Rather than purchasing one TM for each
language, just purchase UTM and program in
the “software” corresponding to the TM you
actually want.

● UTM is a powerful machine: it can perform any
computation that could be performed by any
feasible computing device!

Building a Universal TM
Space for ⟨M⟩ Space to simulate M's tape.… …

UTM = “On input ⟨M, w⟩:

· Copy M to one part of the tape and w to another.

· Place a marker in w to track M's current state and the
 position of its tape head.

· Repeat the following:

· If the simulated version of M has entered an accepting
 state, accept.

· If the simulated version of M has entered a rejecting
 state, reject.

· Otherwise:

· Consult M's simulated tape to determine what symbol
 is currently being read.

· Consult the encoding of M to determine how to
 simulate the transition.

· Simulate that transition.”

UTM = “On input ⟨M, w⟩:

· Copy M to one part of the tape and w to another.

· Place a marker in w to track M's current state and the
 position of its tape head.

· Repeat the following:

· If the simulated version of M has entered an accepting
 state, accept.

· If the simulated version of M has entered a rejecting
 state, reject.

· Otherwise:

· Consult M's simulated tape to determine what symbol
 is currently being read.

· Consult the encoding of M to determine how to
 simulate the transition.

· Simulate that transition.”

The Language of UTM

● Recall: For any TM M, the language of M, denoted
(ℒ M), is the set

ℒ(M) = { w ∈ Σ* | M accepts w }

● What is the language of UTM?

● UTM accepts ⟨M, w⟩ iff M is a TM that accepts w.

● Therefore:

ℒ(UTM) = { ⟨M, w⟩ | M is a TM and M accepts w }

ℒ(UTM) = { ⟨M, w⟩ | M is a TM and w ∈ ℒ(M) }

● For simplicity, define ATM = ℒ(UTM). We will use the
language ATM extensively.

Regular
Languages CFLs

All Languages

RE

A
TM

Computing on Turing Machines

Computing on Turing Machines

● Given a Turing machine M, we might be interested in
answering some questions about M.

● Sample questions:

● Does M accept the empty string?

● Does M every accept any strings at all?

● Does M accept the same set of strings as a TM M'?

● Does M enter an infinite loop on any string?

● Each of these questions has a definitive yes or no answer.

● Major question: What sorts of questions about Turing
machines can be answered by Turing machines?

● In other words: What questions can Turing machines answer
about themselves?

Accepting the Empty String

● Given a TM M, that TM either accepts ε or it
does not accept ε.
● Recall: M does not accept ε iff M either rejects ε

or it loops on ε.

● Consider the language

L = { ⟨M⟩ | M is a TM and M accepts ε }
● Is L ∈ RE? That is, is there a Turing machine

M such that (ℒ M) = L?

L = { ⟨M⟩ | M is a TM and M accepts ε }

q
acc

q
rej

q
acc

q
rej

start

Subroutine: Construct
⟨M, ε from ⟩ ⟨M .⟩

U
TM

L = { ⟨M⟩ | M is a TM and M accepts ε }

q
acc

q
rej

q
acc

q
rej

start

Subroutine: Construct
⟨M, ε from ⟩ ⟨M .⟩

U
TM

… 1 0 1 1 0 …

… 1 1 0 0 1 1 1 1 0 0 0 1 …

L = { ⟨M⟩ | M is a TM and M accepts ε }

H = “On input ⟨M⟩, where M is a Turing machine:

· Construct the string ⟨M, ε⟩.

· Run UTM on ⟨M, ε⟩.

· If UTM accepts ⟨M, ε⟩, H accepts ⟨M⟩.

· If UTM rejects ⟨M, ε⟩, H rejects ⟨M⟩.”

H = “On input ⟨M⟩, where M is a Turing machine:

· Construct the string ⟨M, ε⟩.

· Run UTM on ⟨M, ε⟩.

· If UTM accepts ⟨M, ε⟩, H accepts ⟨M⟩.

· If UTM rejects ⟨M, ε⟩, H rejects ⟨M⟩.”

q
acc

q
rej

q
acc

q
rej

start

Subroutine: Construct
⟨M, ε from ⟩ ⟨M .⟩

U
TM

 H

H = “On input ⟨M⟩, where M is a Turing machine:

· Construct the string ⟨M, ε⟩.

· Run UTM on ⟨M, ε⟩.

· If UTM accepts ⟨M, ε⟩, H accepts ⟨M⟩.

· If UTM rejects ⟨M, ε⟩, H rejects ⟨M⟩.”

H = “On input ⟨M⟩, where M is a Turing machine:

· Construct the string ⟨M, ε⟩.

· Run UTM on ⟨M, ε⟩.

· If UTM accepts ⟨M, ε⟩, H accepts ⟨M⟩.

· If UTM rejects ⟨M, ε⟩, H rejects ⟨M⟩.”

L = { ⟨M⟩ | M is a TM and M accepts ε }

H = “On input ⟨M⟩, where M is a Turing machine:

· Construct the string ⟨M, ε⟩.

· Run UTM on ⟨M, ε⟩.

· If UTM accepts ⟨M, ε⟩, H accepts ⟨M⟩.

· If UTM rejects ⟨M, ε⟩, H rejects ⟨M⟩.”

H = “On input ⟨M⟩, where M is a Turing machine:

· Construct the string ⟨M, ε⟩.

· Run UTM on ⟨M, ε⟩.

· If UTM accepts ⟨M, ε⟩, H accepts ⟨M⟩.

· If UTM rejects ⟨M, ε⟩, H rejects ⟨M⟩.”

What does H do on input ⟨M⟩ if M accepts ε? Accepts.

What does H do on input ⟨M⟩ if M rejects ε? Rejects.

What does H do on input ⟨M⟩ if M loops on ε? Loops.

H accepts ⟨M⟩ iff UTM accepts ⟨M, ε⟩ iff M accepts ε iff ⟨M⟩ ∈ L.

Therefore, ℒ(H) = L.

L = { ⟨M⟩ | M is a TM and M accepts ε }

H = “On input ⟨M⟩, where M is a Turing machine:

· Construct the string ⟨M, ε⟩.

· Run UTM on ⟨M, ε⟩.

· If UTM accepts ⟨M, ε⟩, H accepts ⟨M⟩.

· If UTM rejects ⟨M, ε⟩, H rejects ⟨M⟩.”

H = “On input ⟨M⟩, where M is a Turing machine:

· Construct the string ⟨M, ε⟩.

· Run UTM on ⟨M, ε⟩.

· If UTM accepts ⟨M, ε⟩, H accepts ⟨M⟩.

· If UTM rejects ⟨M, ε⟩, H rejects ⟨M⟩.”

What does H do on input ⟨M⟩ if M accepts ε? Accepts.

What does H do on input ⟨M⟩ if M rejects ε? Rejects.

What does H do on input ⟨M⟩ if M loops on ε? Loops.

H accepts ⟨M⟩ iff UTM accepts ⟨M, ε⟩ iff M accepts ε iff ⟨M⟩ ∈ L.

Therefore, ℒ(H) = L.

L = { ⟨M⟩ | M is a TM and M accepts ε }

H = “On input ⟨M⟩, where M is a Turing machine:

· Construct the string ⟨M, ε⟩.

· Run UTM on ⟨M, ε⟩.

· If UTM accepts ⟨M, ε⟩, H accepts ⟨M⟩.

· If UTM rejects ⟨M, ε⟩, H rejects ⟨M⟩.”

H = “On input ⟨M⟩, where M is a Turing machine:

· Construct the string ⟨M, ε⟩.

· Run UTM on ⟨M, ε⟩.

· If UTM accepts ⟨M, ε⟩, H accepts ⟨M⟩.

· If UTM rejects ⟨M, ε⟩, H rejects ⟨M⟩.”

What does H do on input ⟨M⟩ if M accepts ε? Accepts.

What does H do on input ⟨M⟩ if M rejects ε? Rejects.

What does H do on input ⟨M⟩ if M loops on ε? Loops.

H accepts ⟨M⟩ iff UTM accepts ⟨M, ε⟩ iff M accepts ε iff ⟨M⟩ ∈ L.

Therefore, ℒ(H) = L.

L = { ⟨M⟩ | M is a TM and M accepts ε }

H = “On input ⟨M⟩, where M is a Turing machine:

· Construct the string ⟨M, ε⟩.

· Run UTM on ⟨M, ε⟩.

· If UTM accepts ⟨M, ε⟩, H accepts ⟨M⟩.

· If UTM rejects ⟨M, ε⟩, H rejects ⟨M⟩.”

H = “On input ⟨M⟩, where M is a Turing machine:

· Construct the string ⟨M, ε⟩.

· Run UTM on ⟨M, ε⟩.

· If UTM accepts ⟨M, ε⟩, H accepts ⟨M⟩.

· If UTM rejects ⟨M, ε⟩, H rejects ⟨M⟩.”

What does H do on input ⟨M⟩ if M accepts ε? Accepts.

What does H do on input ⟨M⟩ if M rejects ε? Rejects.

What does H do on input ⟨M⟩ if M loops on ε? Loops.

H accepts ⟨M⟩ iff UTM accepts ⟨M, ε⟩ iff M accepts ε iff ⟨M⟩ ∈ L.

Therefore, ℒ(H) = L.

L = { ⟨M⟩ | M is a TM and M accepts ε }

H = “On input ⟨M⟩, where M is a Turing machine:

· Construct the string ⟨M, ε⟩.

· Run UTM on ⟨M, ε⟩.

· If UTM accepts ⟨M, ε⟩, H accepts ⟨M⟩.

· If UTM rejects ⟨M, ε⟩, H rejects ⟨M⟩.”

H = “On input ⟨M⟩, where M is a Turing machine:

· Construct the string ⟨M, ε⟩.

· Run UTM on ⟨M, ε⟩.

· If UTM accepts ⟨M, ε⟩, H accepts ⟨M⟩.

· If UTM rejects ⟨M, ε⟩, H rejects ⟨M⟩.”

What does H do on input ⟨M⟩ if M accepts ε? Accepts.

What does H do on input ⟨M⟩ if M rejects ε? Rejects.

What does H do on input ⟨M⟩ if M loops on ε? Loops.

H accepts ⟨M⟩ iff UTM accepts ⟨M, ε⟩ iff M accepts ε iff ⟨M⟩ ∈ L.

Therefore, ℒ(H) = L.

L = { ⟨M⟩ | M is a TM and M accepts ε }

H = “On input ⟨M⟩, where M is a Turing machine:

· Construct the string ⟨M, ε⟩.

· Run UTM on ⟨M, ε⟩.

· If UTM accepts ⟨M, ε⟩, H accepts ⟨M⟩.

· If UTM rejects ⟨M, ε⟩, H rejects ⟨M⟩.”

H = “On input ⟨M⟩, where M is a Turing machine:

· Construct the string ⟨M, ε⟩.

· Run UTM on ⟨M, ε⟩.

· If UTM accepts ⟨M, ε⟩, H accepts ⟨M⟩.

· If UTM rejects ⟨M, ε⟩, H rejects ⟨M⟩.”

What does H do on input ⟨M⟩ if M accepts ε? Accepts.

What does H do on input ⟨M⟩ if M rejects ε? Rejects.

What does H do on input ⟨M⟩ if M loops on ε? Loops.

H accepts ⟨M⟩ iff UTM accepts ⟨M, ε⟩ iff M accepts ε iff ⟨M⟩ ∈ L.

Therefore, ℒ(H) = L.

L = { ⟨M⟩ | M is a TM and M accepts ε }

H = “On input ⟨M⟩, where M is a Turing machine:

· Construct the string ⟨M, ε⟩.

· Run UTM on ⟨M, ε⟩.

· If UTM accepts ⟨M, ε⟩, H accepts ⟨M⟩.

· If UTM rejects ⟨M, ε⟩, H rejects ⟨M⟩.”

H = “On input ⟨M⟩, where M is a Turing machine:

· Construct the string ⟨M, ε⟩.

· Run UTM on ⟨M, ε⟩.

· If UTM accepts ⟨M, ε⟩, H accepts ⟨M⟩.

· If UTM rejects ⟨M, ε⟩, H rejects ⟨M⟩.”

What does H do on input ⟨M⟩ if M accepts ε? Accepts.

What does H do on input ⟨M⟩ if M rejects ε? Rejects.

What does H do on input ⟨M⟩ if M loops on ε? Loops.

H accepts ⟨M⟩ iff UTM accepts ⟨M, ε⟩ iff M accepts ε iff ⟨M⟩ ∈ L.

Therefore, ℒ(H) = L.

L = { ⟨M⟩ | M is a TM and M accepts ε }

H = “On input ⟨M⟩, where M is a Turing machine:

· Construct the string ⟨M, ε⟩.

· Run UTM on ⟨M, ε⟩.

· If UTM accepts ⟨M, ε⟩, H accepts ⟨M⟩.

· If UTM rejects ⟨M, ε⟩, H rejects ⟨M⟩.”

H = “On input ⟨M⟩, where M is a Turing machine:

· Construct the string ⟨M, ε⟩.

· Run UTM on ⟨M, ε⟩.

· If UTM accepts ⟨M, ε⟩, H accepts ⟨M⟩.

· If UTM rejects ⟨M, ε⟩, H rejects ⟨M⟩.”

What does H do on input ⟨M⟩ if M accepts ε? Accepts.

What does H do on input ⟨M⟩ if M rejects ε? Rejects.

What does H do on input ⟨M⟩ if M loops on ε? Loops.

H accepts ⟨M⟩ iff UTM accepts ⟨M, ε⟩ iff M accepts ε iff ⟨M⟩ ∈ L.

Therefore, ℒ(H) = L.

L = { ⟨M⟩ | M is a TM and M accepts ε }

H = “On input ⟨M⟩, where M is a Turing machine:

· Construct the string ⟨M, ε⟩.

· Run UTM on ⟨M, ε⟩.

· If UTM accepts ⟨M, ε⟩, H accepts ⟨M⟩.

· If UTM rejects ⟨M, ε⟩, H rejects ⟨M⟩.”

H = “On input ⟨M⟩, where M is a Turing machine:

· Construct the string ⟨M, ε⟩.

· Run UTM on ⟨M, ε⟩.

· If UTM accepts ⟨M, ε⟩, H accepts ⟨M⟩.

· If UTM rejects ⟨M, ε⟩, H rejects ⟨M⟩.”

What does H do on input ⟨M⟩ if M accepts ε? Accepts.

What does H do on input ⟨M⟩ if M rejects ε? Rejects.

What does H do on input ⟨M⟩ if M loops on ε? Loops.

H accepts ⟨M⟩ iff UTM accepts ⟨M, ε⟩ iff M accepts ε iff ⟨M⟩ ∈ L.

Therefore, ℒ(H) = L.

L = { ⟨M⟩ | M is a TM and M accepts ε }

H = “On input ⟨M⟩, where M is a Turing machine:

· Construct the string ⟨M, ε⟩.

· Run UTM on ⟨M, ε⟩.

· If UTM accepts ⟨M, ε⟩, H accepts ⟨M⟩.

· If UTM rejects ⟨M, ε⟩, H rejects ⟨M⟩.”

H = “On input ⟨M⟩, where M is a Turing machine:

· Construct the string ⟨M, ε⟩.

· Run UTM on ⟨M, ε⟩.

· If UTM accepts ⟨M, ε⟩, H accepts ⟨M⟩.

· If UTM rejects ⟨M, ε⟩, H rejects ⟨M⟩.”

What does H do on input ⟨M⟩ if M accepts ε? Accepts.

What does H do on input ⟨M⟩ if M rejects ε? Rejects.

What does H do on input ⟨M⟩ if M loops on ε? Loops.

H accepts ⟨M⟩ iff UTM accepts ⟨M, ε⟩ iff M accepts ε iff ⟨M⟩ ∈ L.

Therefore, ℒ(H) = L.

L = { ⟨M⟩ | M is a TM and M accepts ε }

TMs that Run Other TMs

● The description of the TM from the previous slide
was very explicit about the operation of the
machine:

● The key idea here is that H tries to run the TM M
on the string ε. The details of how H does this are
not particularly relevant.

H = “On input ⟨M⟩, where M is a Turing machine:

· Construct the string ⟨M, ε⟩.

· Run UTM on ⟨M, ε⟩.

· If UTM accepts ⟨M, ε⟩, H accepts ⟨M⟩.

· If UTM rejects ⟨M, ε⟩, H rejects ⟨M⟩.”

H = “On input ⟨M⟩, where M is a Turing machine:

· Construct the string ⟨M, ε⟩.

· Run UTM on ⟨M, ε⟩.

· If UTM accepts ⟨M, ε⟩, H accepts ⟨M⟩.

· If UTM rejects ⟨M, ε⟩, H rejects ⟨M⟩.”

TMs that Run Other TMs

● Here is a different high-level description of the TM
H that is totally acceptable:

● This makes clear what the major point of the TM
is. We can fill in the details if we want if we're
curious how it would work, but it's not necessary.

 H = “On input ⟨M⟩, where M is a Turing machine:

· Run M on ε.

· If M accepts ε, then H accepts ⟨M⟩.

· If M rejects ε, then H rejects ⟨M⟩.

 H = “On input ⟨M⟩, where M is a Turing machine:

· Run M on ε.

· If M accepts ε, then H accepts ⟨M⟩.

· If M rejects ε, then H rejects ⟨M⟩.

A More Complex Application

● Given a TM M, that TM either accepts at least one
string or it does not accept at least one string.

● We can consider the language of all TMs that do
accept at least one string:

 Lne = { ⟨M⟩ | M is a TM that accepts at
 least one string }

● Question: Could we build a TM that can recognize
TMs that accept at least one input?

● Equivalently, is Lne ∈ RE?

An Interesting Observation

 Lne = { ⟨M⟩ | M is a TM that accepts at
 least one string }

● Suppose you are given a TM M that accepts at
least one string.

● If you knew what that string was, could you
confirm that the TM indeed accepted it?

● Yes: Just run the TM and wait for it to accept!

Designing an NTM

 Lne = { ⟨M⟩ | M is a TM that accepts at
 least one string }

● We can build an NTM for Lne that works as follows:

● Nondeterministically guess a string w.
● Deterministically run M on w and accept if M

accepts w.

H = “On input ⟨M⟩, where M is a Turing machine:

· Nondeterministically guess a string w.

· Run M on w.

· If M accepts w, then H accepts ⟨M⟩.

· If M rejects w, then H rejects ⟨M⟩.

H = “On input ⟨M⟩, where M is a Turing machine:

· Nondeterministically guess a string w.

· Run M on w.

· If M accepts w, then H accepts ⟨M⟩.

· If M rejects w, then H rejects ⟨M⟩.

The Story So Far

● We can now encode arbitrary objects,
including Turing machines, as strings.

● Turing machines are capable of running
other Turing machines specified through
TM encodings.

● Some properties of TMs are RE – there
exists a TM that can confirm when other
TMs have that property.

Timeline of CS103

● Lecture 00: Unsolvable problems exist.

● Lecture 09: Proof by diagonalization.

● Lecture 19: TMs formalize computation.

● Lecture 20: TMs can be encoded as strings.

We are finally ready to start answering the
following question:

What problems cannot be
solved by a computer?

Languages, TMs, and TM Encodings

● Recall: The language of a TM M is the set

ℒ(M) = { w ∈ Σ* | M accepts w }
● Some of the strings in this set might be

descriptions of TMs.
● What happens if we just focus on the set

of strings that are legal TM descriptions?

M
1

M
2

M
0

M
3

M
4

M
5

…

M
1

M
2

M
0

M
3

M
4

M
5

…

All Turing machines,
listed in some order.
All Turing machines,
listed in some order.

M
1

M
2

M
0

M
3

M
4

M
5

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

…

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

All descriptions
of TMs, listed in
the same order.

All descriptions
of TMs, listed in
the same order.

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

Acc Acc Acc No Acc No …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

Acc Acc Acc No Acc No …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

Flip all “accept”
to “no” and
vice-versa

Flip all “accept”
to “no” and
vice-versa

No No No Acc No Acc …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

No No No Acc No Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

No No No Acc No Acc …

What TM has
this behavior?
What TM has
this behavior?

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

No No No Acc No Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

No No No Acc No Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

No No No Acc No Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

No No No Acc No Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

No No No Acc No Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

No No No Acc No Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

No No No Acc No Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

Acc

No

Acc

No

…

No Acc …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No No …

… … … … … … …

No No No Acc Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

Acc

No

No

Acc

Acc

No

No

…

Acc …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … … …

No No No Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

No

Acc

…

…

Acc

No

No

Acc

Acc

No

…

…

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … …

No No No Acc

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

…

…

No

Acc

…

…

Acc

No

No

Acc

Acc

No

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … …

No No No Acc

No TM has
this behavior!
No TM has
this behavior!

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

…

…

No

Acc

…

…

Acc

No

No

Acc

Acc

No

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … …

No No No Acc

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

…

…

No

Acc

…

…

Acc

No

No

Acc

Acc

No

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … …

No No No Acc

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

…

…

No

Acc

…

…

Acc

No

No

Acc

Acc

No

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … …

No No No Acc

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

“The language of all
TMs that do not accept
their own description.”

…

…

No

Acc

…

…

Acc

No

No

Acc

Acc

No

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … …

No No No Acc

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

{ ⟨M⟩ | M is a TM that
does not accept ⟨M⟩ }

…

…

No

Acc

…

…

Acc

No

No

Acc

Acc

No

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … …

No No No Acc

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

{ ⟨M⟩ | M is a TM
and ⟨M⟩ ∉ ℒ(M) }

Diagonalization Revisited

● The diagonalization language, which we
denote LD, is defined as

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M)

● That is, LD is the set of descriptions of
Turing machines that do not accept
themselves.

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.
Proof: By contradiction; assume that LD ∈ RE. Then there must

be some TM R such that (ℒ R) = LD. We know that either
⟨R⟩ ∉ (ℒ R) or ⟨R⟩ ∈ (ℒ R). We consider each case separately:

Case 1: ⟨R⟩ ∉ (ℒ R). By definition of LD, since ⟨R⟩ ∉ (ℒ R), we
see that ⟨R⟩ ∈ LD. Since ⟨R⟩ ∉ (ℒ R) and ⟨R⟩ ∈ LD, we learn
that (ℒ R) ≠ LD.

Case 2: ⟨R⟩ ∈ (ℒ R). By definition of LD, since ⟨R⟩ ∈ (ℒ R), we
know that ⟨R⟩ ∉ LD. Since ⟨R⟩ ∈ (ℒ R) and ⟨R⟩ ∉ LD, we learn
that (ℒ R) ≠ LD.

In both of these cases, we see that (ℒ R) ≠ LD, contradicting
the fact that (ℒ R) = LD. We have reached a contradiction, so
our assumption must have been wrong. Thus LD ∉ RE. ■

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.
Proof: By contradiction; assume that LD ∈ RE. Then there must

be some TM R such that (ℒ R) = LD. We know that either
⟨R⟩ ∉ (ℒ R) or ⟨R⟩ ∈ (ℒ R). We consider each case separately:

Case 1: ⟨R⟩ ∉ (ℒ R). By definition of LD, since ⟨R⟩ ∉ (ℒ R), we
see that ⟨R⟩ ∈ LD. Since ⟨R⟩ ∉ (ℒ R) and ⟨R⟩ ∈ LD, we learn
that (ℒ R) ≠ LD.

Case 2: ⟨R⟩ ∈ (ℒ R). By definition of LD, since ⟨R⟩ ∈ (ℒ R), we
know that ⟨R⟩ ∉ LD. Since ⟨R⟩ ∈ (ℒ R) and ⟨R⟩ ∉ LD, we learn
that (ℒ R) ≠ LD.

In both of these cases, we see that (ℒ R) ≠ LD, contradicting
the fact that (ℒ R) = LD. We have reached a contradiction, so
our assumption must have been wrong. Thus LD ∉ RE. ■

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.
Proof: By contradiction; assume that LD ∈ RE. Then there must

be some TM R such that (ℒ R) = LD. We know that either
⟨R⟩ ∉ (ℒ R) or ⟨R⟩ ∈ (ℒ R). We consider each case separately:

Case 1: ⟨R⟩ ∉ (ℒ R). By definition of LD, since ⟨R⟩ ∉ (ℒ R), we
see that ⟨R⟩ ∈ LD. Since ⟨R⟩ ∉ (ℒ R) and ⟨R⟩ ∈ LD, we learn
that (ℒ R) ≠ LD.

Case 2: ⟨R⟩ ∈ (ℒ R). By definition of LD, since ⟨R⟩ ∈ (ℒ R), we
know that ⟨R⟩ ∉ LD. Since ⟨R⟩ ∈ (ℒ R) and ⟨R⟩ ∉ LD, we learn
that (ℒ R) ≠ LD.

In both of these cases, we see that (ℒ R) ≠ LD, contradicting
the fact that (ℒ R) = LD. We have reached a contradiction, so
our assumption must have been wrong. Thus LD ∉ RE. ■

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.
Proof: By contradiction; assume that LD ∈ RE. Then there must

be some TM R such that (ℒ R) = LD. We know that either
⟨R⟩ ∉ (ℒ R) or ⟨R⟩ ∈ (ℒ R). We consider each case separately:

Case 1: ⟨R⟩ ∉ (ℒ R). By definition of LD, since ⟨R⟩ ∉ (ℒ R), we
see that ⟨R⟩ ∈ LD. Since ⟨R⟩ ∉ (ℒ R) and ⟨R⟩ ∈ LD, we learn
that (ℒ R) ≠ LD.

Case 2: ⟨R⟩ ∈ (ℒ R). By definition of LD, since ⟨R⟩ ∈ (ℒ R), we
know that ⟨R⟩ ∉ LD. Since ⟨R⟩ ∈ (ℒ R) and ⟨R⟩ ∉ LD, we learn
that (ℒ R) ≠ LD.

In both of these cases, we see that (ℒ R) ≠ LD, contradicting
the fact that (ℒ R) = LD. We have reached a contradiction, so
our assumption must have been wrong. Thus LD ∉ RE. ■

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.
Proof: By contradiction; assume that LD ∈ RE. Then there must

be some TM R such that (ℒ R) = LD. We know that either
⟨R⟩ ∉ (ℒ R) or ⟨R⟩ ∈ (ℒ R). We consider each case separately:

Case 1: ⟨R⟩ ∉ (ℒ R). By definition of LD, since ⟨R⟩ ∉ (ℒ R), we
see that ⟨R⟩ ∈ LD. Since ⟨R⟩ ∉ (ℒ R) and ⟨R⟩ ∈ LD, we learn
that (ℒ R) ≠ LD.

Case 2: ⟨R⟩ ∈ (ℒ R). By definition of LD, since ⟨R⟩ ∈ (ℒ R), we
know that ⟨R⟩ ∉ LD. Since ⟨R⟩ ∈ (ℒ R) and ⟨R⟩ ∉ LD, we learn
that (ℒ R) ≠ LD.

In both of these cases, we see that (ℒ R) ≠ LD, contradicting
the fact that (ℒ R) = LD. We have reached a contradiction, so
our assumption must have been wrong. Thus LD ∉ RE. ■

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.
Proof: By contradiction; assume that LD ∈ RE. Then there must

be some TM R such that (ℒ R) = LD. We know that either
⟨R⟩ ∉ (ℒ R) or ⟨R⟩ ∈ (ℒ R). We consider each case separately:

Case 1: ⟨R⟩ ∉ (ℒ R). By definition of LD, since ⟨R⟩ ∉ (ℒ R), we
see that ⟨R⟩ ∈ LD. Since ⟨R⟩ ∉ (ℒ R) and ⟨R⟩ ∈ LD, we learn
that (ℒ R) ≠ LD.

Case 2: ⟨R⟩ ∈ (ℒ R). By definition of LD, since ⟨R⟩ ∈ (ℒ R), we
know that ⟨R⟩ ∉ LD. Since ⟨R⟩ ∈ (ℒ R) and ⟨R⟩ ∉ LD, we learn
that (ℒ R) ≠ LD.

In both of these cases, we see that (ℒ R) ≠ LD, contradicting
the fact that (ℒ R) = LD. We have reached a contradiction, so
our assumption must have been wrong. Thus LD ∉ RE. ■

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.
Proof: By contradiction; assume that LD ∈ RE. Then there must

be some TM R such that (ℒ R) = LD. We know that either
⟨R⟩ ∉ (ℒ R) or ⟨R⟩ ∈ (ℒ R). We consider each case separately:

Case 1: ⟨R⟩ ∉ (ℒ R). By definition of LD, since ⟨R⟩ ∉ (ℒ R), we
see that ⟨R⟩ ∈ LD. Since ⟨R⟩ ∉ (ℒ R) and ⟨R⟩ ∈ LD, we learn
that (ℒ R) ≠ LD.

Case 2: ⟨R⟩ ∈ (ℒ R). By definition of LD, since ⟨R⟩ ∈ (ℒ R), we
know that ⟨R⟩ ∉ LD. Since ⟨R⟩ ∈ (ℒ R) and ⟨R⟩ ∉ LD, we learn
that (ℒ R) ≠ LD.

In both of these cases, we see that (ℒ R) ≠ LD, contradicting
the fact that (ℒ R) = LD. We have reached a contradiction, so
our assumption must have been wrong. Thus LD ∉ RE. ■

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.
Proof: By contradiction; assume that LD ∈ RE. Then there must

be some TM R such that (ℒ R) = LD. We know that either
⟨R⟩ ∉ (ℒ R) or ⟨R⟩ ∈ (ℒ R). We consider each case separately:

Case 1: ⟨R⟩ ∉ (ℒ R). By definition of LD, since ⟨R⟩ ∉ (ℒ R), we
see that ⟨R⟩ ∈ LD. Since ⟨R⟩ ∉ (ℒ R) and ⟨R⟩ ∈ LD, we learn
that (ℒ R) ≠ LD.

Case 2: ⟨R⟩ ∈ (ℒ R). By definition of LD, since ⟨R⟩ ∈ (ℒ R), we
know that ⟨R⟩ ∉ LD. Since ⟨R⟩ ∈ (ℒ R) and ⟨R⟩ ∉ LD, we learn
that (ℒ R) ≠ LD.

In both of these cases, we see that (ℒ R) ≠ LD, contradicting
the fact that (ℒ R) = LD. We have reached a contradiction, so
our assumption must have been wrong. Thus LD ∉ RE. ■

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.
Proof: By contradiction; assume that LD ∈ RE. Then there must

be some TM R such that (ℒ R) = LD. We know that either
⟨R⟩ ∉ (ℒ R) or ⟨R⟩ ∈ (ℒ R). We consider each case separately:

Case 1: ⟨R⟩ ∉ (ℒ R). By definition of LD, since ⟨R⟩ ∉ (ℒ R), we
see that ⟨R⟩ ∈ LD. Since ⟨R⟩ ∉ (ℒ R) and ⟨R⟩ ∈ LD, we learn
that (ℒ R) ≠ LD.

Case 2: ⟨R⟩ ∈ (ℒ R). By definition of LD, since ⟨R⟩ ∈ (ℒ R), we
know that ⟨R⟩ ∉ LD. Since ⟨R⟩ ∈ (ℒ R) and ⟨R⟩ ∉ LD, we learn
that (ℒ R) ≠ LD.

In both of these cases, we see that (ℒ R) ≠ LD, contradicting
the fact that (ℒ R) = LD. We have reached a contradiction, so
our assumption must have been wrong. Thus LD ∉ RE. ■

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.
Proof: By contradiction; assume that LD ∈ RE. Then there must

be some TM R such that (ℒ R) = LD. We know that either
⟨R⟩ ∉ (ℒ R) or ⟨R⟩ ∈ (ℒ R). We consider each case separately:

Case 1: ⟨R⟩ ∉ (ℒ R). By definition of LD, since ⟨R⟩ ∉ (ℒ R), we
see that ⟨R⟩ ∈ LD. Since ⟨R⟩ ∉ (ℒ R) and ⟨R⟩ ∈ LD, we learn
that (ℒ R) ≠ LD.

Case 2: ⟨R⟩ ∈ (ℒ R). By definition of LD, since ⟨R⟩ ∈ (ℒ R), we
know that ⟨R⟩ ∉ LD. Since ⟨R⟩ ∈ (ℒ R) and ⟨R⟩ ∉ LD, we learn
that (ℒ R) ≠ LD.

In both of these cases, we see that (ℒ R) ≠ LD, contradicting
the fact that (ℒ R) = LD. We have reached a contradiction, so
our assumption must have been wrong. Thus LD ∉ RE. ■

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.
Proof: By contradiction; assume that LD ∈ RE. Then there must

be some TM R such that (ℒ R) = LD. We know that either
⟨R⟩ ∉ (ℒ R) or ⟨R⟩ ∈ (ℒ R). We consider each case separately:

Case 1: ⟨R⟩ ∉ (ℒ R). By definition of LD, since ⟨R⟩ ∉ (ℒ R), we
see that ⟨R⟩ ∈ LD. Since ⟨R⟩ ∉ (ℒ R) and ⟨R⟩ ∈ LD, we learn
that (ℒ R) ≠ LD.

Case 2: ⟨R⟩ ∈ (ℒ R). By definition of LD, since ⟨R⟩ ∈ (ℒ R), we
know that ⟨R⟩ ∉ LD. Since ⟨R⟩ ∈ (ℒ R) and ⟨R⟩ ∉ LD, we learn
that (ℒ R) ≠ LD.

In both of these cases, we see that (ℒ R) ≠ LD, contradicting
the fact that (ℒ R) = LD. We have reached a contradiction, so
our assumption must have been wrong. Thus LD ∉ RE. ■

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.
Proof: By contradiction; assume that LD ∈ RE. Then there must

be some TM R such that (ℒ R) = LD. We know that either
⟨R⟩ ∉ (ℒ R) or ⟨R⟩ ∈ (ℒ R). We consider each case separately:

Case 1: ⟨R⟩ ∉ (ℒ R). By definition of LD, since ⟨R⟩ ∉ (ℒ R), we
see that ⟨R⟩ ∈ LD. Since ⟨R⟩ ∉ (ℒ R) and ⟨R⟩ ∈ LD, we learn
that (ℒ R) ≠ LD.

Case 2: ⟨R⟩ ∈ (ℒ R). By definition of LD, since ⟨R⟩ ∈ (ℒ R), we
know that ⟨R⟩ ∉ LD. Since ⟨R⟩ ∈ (ℒ R) and ⟨R⟩ ∉ LD, we learn
that (ℒ R) ≠ LD.

In both of these cases, we see that (ℒ R) ≠ LD, contradicting
the fact that (ℒ R) = LD. We have reached a contradiction, so
our assumption must have been wrong. Thus LD ∉ RE. ■

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.
Proof: By contradiction; assume that LD ∈ RE. Then there must

be some TM R such that (ℒ R) = LD. We know that either
⟨R⟩ ∉ (ℒ R) or ⟨R⟩ ∈ (ℒ R). We consider each case separately:

Case 1: ⟨R⟩ ∉ (ℒ R). By definition of LD, since ⟨R⟩ ∉ (ℒ R), we
see that ⟨R⟩ ∈ LD. Since ⟨R⟩ ∉ (ℒ R) and ⟨R⟩ ∈ LD, we learn
that (ℒ R) ≠ LD.

Case 2: ⟨R⟩ ∈ (ℒ R). By definition of LD, since ⟨R⟩ ∈ (ℒ R), we
know that ⟨R⟩ ∉ LD. Since ⟨R⟩ ∈ (ℒ R) and ⟨R⟩ ∉ LD, we learn
that (ℒ R) ≠ LD.

In both of these cases, we see that (ℒ R) ≠ LD, contradicting
the fact that (ℒ R) = LD. We have reached a contradiction, so
our assumption must have been wrong. Thus LD ∉ RE. ■

Regular
Languages CFLs

All Languages

RE

L
D

Time Out For Announcements!

Problem Set Seven

● Problem Set Seven goes out right now and
is due next Monday.
● Design some Turing machines!
● Explore the properties of the RE languages!
● Explore the borders of what's possible with

computers!

● Two questions rely on material from
Wednesday; they're marked as such. Sorry
about that!

Problem Set Return

● Problem Set Four graded; will be
returned at end of lecture today.

● Aiming to get Problem Set Five graded
and returned by Wednesday.

● Sorry for the delays!
● One unnamed problem set: Contact us

if you can't find your problem set.

Your Questions

“What were your favorite classes as an
undergrad here at Stanford?”

“Are there any rules to determine if a
language is context-free? Does it have

to do with whether you can solve it
using recursion/induction?”

“Turing machines are an expansion of FAs
that use infinite memory. Couldn't we
expand on FAs by giving them infinite
states as well? Would that somehow

expand the power of such a method of
computation?”

aaa

aab

aba

abb

baa

bab

bba

bbb

aa

ab

ba

bb

a

b

a

b

a

b

a

b

a

a

a

a

 b

 b

 b

 b

…

Back to CS103!

Additional Unsolvable Problems

Finding Unsolvable Problems

● We can use the fact that LD ∉ RE to show that
other languages are also not RE.

● General proof approach: to show that some
language L is not RE, we will do the following:

● Assume for the sake of contradiction that L ∈ RE,
meaning that there is some TM M for it.

● Show that we can build a TM that uses M as a
subroutine in order to recognize LD.

● Reach a contradiction, since no TM recognizes LD.

● Conclude, therefore, that L ∉ RE.

The Complement of ATM

● Recall: the language ATM is the language of the
universal Turing machine UTM:

 ATM = ℒ(UTM) = { ⟨M, w⟩ | M is a TM and
 M accepts w }

● The complement of ATM (denoted ATM) is the
language of all strings not contained in ATM.

● Questions:
● What language is this?
● Is this language RE?

ATM and ATM

● The language ATM is defined as

 {⟨M, w⟩ | M is a TM that accepts w}

● Equivalently:

 {x | x = ⟨M, w⟩ for some TM M
 and string w, and M accepts w}

● Thus ATM is

 {x | x ≠ ⟨M, w⟩ for any TM M and string w,
 or M is a TM that does not accept w}

ATM and ATM

● The language ATM is defined as

 {⟨M, w⟩ | M is a TM that accepts w}

● Equivalently:

 {x | x = ⟨M, w⟩ for some TM M
 and string w, and M accepts w}

● Thus ATM is

 {x | x ≠ ⟨M, w⟩ for any TM M and string w,
 or M is a TM that does not accept w}

That looks hard.

Cheating With Math

● As a mathematical simplification, we will assume
the following:

Every string can be decoded
into any collection of objects.

● Every string is an encoding of some TM M.

● Every string is an encoding of some TM M and
string w.

● Can do this as follows:
● If the string is a legal encoding, go with that

encoding.
● Otherwise, pretend the string decodes to some

predetermined group of objects.

Cheating With Math

● Example: Every string will be a valid C++
program.

● If it's already a C++ program, just
compile it.

● Otherwise, pretend it's this program:
int main() {

 return 0;

}

ATM and ATM

● The language ATM is defined as

 {⟨M, w⟩ | M is a TM that accepts w}

● Thus ATM is the language

{⟨M, w⟩ | M is a TM that doesn't accept w}

ATM ∉ RE

● Although the language ATM is in RE (since it's
the language of UTM), its complement ATM is not
in RE.

● We will prove this as follows:

● Assume, for contradiction, that ATM ∈ RE.

● This means there is a TM R for ATM.

● Using R as a subroutine, we will build a TM H
that will recognize LD.

● This is impossible, since LD ∉ RE.

● Conclude, therefore, that ATM ∉ RE.

Comparing LD and ATM

● The languages LD and ATM are closely
related:

● LD: Does M not accept ⟨M⟩?

● ATM: Does M not accept string w?

● Given this connection, we will show how
to turn a hypothetical recognizer for ATM
into a hypothetical recognizer for LD.

Recognizer
for ATM

Yes

No

⟨M⟩

w

Recognizer
for ATM

Yes

No

⟨M⟩

w

Machine R

Recognizer
for ATM

Yes

No

⟨M⟩

w

⟨M⟩

Machine R

w

Recognizer
for ATM

Yes

No

⟨M⟩

w

⟨M⟩

Machine R

w

Machine H

Recognizer
for ATM

Yes

No

⟨M⟩

⟨M⟩

⟨M⟩

Machine R

Machine H

Recognizer
for ATM

Yes

No

⟨M⟩

⟨M⟩

⟨M⟩

H = “On input ⟨M⟩:
 · Construct the string
 ⟨M, ⟨M⟩⟩.

 · Run R on ⟨M, ⟨M⟩⟩.

 · If R accepts ⟨M, ⟨M⟩⟩,
 then H accepts ⟨M⟩.

 · If R rejects ⟨M, ⟨M⟩⟩,
 then H rejects ⟨M⟩.”

H = “On input ⟨M⟩:
 · Construct the string
 ⟨M, ⟨M⟩⟩.

 · Run R on ⟨M, ⟨M⟩⟩.

 · If R accepts ⟨M, ⟨M⟩⟩,
 then H accepts ⟨M⟩.

 · If R rejects ⟨M, ⟨M⟩⟩,
 then H rejects ⟨M⟩.”

Machine R

Machine H

Recognizer
for ATM

Yes

No

⟨M⟩

⟨M⟩

⟨M⟩

Machine R

Machine H

What happens if...

M does not accept ⟨M⟩?
Accept

M accepts ⟨M⟩?
Reject or Loop

What happens if...

M does not accept ⟨M⟩?
Accept

M accepts ⟨M⟩?
Reject or Loop

H = “On input ⟨M⟩:
 · Construct the string
 ⟨M, ⟨M⟩⟩.

 · Run R on ⟨M, ⟨M⟩⟩.

 · If R accepts ⟨M, ⟨M⟩⟩,
 then H accepts ⟨M⟩.

 · If R rejects ⟨M, ⟨M⟩⟩,
 then H rejects ⟨M⟩.”

H = “On input ⟨M⟩:
 · Construct the string
 ⟨M, ⟨M⟩⟩.

 · Run R on ⟨M, ⟨M⟩⟩.

 · If R accepts ⟨M, ⟨M⟩⟩,
 then H accepts ⟨M⟩.

 · If R rejects ⟨M, ⟨M⟩⟩,
 then H rejects ⟨M⟩.”

Recognizer
for ATM

Yes

No

⟨M⟩

⟨M⟩

⟨M⟩

Machine R

Machine H

What happens if...

M does not accept ⟨M⟩?
Accept

M accepts ⟨M⟩?
Reject or Loop

What happens if...

M does not accept ⟨M⟩?
Accept

M accepts ⟨M⟩?
Reject or Loop

H = “On input ⟨M⟩:
 · Construct the string
 ⟨M, ⟨M⟩⟩.

 · Run R on ⟨M, ⟨M⟩⟩.

 · If R accepts ⟨M, ⟨M⟩⟩,
 then H accepts ⟨M⟩.

 · If R rejects ⟨M, ⟨M⟩⟩,
 then H rejects ⟨M⟩.”

H = “On input ⟨M⟩:
 · Construct the string
 ⟨M, ⟨M⟩⟩.

 · Run R on ⟨M, ⟨M⟩⟩.

 · If R accepts ⟨M, ⟨M⟩⟩,
 then H accepts ⟨M⟩.

 · If R rejects ⟨M, ⟨M⟩⟩,
 then H rejects ⟨M⟩.”

Recognizer
for ATM

Yes

No

⟨M⟩

⟨M⟩

⟨M⟩

Machine R

Machine H

What happens if...

M does not accept ⟨M⟩?
Accept

M accepts ⟨M⟩?
Reject or Loop

What happens if...

M does not accept ⟨M⟩?
Accept

M accepts ⟨M⟩?
Reject or Loop

Machine R accepts
⟨M, ⟨M⟩⟩

Machine R accepts
⟨M, ⟨M⟩⟩

H = “On input ⟨M⟩:
 · Construct the string
 ⟨M, ⟨M⟩⟩.

 · Run R on ⟨M, ⟨M⟩⟩.

 · If R accepts ⟨M, ⟨M⟩⟩,
 then H accepts ⟨M⟩.

 · If R rejects ⟨M, ⟨M⟩⟩,
 then H rejects ⟨M⟩.”

H = “On input ⟨M⟩:
 · Construct the string
 ⟨M, ⟨M⟩⟩.

 · Run R on ⟨M, ⟨M⟩⟩.

 · If R accepts ⟨M, ⟨M⟩⟩,
 then H accepts ⟨M⟩.

 · If R rejects ⟨M, ⟨M⟩⟩,
 then H rejects ⟨M⟩.”

Recognizer
for ATM

Yes

No

⟨M⟩

⟨M⟩

⟨M⟩

Machine R

Machine H

What happens if...

M does not accept ⟨M⟩?
Accept

M accepts ⟨M⟩?
Reject or Loop

What happens if...

M does not accept ⟨M⟩?
Accept

M accepts ⟨M⟩?
Reject or Loop

Machine R accepts
⟨M, ⟨M⟩⟩

Machine R accepts
⟨M, ⟨M⟩⟩

H = “On input ⟨M⟩:
 · Construct the string
 ⟨M, ⟨M⟩⟩.

 · Run R on ⟨M, ⟨M⟩⟩.

 · If R accepts ⟨M, ⟨M⟩⟩,
 then H accepts ⟨M⟩.

 · If R rejects ⟨M, ⟨M⟩⟩,
 then H rejects ⟨M⟩.”

H = “On input ⟨M⟩:
 · Construct the string
 ⟨M, ⟨M⟩⟩.

 · Run R on ⟨M, ⟨M⟩⟩.

 · If R accepts ⟨M, ⟨M⟩⟩,
 then H accepts ⟨M⟩.

 · If R rejects ⟨M, ⟨M⟩⟩,
 then H rejects ⟨M⟩.”

Recognizer
for ATM

Yes

No

⟨M⟩

⟨M⟩

⟨M⟩

Machine R

Machine H

What happens if...

M does not accept ⟨M⟩?
Accept

M accepts ⟨M⟩?
Reject or Loop

What happens if...

M does not accept ⟨M⟩?
Accept

M accepts ⟨M⟩?
Reject or Loop

Machine R accepts
⟨M, ⟨M⟩⟩

Machine R accepts
⟨M, ⟨M⟩⟩

H = “On input ⟨M⟩:
 · Construct the string
 ⟨M, ⟨M⟩⟩.

 · Run R on ⟨M, ⟨M⟩⟩.

 · If R accepts ⟨M, ⟨M⟩⟩,
 then H accepts ⟨M⟩.

 · If R rejects ⟨M, ⟨M⟩⟩,
 then H rejects ⟨M⟩.”

H = “On input ⟨M⟩:
 · Construct the string
 ⟨M, ⟨M⟩⟩.

 · Run R on ⟨M, ⟨M⟩⟩.

 · If R accepts ⟨M, ⟨M⟩⟩,
 then H accepts ⟨M⟩.

 · If R rejects ⟨M, ⟨M⟩⟩,
 then H rejects ⟨M⟩.”

Recognizer
for ATM

Yes

No

⟨M⟩

⟨M⟩

⟨M⟩

H = “On input ⟨M⟩:

 · Run R on ⟨M, ⟨M⟩⟩.

 · If R accepts ⟨M, ⟨M⟩⟩,
 then H accepts ⟨M⟩.

 · If R rejects ⟨M, ⟨M⟩⟩,
 then H rejects ⟨M⟩.”

H = “On input ⟨M⟩:

 · Run R on ⟨M, ⟨M⟩⟩.

 · If R accepts ⟨M, ⟨M⟩⟩,
 then H accepts ⟨M⟩.

 · If R rejects ⟨M, ⟨M⟩⟩,
 then H rejects ⟨M⟩.”

Machine R

Machine H

What happens if...

M does not accept ⟨M⟩?
Accept

M accepts ⟨M⟩?
Reject or Loop

What happens if...

M does not accept ⟨M⟩?
Accept

M accepts ⟨M⟩?
Reject or Loop

H = “On input ⟨M⟩:
 · Construct the string
 ⟨M, ⟨M⟩⟩.

 · Run R on ⟨M, ⟨M⟩⟩.

 · If R accepts ⟨M, ⟨M⟩⟩,
 then H accepts ⟨M⟩.

 · If R rejects ⟨M, ⟨M⟩⟩,
 then H rejects ⟨M⟩.”

H = “On input ⟨M⟩:
 · Construct the string
 ⟨M, ⟨M⟩⟩.

 · Run R on ⟨M, ⟨M⟩⟩.

 · If R accepts ⟨M, ⟨M⟩⟩,
 then H accepts ⟨M⟩.

 · If R rejects ⟨M, ⟨M⟩⟩,
 then H rejects ⟨M⟩.”

Recognizer
for ATM

Yes

No

⟨M⟩

⟨M⟩

⟨M⟩

H = “On input ⟨M⟩:

 · Run R on ⟨M, ⟨M⟩⟩.

 · If R accepts ⟨M, ⟨M⟩⟩,
 then H accepts ⟨M⟩.

 · If R rejects ⟨M, ⟨M⟩⟩,
 then H rejects ⟨M⟩.”

H = “On input ⟨M⟩:

 · Run R on ⟨M, ⟨M⟩⟩.

 · If R accepts ⟨M, ⟨M⟩⟩,
 then H accepts ⟨M⟩.

 · If R rejects ⟨M, ⟨M⟩⟩,
 then H rejects ⟨M⟩.”

Machine R

Machine H

What happens if...

M does not accept ⟨M⟩?
Accept

M accepts ⟨M⟩?
Reject or Loop

What happens if...

M does not accept ⟨M⟩?
Accept

M accepts ⟨M⟩?
Reject or Loop

H = “On input ⟨M⟩:
 · Construct the string
 ⟨M, ⟨M⟩⟩.

 · Run R on ⟨M, ⟨M⟩⟩.

 · If R accepts ⟨M, ⟨M⟩⟩,
 then H accepts ⟨M⟩.

 · If R rejects ⟨M, ⟨M⟩⟩,
 then H rejects ⟨M⟩.”

H = “On input ⟨M⟩:
 · Construct the string
 ⟨M, ⟨M⟩⟩.

 · Run R on ⟨M, ⟨M⟩⟩.

 · If R accepts ⟨M, ⟨M⟩⟩,
 then H accepts ⟨M⟩.

 · If R rejects ⟨M, ⟨M⟩⟩,
 then H rejects ⟨M⟩.”

Recognizer
for ATM

Yes

No

⟨M⟩

⟨M⟩

⟨M⟩

H = “On input ⟨M⟩:

 · Run R on ⟨M, ⟨M⟩⟩.

 · If R accepts ⟨M, ⟨M⟩⟩,
 then H accepts ⟨M⟩.

 · If R rejects ⟨M, ⟨M⟩⟩,
 then H rejects ⟨M⟩.”

H = “On input ⟨M⟩:

 · Run R on ⟨M, ⟨M⟩⟩.

 · If R accepts ⟨M, ⟨M⟩⟩,
 then H accepts ⟨M⟩.

 · If R rejects ⟨M, ⟨M⟩⟩,
 then H rejects ⟨M⟩.”

Machine R

Machine H

What happens if...

M does not accept ⟨M⟩?
Accept

M accepts ⟨M⟩?
Reject or Loop

What happens if...

M does not accept ⟨M⟩?
Accept

M accepts ⟨M⟩?
Reject or Loop

Machine R does not
accept ⟨M, ⟨M⟩⟩

Machine R does not
accept ⟨M, ⟨M⟩⟩

H = “On input ⟨M⟩:
 · Construct the string
 ⟨M, ⟨M⟩⟩.

 · Run R on ⟨M, ⟨M⟩⟩.

 · If R accepts ⟨M, ⟨M⟩⟩,
 then H accepts ⟨M⟩.

 · If R rejects ⟨M, ⟨M⟩⟩,
 then H rejects ⟨M⟩.”

H = “On input ⟨M⟩:
 · Construct the string
 ⟨M, ⟨M⟩⟩.

 · Run R on ⟨M, ⟨M⟩⟩.

 · If R accepts ⟨M, ⟨M⟩⟩,
 then H accepts ⟨M⟩.

 · If R rejects ⟨M, ⟨M⟩⟩,
 then H rejects ⟨M⟩.”

Recognizer
for ATM

Yes

No

⟨M⟩

⟨M⟩

⟨M⟩

H = “On input ⟨M⟩:

 · Run R on ⟨M, ⟨M⟩⟩.

 · If R accepts ⟨M, ⟨M⟩⟩,
 then H accepts ⟨M⟩.

 · If R rejects ⟨M, ⟨M⟩⟩,
 then H rejects ⟨M⟩.”

H = “On input ⟨M⟩:

 · Run R on ⟨M, ⟨M⟩⟩.

 · If R accepts ⟨M, ⟨M⟩⟩,
 then H accepts ⟨M⟩.

 · If R rejects ⟨M, ⟨M⟩⟩,
 then H rejects ⟨M⟩.”

Machine R

Machine H

What happens if...

M does not accept ⟨M⟩?
Accept

M accepts ⟨M⟩?
Reject or Loop

What happens if...

M does not accept ⟨M⟩?
Accept

M accepts ⟨M⟩?
Reject or Loop

Machine R does not
accept ⟨M, ⟨M⟩⟩

Machine R does not
accept ⟨M, ⟨M⟩⟩

H = “On input ⟨M⟩:
 · Construct the string
 ⟨M, ⟨M⟩⟩.

 · Run R on ⟨M, ⟨M⟩⟩.

 · If R accepts ⟨M, ⟨M⟩⟩,
 then H accepts ⟨M⟩.

 · If R rejects ⟨M, ⟨M⟩⟩,
 then H rejects ⟨M⟩.”

H = “On input ⟨M⟩:
 · Construct the string
 ⟨M, ⟨M⟩⟩.

 · Run R on ⟨M, ⟨M⟩⟩.

 · If R accepts ⟨M, ⟨M⟩⟩,
 then H accepts ⟨M⟩.

 · If R rejects ⟨M, ⟨M⟩⟩,
 then H rejects ⟨M⟩.”

Recognizer
for ATM

Yes

No

⟨M⟩

⟨M⟩

⟨M⟩

H = “On input ⟨M⟩:

 · Run R on ⟨M, ⟨M⟩⟩.

 · If R accepts ⟨M, ⟨M⟩⟩,
 then H accepts ⟨M⟩.

 · If R rejects ⟨M, ⟨M⟩⟩,
 then H rejects ⟨M⟩.”

H = “On input ⟨M⟩:

 · Run R on ⟨M, ⟨M⟩⟩.

 · If R accepts ⟨M, ⟨M⟩⟩,
 then H accepts ⟨M⟩.

 · If R rejects ⟨M, ⟨M⟩⟩,
 then H rejects ⟨M⟩.”

Machine R

Machine H

What happens if...

M does not accept ⟨M⟩?
Accept

M accepts ⟨M⟩?
Reject or Loop

What happens if...

M does not accept ⟨M⟩?
Accept

M accepts ⟨M⟩?
Reject or Loop

H = “On input ⟨M⟩:
 · Construct the string
 ⟨M, ⟨M⟩⟩.

 · Run R on ⟨M, ⟨M⟩⟩.

 · If R accepts ⟨M, ⟨M⟩⟩,
 then H accepts ⟨M⟩.

 · If R rejects ⟨M, ⟨M⟩⟩,
 then H rejects ⟨M⟩.”

H = “On input ⟨M⟩:
 · Construct the string
 ⟨M, ⟨M⟩⟩.

 · Run R on ⟨M, ⟨M⟩⟩.

 · If R accepts ⟨M, ⟨M⟩⟩,
 then H accepts ⟨M⟩.

 · If R rejects ⟨M, ⟨M⟩⟩,
 then H rejects ⟨M⟩.”

Recognizer
for ATM

Yes

No

⟨M⟩

⟨M⟩

⟨M⟩

H = “On input ⟨M⟩:

 · Run R on ⟨M, ⟨M⟩⟩.

 · If R accepts ⟨M, ⟨M⟩⟩,
 then H accepts ⟨M⟩.

 · If R rejects ⟨M, ⟨M⟩⟩,
 then H rejects ⟨M⟩.”

H = “On input ⟨M⟩:

 · Run R on ⟨M, ⟨M⟩⟩.

 · If R accepts ⟨M, ⟨M⟩⟩,
 then H accepts ⟨M⟩.

 · If R rejects ⟨M, ⟨M⟩⟩,
 then H rejects ⟨M⟩.”

Machine R

Machine H

What happens if...

M does not accept ⟨M⟩?
Accept

M accepts ⟨M⟩?
Reject or Loop

What happens if...

M does not accept ⟨M⟩?
Accept

M accepts ⟨M⟩?
Reject or Loop

H is a TM for LD!H is a TM for LD!

H = “On input ⟨M⟩:
 · Construct the string
 ⟨M, ⟨M⟩⟩.

 · Run R on ⟨M, ⟨M⟩⟩.

 · If R accepts ⟨M, ⟨M⟩⟩,
 then H accepts ⟨M⟩.

 · If R rejects ⟨M, ⟨M⟩⟩,
 then H rejects ⟨M⟩.”

H = “On input ⟨M⟩:
 · Construct the string
 ⟨M, ⟨M⟩⟩.

 · Run R on ⟨M, ⟨M⟩⟩.

 · If R accepts ⟨M, ⟨M⟩⟩,
 then H accepts ⟨M⟩.

 · If R rejects ⟨M, ⟨M⟩⟩,
 then H rejects ⟨M⟩.”

Theorem: ATM ∉ RE.
Proof: By contradiction; assume that ATM ∈ RE. Then there must be a

recognizer for ATM; call it R.

Consider the TM H defined below:

H = “On input ⟨M⟩, where M is a TM:
Construct the string ⟨M, ⟨M⟩⟩.
Run R on ⟨M, ⟨M⟩⟩.
If R accepts ⟨M, ⟨M⟩⟩, H accepts ⟨M⟩.
If R rejects ⟨M, ⟨M⟩⟩, H rejects ⟨M⟩.”

We claim that (ℒ H) = LD. We will prove this by showing that ⟨M⟩ ∈ LD

iff H accepts ⟨M⟩.

By construction we have that H accepts ⟨M⟩ iff R accepts ⟨M, ⟨M⟩⟩.
Since R is a recognizer for ATM, R accepts ⟨M, ⟨M⟩⟩ iff M does not
accept ⟨M⟩. Finally, note that M does not accept ⟨M⟩ iff ⟨M⟩ ∈ LD.
Therefore, we have H accepts ⟨M⟩ iff ⟨M⟩ ∈ LD, so (ℒ H) = LD. But this
is impossible, since LD ∉ RE.

We have reached a contradiction, so our assumption must have been
incorrect. Thus ATM ∉ RE, as required. ■

Theorem: ATM ∉ RE.
Proof: By contradiction; assume that ATM ∈ RE. Then there must be a

recognizer for ATM; call it R.

Consider the TM H defined below:

H = “On input ⟨M⟩, where M is a TM:
Construct the string ⟨M, ⟨M⟩⟩.
Run R on ⟨M, ⟨M⟩⟩.
If R accepts ⟨M, ⟨M⟩⟩, H accepts ⟨M⟩.
If R rejects ⟨M, ⟨M⟩⟩, H rejects ⟨M⟩.”

We claim that (ℒ H) = LD. We will prove this by showing that ⟨M⟩ ∈ LD

iff H accepts ⟨M⟩.

By construction we have that H accepts ⟨M⟩ iff R accepts ⟨M, ⟨M⟩⟩.
Since R is a recognizer for ATM, R accepts ⟨M, ⟨M⟩⟩ iff M does not
accept ⟨M⟩. Finally, note that M does not accept ⟨M⟩ iff ⟨M⟩ ∈ LD.
Therefore, we have H accepts ⟨M⟩ iff ⟨M⟩ ∈ LD, so (ℒ H) = LD. But this
is impossible, since LD ∉ RE.

We have reached a contradiction, so our assumption must have been
incorrect. Thus ATM ∉ RE, as required. ■

Theorem: ATM ∉ RE.
Proof: By contradiction; assume that ATM ∈ RE. Then there must be a

recognizer for ATM; call it R.

Consider the TM H defined below:

H = “On input ⟨M⟩, where M is a TM:
Construct the string ⟨M, ⟨M⟩⟩.
Run R on ⟨M, ⟨M⟩⟩.
If R accepts ⟨M, ⟨M⟩⟩, H accepts ⟨M⟩.
If R rejects ⟨M, ⟨M⟩⟩, H rejects ⟨M⟩.”

We claim that (ℒ H) = LD. We will prove this by showing that ⟨M⟩ ∈ LD

iff H accepts ⟨M⟩.

By construction we have that H accepts ⟨M⟩ iff R accepts ⟨M, ⟨M⟩⟩.
Since R is a recognizer for ATM, R accepts ⟨M, ⟨M⟩⟩ iff M does not
accept ⟨M⟩. Finally, note that M does not accept ⟨M⟩ iff ⟨M⟩ ∈ LD.
Therefore, we have H accepts ⟨M⟩ iff ⟨M⟩ ∈ LD, so (ℒ H) = LD. But this
is impossible, since LD ∉ RE.

We have reached a contradiction, so our assumption must have been
incorrect. Thus ATM ∉ RE, as required. ■

Theorem: ATM ∉ RE.
Proof: By contradiction; assume that ATM ∈ RE. Then there must be a

recognizer for ATM; call it R.

Consider the TM H defined below:

H = “On input ⟨M⟩, where M is a TM:
Construct the string ⟨M, ⟨M⟩⟩.
Run R on ⟨M, ⟨M⟩⟩.
If R accepts ⟨M, ⟨M⟩⟩, H accepts ⟨M⟩.
If R rejects ⟨M, ⟨M⟩⟩, H rejects ⟨M⟩.”

We claim that (ℒ H) = LD. We will prove this by showing that ⟨M⟩ ∈ LD

iff H accepts ⟨M⟩.

By construction we have that H accepts ⟨M⟩ iff R accepts ⟨M, ⟨M⟩⟩.
Since R is a recognizer for ATM, R accepts ⟨M, ⟨M⟩⟩ iff M does not
accept ⟨M⟩. Finally, note that M does not accept ⟨M⟩ iff ⟨M⟩ ∈ LD.
Therefore, we have H accepts ⟨M⟩ iff ⟨M⟩ ∈ LD, so (ℒ H) = LD. But this
is impossible, since LD ∉ RE.

We have reached a contradiction, so our assumption must have been
incorrect. Thus ATM ∉ RE, as required. ■

Theorem: ATM ∉ RE.
Proof: By contradiction; assume that ATM ∈ RE. Then there must be a

recognizer for ATM; call it R.

Consider the TM H defined below:

H = “On input ⟨M⟩, where M is a TM:
Construct the string ⟨M, ⟨M⟩⟩.
Run R on ⟨M, ⟨M⟩⟩.
If R accepts ⟨M, ⟨M⟩⟩, H accepts ⟨M⟩.
If R rejects ⟨M, ⟨M⟩⟩, H rejects ⟨M⟩.”

We claim that (ℒ H) = LD. We will prove this by showing that ⟨M⟩ ∈ LD

iff H accepts ⟨M⟩.

By construction we have that H accepts ⟨M⟩ iff R accepts ⟨M, ⟨M⟩⟩.
Since R is a recognizer for ATM, R accepts ⟨M, ⟨M⟩⟩ iff M does not
accept ⟨M⟩. Finally, note that M does not accept ⟨M⟩ iff ⟨M⟩ ∈ LD.
Therefore, we have H accepts ⟨M⟩ iff ⟨M⟩ ∈ LD, so (ℒ H) = LD. But this
is impossible, since LD ∉ RE.

We have reached a contradiction, so our assumption must have been
incorrect. Thus ATM ∉ RE, as required. ■

Theorem: ATM ∉ RE.
Proof: By contradiction; assume that ATM ∈ RE. Then there must be a

recognizer for ATM; call it R.

Consider the TM H defined below:

H = “On input ⟨M⟩, where M is a TM:
Construct the string ⟨M, ⟨M⟩⟩.
Run R on ⟨M, ⟨M⟩⟩.
If R accepts ⟨M, ⟨M⟩⟩, H accepts ⟨M⟩.
If R rejects ⟨M, ⟨M⟩⟩, H rejects ⟨M⟩.”

We claim that (ℒ H) = LD. We will prove this by showing that ⟨M⟩ ∈ LD

iff H accepts ⟨M⟩.

By construction we have that H accepts ⟨M⟩ iff R accepts ⟨M, ⟨M⟩⟩.
Since R is a recognizer for ATM, R accepts ⟨M, ⟨M⟩⟩ iff M does not
accept ⟨M⟩. Finally, note that M does not accept ⟨M⟩ iff ⟨M⟩ ∈ LD.
Therefore, we have H accepts ⟨M⟩ iff ⟨M⟩ ∈ LD, so (ℒ H) = LD. But this
is impossible, since LD ∉ RE.

We have reached a contradiction, so our assumption must have been
incorrect. Thus ATM ∉ RE, as required. ■

Theorem: ATM ∉ RE.
Proof: By contradiction; assume that ATM ∈ RE. Then there must be a

recognizer for ATM; call it R.

Consider the TM H defined below:

H = “On input ⟨M⟩, where M is a TM:
Construct the string ⟨M, ⟨M⟩⟩.
Run R on ⟨M, ⟨M⟩⟩.
If R accepts ⟨M, ⟨M⟩⟩, H accepts ⟨M⟩.
If R rejects ⟨M, ⟨M⟩⟩, H rejects ⟨M⟩.”

We claim that (ℒ H) = LD. We will prove this by showing that ⟨M⟩ ∈ LD

iff H accepts ⟨M⟩.

By construction we have that H accepts ⟨M⟩ iff R accepts ⟨M, ⟨M⟩⟩.
Since R is a recognizer for ATM, R accepts ⟨M, ⟨M⟩⟩ iff M does not
accept ⟨M⟩. Finally, note that M does not accept ⟨M⟩ iff ⟨M⟩ ∈ LD.
Therefore, we have H accepts ⟨M⟩ iff ⟨M⟩ ∈ LD, so (ℒ H) = LD. But this
is impossible, since LD ∉ RE.

We have reached a contradiction, so our assumption must have been
incorrect. Thus ATM ∉ RE, as required. ■

Theorem: ATM ∉ RE.
Proof: By contradiction; assume that ATM ∈ RE. Then there must be a

recognizer for ATM; call it R.

Consider the TM H defined below:

H = “On input ⟨M⟩, where M is a TM:
Construct the string ⟨M, ⟨M⟩⟩.
Run R on ⟨M, ⟨M⟩⟩.
If R accepts ⟨M, ⟨M⟩⟩, H accepts ⟨M⟩.
If R rejects ⟨M, ⟨M⟩⟩, H rejects ⟨M⟩.”

We claim that (ℒ H) = LD. We will prove this by showing that ⟨M⟩ ∈ LD

iff H accepts ⟨M⟩.

By construction we have that H accepts ⟨M⟩ iff R accepts ⟨M, ⟨M⟩⟩.
Since R is a recognizer for ATM, R accepts ⟨M, ⟨M⟩⟩ iff M does not
accept ⟨M⟩. Finally, note that M does not accept ⟨M⟩ iff ⟨M⟩ ∈ LD.
Therefore, we have H accepts ⟨M⟩ iff ⟨M⟩ ∈ LD, so (ℒ H) = LD. But this
is impossible, since LD ∉ RE.

We have reached a contradiction, so our assumption must have been
incorrect. Thus ATM ∉ RE, as required. ■

Theorem: ATM ∉ RE.
Proof: By contradiction; assume that ATM ∈ RE. Then there must be a

recognizer for ATM; call it R.

Consider the TM H defined below:

H = “On input ⟨M⟩, where M is a TM:
Construct the string ⟨M, ⟨M⟩⟩.
Run R on ⟨M, ⟨M⟩⟩.
If R accepts ⟨M, ⟨M⟩⟩, H accepts ⟨M⟩.
If R rejects ⟨M, ⟨M⟩⟩, H rejects ⟨M⟩.”

We claim that (ℒ H) = LD. We will prove this by showing that ⟨M⟩ ∈ LD

iff H accepts ⟨M⟩.

By construction we have that H accepts ⟨M⟩ iff R accepts ⟨M, ⟨M⟩⟩.
Since R is a recognizer for ATM, R accepts ⟨M, ⟨M⟩⟩ iff M does not
accept ⟨M⟩. Finally, note that M does not accept ⟨M⟩ iff ⟨M⟩ ∈ LD.
Therefore, we have H accepts ⟨M⟩ iff ⟨M⟩ ∈ LD, so (ℒ H) = LD. But this
is impossible, since LD ∉ RE.

We have reached a contradiction, so our assumption must have been
incorrect. Thus ATM ∉ RE, as required. ■

Theorem: ATM ∉ RE.
Proof: By contradiction; assume that ATM ∈ RE. Then there must be a

recognizer for ATM; call it R.

Consider the TM H defined below:

H = “On input ⟨M⟩, where M is a TM:
Construct the string ⟨M, ⟨M⟩⟩.
Run R on ⟨M, ⟨M⟩⟩.
If R accepts ⟨M, ⟨M⟩⟩, H accepts ⟨M⟩.
If R rejects ⟨M, ⟨M⟩⟩, H rejects ⟨M⟩.”

We claim that (ℒ H) = LD. We will prove this by showing that ⟨M⟩ ∈ LD

iff H accepts ⟨M⟩.

By construction we have that H accepts ⟨M⟩ iff R accepts ⟨M, ⟨M⟩⟩.
Since R is a recognizer for ATM, R accepts ⟨M, ⟨M⟩⟩ iff M does not
accept ⟨M⟩. Finally, note that M does not accept ⟨M⟩ iff ⟨M⟩ ∈ LD.
Therefore, we have H accepts ⟨M⟩ iff ⟨M⟩ ∈ LD, so (ℒ H) = LD. But this
is impossible, since LD ∉ RE.

We have reached a contradiction, so our assumption must have been
incorrect. Thus ATM ∉ RE, as required. ■

Theorem: ATM ∉ RE.
Proof: By contradiction; assume that ATM ∈ RE. Then there must be a

recognizer for ATM; call it R.

Consider the TM H defined below:

H = “On input ⟨M⟩, where M is a TM:
Construct the string ⟨M, ⟨M⟩⟩.
Run R on ⟨M, ⟨M⟩⟩.
If R accepts ⟨M, ⟨M⟩⟩, H accepts ⟨M⟩.
If R rejects ⟨M, ⟨M⟩⟩, H rejects ⟨M⟩.”

We claim that (ℒ H) = LD. We will prove this by showing that ⟨M⟩ ∈ LD

iff H accepts ⟨M⟩.

By construction we have that H accepts ⟨M⟩ iff R accepts ⟨M, ⟨M⟩⟩.
Since R is a recognizer for ATM, R accepts ⟨M, ⟨M⟩⟩ iff M does not
accept ⟨M⟩. Finally, note that M does not accept ⟨M⟩ iff ⟨M⟩ ∈ LD.
Therefore, we have H accepts ⟨M⟩ iff ⟨M⟩ ∈ LD, so (ℒ H) = LD. But this
is impossible, since LD ∉ RE.

We have reached a contradiction, so our assumption must have been
incorrect. Thus ATM ∉ RE, as required. ■

Theorem: ATM ∉ RE.
Proof: By contradiction; assume that ATM ∈ RE. Then there must be a

recognizer for ATM; call it R.

Consider the TM H defined below:

H = “On input ⟨M⟩, where M is a TM:
Construct the string ⟨M, ⟨M⟩⟩.
Run R on ⟨M, ⟨M⟩⟩.
If R accepts ⟨M, ⟨M⟩⟩, H accepts ⟨M⟩.
If R rejects ⟨M, ⟨M⟩⟩, H rejects ⟨M⟩.”

We claim that (ℒ H) = LD. We will prove this by showing that ⟨M⟩ ∈ LD

iff H accepts ⟨M⟩.

By construction we have that H accepts ⟨M⟩ iff R accepts ⟨M, ⟨M⟩⟩.
Since R is a recognizer for ATM, R accepts ⟨M, ⟨M⟩⟩ iff M does not
accept ⟨M⟩. Finally, note that M does not accept ⟨M⟩ iff ⟨M⟩ ∈ LD.
Therefore, we have H accepts ⟨M⟩ iff ⟨M⟩ ∈ LD, so (ℒ H) = LD. But this
is impossible, since LD ∉ RE.

We have reached a contradiction, so our assumption must have been
incorrect. Thus ATM ∉ RE, as required. ■

Theorem: ATM ∉ RE.
Proof: By contradiction; assume that ATM ∈ RE. Then there must be a

recognizer for ATM; call it R.

Consider the TM H defined below:

H = “On input ⟨M⟩, where M is a TM:
Construct the string ⟨M, ⟨M⟩⟩.
Run R on ⟨M, ⟨M⟩⟩.
If R accepts ⟨M, ⟨M⟩⟩, H accepts ⟨M⟩.
If R rejects ⟨M, ⟨M⟩⟩, H rejects ⟨M⟩.”

We claim that (ℒ H) = LD. We will prove this by showing that ⟨M⟩ ∈ LD

iff H accepts ⟨M⟩.

By construction we have that H accepts ⟨M⟩ iff R accepts ⟨M, ⟨M⟩⟩.
Since R is a recognizer for ATM, R accepts ⟨M, ⟨M⟩⟩ iff M does not
accept ⟨M⟩. Finally, note that M does not accept ⟨M⟩ iff ⟨M⟩ ∈ LD.
Therefore, we have H accepts ⟨M⟩ iff ⟨M⟩ ∈ LD, so (ℒ H) = LD. But this
is impossible, since LD ∉ RE.

We have reached a contradiction, so our assumption must have been
incorrect. Thus ATM ∉ RE, as required. ■

Theorem: ATM ∉ RE.
Proof: By contradiction; assume that ATM ∈ RE. Then there must be a

recognizer for ATM; call it R.

Consider the TM H defined below:

H = “On input ⟨M⟩, where M is a TM:
Construct the string ⟨M, ⟨M⟩⟩.
Run R on ⟨M, ⟨M⟩⟩.
If R accepts ⟨M, ⟨M⟩⟩, H accepts ⟨M⟩.
If R rejects ⟨M, ⟨M⟩⟩, H rejects ⟨M⟩.”

We claim that (ℒ H) = LD. We will prove this by showing that ⟨M⟩ ∈ LD

iff H accepts ⟨M⟩.

By construction we have that H accepts ⟨M⟩ iff R accepts ⟨M, ⟨M⟩⟩.
Since R is a recognizer for ATM, R accepts ⟨M, ⟨M⟩⟩ iff M does not
accept ⟨M⟩. Finally, note that M does not accept ⟨M⟩ iff ⟨M⟩ ∈ LD.
Therefore, we have H accepts ⟨M⟩ iff ⟨M⟩ ∈ LD, so (ℒ H) = LD. But this
is impossible, since LD ∉ RE.

We have reached a contradiction, so our assumption must have been
incorrect. Thus ATM ∉ RE, as required. ■

Theorem: ATM ∉ RE.
Proof: By contradiction; assume that ATM ∈ RE. Then there must be a

recognizer for ATM; call it R.

Consider the TM H defined below:

H = “On input ⟨M⟩, where M is a TM:
Construct the string ⟨M, ⟨M⟩⟩.
Run R on ⟨M, ⟨M⟩⟩.
If R accepts ⟨M, ⟨M⟩⟩, H accepts ⟨M⟩.
If R rejects ⟨M, ⟨M⟩⟩, H rejects ⟨M⟩.”

We claim that (ℒ H) = LD. We will prove this by showing that ⟨M⟩ ∈ LD

iff H accepts ⟨M⟩.

By construction we have that H accepts ⟨M⟩ iff R accepts ⟨M, ⟨M⟩⟩.
Since R is a recognizer for ATM, R accepts ⟨M, ⟨M⟩⟩ iff M does not
accept ⟨M⟩. Finally, note that M does not accept ⟨M⟩ iff ⟨M⟩ ∈ LD.
Therefore, we have H accepts ⟨M⟩ iff ⟨M⟩ ∈ LD, so (ℒ H) = LD. But this
is impossible, since LD ∉ RE.

We have reached a contradiction, so our assumption must have been
incorrect. Thus ATM ∉ RE, as required. ■

Regular
Languages CFLs

All Languages

RE

L
D

A
TM

Why All This Matters

● We finally have found concrete examples
of unsolvable problems!

● We are starting to see a line of reasoning
we can use to find unsolvable problems:
● Start with a known unsolvable problem.
● Try to show that the unsolvability of that

problem entails the unsolvability of other
problems.

● We will see this used extensively in the
upcoming weeks.

Next Time

● Decidability
● What is an algorithm?

● Undecidability
● What problems can't be solved by

algorithms?

● co-Recognizability
● How do we resolve the asymmetry of RE?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138

