

Turing Machines
Part II

Problem Set Five due
in the box up front
using a late day.

Problem Set Five due
in the box up front
using a late day.

Hello Condensed Slide Readers!

This lecture is almost entirely animations that
show how each Turing machine would be built
and how the machine works. I've tried to
condense the slides here, but I think a lot
got lost in the conversion.

I would recommend reviewing the full slide
deck to walk through each animation and see
how the overall constructions work.

Hope this helps!

-Keith

Hello Condensed Slide Readers!

This lecture is almost entirely animations that
show how each Turing machine would be built
and how the machine works. I've tried to
condense the slides here, but I think a lot
got lost in the conversion.

I would recommend reviewing the full slide
deck to walk through each animation and see
how the overall constructions work.

Hope this helps!

-Keith

The Turing Machine

● A Turing machine consists of three parts:
● A finite-state control that issues commands,
● an infinite tape for input and scratch space, and
● a tape head that can read and write a single tape

cell.

● At each step, the Turing machine
● writes a symbol to the tape cell under the tape head,
● changes state, and
● moves the tape head to the left or to the right.

Clear a
1

Clear a
1

Go to
end

Check
for 0

Go to
end

Check
for 0

Go to
start
Go to
start

start

0 → , R☐ 0 → 0, R
 1 → 1, R

 → ☐ ☐, L

1 → , L☐0 → 0, L
1 → 1, L

 → ☐ ☐, R

q
acc

q
acc

 → ☐ ☐, R

q
acc

q
rej

1 → , R☐

 → ☐ ☐, R
0 → 0, R

Key Idea: Subroutines

● A subroutine of a Turing machine is a
small set of states in the TM such that
performs a small computation.

● Usually, a single entry state and a single
exit state.

● Many very complicated tasks can be
performed by TMs by breaking those
tasks into smaller subroutines.

Turing Machines and Math

● Turing machines are capable of
performing
● Addition
● Subtraction
● Multiplication
● Integer division
● Exponentiation
● Integer logarithms
● Plus a whole lot more...

Outline for Today

● List Processing
● Turing machines that operate on sequences.

● Exhaustive Search
● A fundamentally different approach to

designing Turing machines.

● Nondeterministic Turing Machines
● What does a Turing machine with Magic

Superpowers look like?

● The Church-Turing Thesis (ITA)
● Just how powerful are Turing machines?

List Processing

● Suppose we have a list of strings
represented as

w1 : w2 : … : wn :

● What sorts of transformations can we
perform on this list using a Turing
machine?

Example: Take Odds

● Given a list of 2n strings encoded as
follows:

w1 : w2 : … : w2n :

filter the list to get back just the
odd-numbered entries:

w1 : w3 : … : w2n – 1 :

● How might we do this with a Turing
machine?

Back to
List

Find
open
spot

Go to
end

Read
Symbol

start

 0 → 0, R
 1 → 1, R
 : → :, R

 0 → 0, R
 1 → 1, R
 : → :, R

0 → , R☐

 → ☐ ☐, R → ☐ 0, L

Back to
start

 0 → 0, L
 1 → 1, L
 : → :, L

 0 → 0, L
 1 → 1, L
 : → :, L

 → ☐ ☐, L

 → ☐ ☐, R

Find
open
spot

Go to
end

 0 → 0, R
 1 → 1, R
 : → :, R

 → ☐ ☐, R → ☐ 1, L

Clear
next

: → , R ☐

0 → , R ☐
1 → , R ☐

Find
open
spot

Go to
end → ☐ ☐, R

: → , R☐

 → ☐ :, L

 0 → 0, R
 1 → 1, R
 : → :, R

 0 → 0, R
 1 → 1, R
 : → :, R

 0 → 0, R
 1 → 1, R
 : → :, R

Done!

 → ☐ ☐, R

1 → , R☐

Turing Machine Memory

● Turing machines often contain many
seemingly replicated states in order to
store a finite amount of extra
information.

● A Turing machine can remember one of k
different constants by copying its states k
times, once for each possible value, and
wiring those states appropriately.

Turing Machines and Lists

● Turing machines can perform many
operations on lists:
● Concatenate two lists.
● Reverse a list.
● Sort a list.
● Find the maximum element of a list.
● And a whole lot more!

The Power of Turing Machines

● Turing machines can
● Perform standard arithmetic operations

(addition, subtraction, multiplication,
division, exponentiation, etc.)

● Manipulate lists of elements (searching,
sorting, reversing, etc.)

● What else can Turing machines do?

The Hailstone Sequence

● Consider the following procedure,
starting with some n ∈ ℕ, where n > 0:
● If n = 1, you are done.
● If n is even, set n = n / 2.
● Otherwise, set n = 3n + 1.
● Repeat.

● Question: Given a number n, does this
process terminate?

11

34

17

52

26

13

40

20

10

5

16

8

4

2

1

· If n = 1, stop.

· If n is even, set n = n / 2.

· Otherwise, set n = 3n + 1.

· Repeat.

· If n = 1, stop.

· If n is even, set n = n / 2.

· Otherwise, set n = 3n + 1.

· Repeat.

The Hailstone Sequence

● Let Σ = {1} and consider the language

 L = { 1n | n > 0 and the hailstone
 sequence terminates for n }.

● Could we build a TM for L?

The Hailstone Turing Machine

● Intuitively, we can build a TM for the
hailstone language as follows: the
machine M does the following:
● If the input is ε, reject.
● While the input is not 1:

– If the input has even length, halve the length of
the string.

– If the input has odd length, triple the length of
the string and append a 1.

● Accept.

Does this Turing machine always accept?

The Collatz Conjecture

● It is unknown whether this process will
terminate for all natural numbers.

● In other words, no one knows whether
the TM described in the previous
slides will always stop running!

● The conjecture (claim) that this always
terminates is called the Collatz
Conjecture.

An Important Observation

● Unlike the other automata we've seen so
far, Turing machines choose for
themselves whether to accept or reject.

● It is therefore possible for a TM to run
forever without accepting or rejecting.

Some Important Terminology

● Let M be a Turing machine.

● M accepts a string w if it enters the accept state when run on w.

● M rejects a string w if it enters the reject state when run on w.

● M loops infinitely (or just loops) on a string w if when run on w
it enters neither the accept or reject state.

● M does not accept w if it either rejects w or loops infinitely on w.

● M does not reject w w if it either accepts w or loops on w.

● M halts on w if it accepts w or rejects w.

Accept

Loop

Reject
does not accept

does not reject

halts

The Language of a TM

● The language of a Turing machine M, denoted
(ℒ M), is the set of all strings that M accepts:

ℒ(M) = { w ∈ Σ* | M accepts w }

● For any w ∈ (ℒ M), M accepts w.

● For any w ∉ (ℒ M), M does not accept w.
● It might loop forever, or it might explicitly reject.

● A language is called recognizable iff it is the
language of some TM.

● Notation: RE is the set of all recognizable
languages.

L ∈ RE iff L is recognizable

Time Out For Announcements!

Office Hours Schedule

● We've update our office hours schedule
to shift office hours more toward
Monday.

● Check the website for the updated
schedule!

Your Questions!

“What is your favorite 103 topic and why?”

Stay tuned...
we're about to

get there!

Stay tuned...
we're about to

get there!

Worklist Algorithms

MI

MII

MIIII
A) Double the contents of

the string after M.

B) Replace III with U.

C) Remove UU

D) Append U if the string
ends in I.

MIIIIU

MUIU

MUIUUIU

MUIIU

 A

 A

 D

 B

 A

 C

A Recognizable Language

● Let Σ = { M, I, U } and consider the language
L = { w ∈ Σ* | Using the four provided rules, it
is possible to convert w into MU }

● Some strings are in this language (for
example, MU ∈ L, MIII ∈ L, MUUU ∈ L).

● Some strings are not in this language (for
example, I ∉ L MI ∉ L MIIU ∉ L).

● Could we build a Turing machine for L?

TM Design Trick: Worklists

● It is possible to design TMs that search over an
infinite space using a worklist.

● Conceptually, the TM
● Finds all possible options one step away from

the original input,
● Appends each of them to the end of the worklist,
● Clears the current option, then
● Grabs the next element from the worklist to

process.
● This Turing machine is not guaranteed to

halt.

The Power of TMs

● The worklist approach makes that all of the
following languages are recognizable:
● Any context-free language: simulate all possible

production rules and see if the target string can
be derived.

● Solving a maze – use the worklist to explore all
paths of length 0, 1, 2, … until a solution is
found.

● Determining whether a polynomial has an
integer zeros: try 0, -1, +1, -2, +2, -3, +3, …
until a result is found.

Searching and Guessing

Nondeterminism Revisited

● Recall: One intuition for nondeterminism
is perfect guessing.
● The machine has many options, and

somehow magically knows which guess to
make.

● With regular languages, we could
generalize DFAs with NFAs.

● What happens if we do this for Turing
machines?

Nondeterministic TMs

● A nondeterministic Turing machine (or
NTM) is a variant on a Turing machine
where there can be any number of transitions
for a given state/tape symbol combination.
● Notation: “Turing machine” or “TM” refers to a

deterministic Turing machine unless specified
otherwise. The term DTM specifically represents
a deterministic TM.

● The NTM accepts iff there is some possible
series of choices it can make such that it
accepts.

Questions for Now

● How can we build an intuition for
nondeterministic Turing machines?

● What sorts of problems can we solve with
NTMs?

● What is the relative power of NTMs and
DTMs?

Designing NTMs

● When designing NTMs, it is often useful to use
the approach of guess and check:
● Nondeterministically guess some object that can

“prove” that w ∈ L.
● Deterministically verify that you have guessed the

right object.

● If w ∈ L, there will be some guess that causes the
machine to accept.

● If w ∉ L, then no guess will ever cause the
machine to accept.

Composite Numbers

● A natural number n ≥ 2 is called
composite iff it has a factor other than 1
and n.

● Equivalently: there are two natural
numbers r ≥ 2 and s ≥ 2 such that
rs = n.

● Let Σ = {1} and consider the language

L = { 1n | n is composite }

● How might we design an NTM for L?

A Sketch of the NTM

● We saw how to build a TM that checks for
correct multiplication.

● Have our NTM
● Nondeterministically guess two factors, then
● Deterministically run the multiplication TM.

… 1 1 1 1 1 1 1 1 1 1 …

Guess
1s

Write
1st 1

Guess
1s

Write
2nd 1

Write
1st 1
Write
1st 1

Write
=

Write
=

Go
left
Go
left

start
1 → 1, L

q
rej

q
rej

 → ☐ ☐, L

 → ☐ =, L
Write
2nd 1

 → ☐ 1, L

 → ☐ 1, L

 → ☐ ×, L
 → ☐ 1, L

Write
2nd 1

 → ☐ 1, L → ☐ 1, L
 → ☐ 1, L

run old
TM

 → ☐ ☐, R

Nondeterminism and States

● When working with NFAs, we could think of
the NFA as being in multiple states at the same
time.

● You cannot think of NTMs this way.
● In NFAs, the only memory is the current state.

In an NTM, memory includes the current state
and the tape contents.

● If you're using the “massive parallelism”
intuition, think about the machine cloning itself
for all possible next steps, with each machine
getting its own copy of the tape.

Designing NTMs

● Suppose that we have a CFG G.
● Can we build a TM M where (ℒ M) = (ℒ G)?
● Idea: Nondeterministically guess which

productions ought to be applied.
● Keep the original string on the input tape.
● Keep guessing productions until no nonterminals

remain.
● Accept if the resulting string matches.

The Story So Far

● We now have two different models of
solving search problems:
● Build a worklist and explicitly step through

all options.
● Use a nondeterministic Turing machine.

● Are these two approaches equivalent?
● That is, are NTMs and DTMs equal in

power?

Next Time

● The Church-Turing Thesis
● Just how powerful are Turing machines?

● Encodings
● How do we compute over arbitrary objects?

● The Universal Turing Machine
● Can TMs compute over themselves?

● The Limits of Turing Machines (ITA)
● A language not in RE.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

