Turing Machines Part II

Problem Set Five due
in the box up front using a late day.

Hello Condensed slide Readers:
This lecture is almost entirely animations that show how each Turing machine would be built and how the machine works. I've tried to condense the slides here, but I think a lot got lost in the conversion.

I would recommend reviewing the full slide deck to walk through each animation and see how the overall constructions work.

Hope this helps:

The Turing Machine

- A Turing machine consists of three parts:
- A finite-state control that issues commands,
- an infinite tape for input and scratch space, and
- a tape head that can read and write a single tape cell.
- At each step, the Turing machine
- writes a symbol to the tape cell under the tape head,
- changes state, and
- moves the tape head to the left or to the right.

$$
\begin{aligned}
\square & \rightarrow \square, \mathbf{R} \\
\mathbf{0} & \rightarrow \mathbf{0}, \mathbf{R}
\end{aligned}
$$

Key Idea: Subroutines

- A subroutine of a Turing machine is a small set of states in the TM such that performs a small computation.
- Usually, a single entry state and a single exit state.
- Many very complicated tasks can be performed by TMs by breaking those tasks into smaller subroutines.

Turing Machines and Math

- Turing machines are capable of performing
- Addition
- Subtraction
- Multiplication
- Integer division
- Exponentiation
- Integer logarithms
- Plus a whole lot more...

Outline for Today

- List Processing
- Turing machines that operate on sequences.
- Exhaustive Search
- A fundamentally different approach to designing Turing machines.
- Nondeterministic Turing Machines
- What does a Turing machine with Magic Superpowers look like?
- The Church-Turing Thesis (ITA)
- Just how powerful are Turing machines?

List Processing

- Suppose we have a list of strings represented as

$$
w_{1}: w_{2}: \ldots: w_{\mathrm{n}}:
$$

- What sorts of transformations can we perform on this list using a Turing machine?

Example: Take Odds

- Given a list of $2 n$ strings encoded as follows:

$$
w_{1}: w_{2}: \ldots: w_{2 n}:
$$

filter the list to get back just the odd-numbered entries:

$$
\mathrm{w}_{1}: w_{3}: \ldots: w_{2 n-1}:
$$

- How might we do this with a Turing machine?

Turing Machine Memory

- Turing machines often contain many seemingly replicated states in order to store a finite amount of extra information.
- A Turing machine can remember one of k different constants by copying its states k times, once for each possible value, and wiring those states appropriately.

Turing Machines and Lists

- Turing machines can perform many operations on lists:
- Concatenate two lists.
- Reverse a list.
- Sort a list.
- Find the maximum element of a list.
- And a whole lot more!

The Power of Turing Machines

- Turing machines can
- Perform standard arithmetic operations (addition, subtraction, multiplication, division, exponentiation, etc.)
- Manipulate lists of elements (searching, sorting, reversing, etc.)
- What else can Turing machines do?

The Hailstone Sequence

- Consider the following procedure, starting with some $n \in \mathbb{N}$, where $n>0$:
- If $n=1$, you are done.
- If n is even, set $n=n / 2$.
- Otherwise, set $n=3 n+1$.
- Repeat.
- Question: Given a number n, does this process terminate?

The Hailstone Sequence

- Let $\Sigma=\{1\}$ and consider the language

$$
\begin{aligned}
L=\left\{1^{n} \mid\right. & n>0 \text { and the hailstone } \\
& \text { sequence terminates for } n\} .
\end{aligned}
$$

- Could we build a TM for L ?

The Hailstone Turing Machine

- Intuitively, we can build a TM for the hailstone language as follows: the machine M does the following:
- If the input is ε, reject.
- While the input is not 1 :
- If the input has even length, halve the length of the string.
- If the input has odd length, triple the length of the string and append a 1.
- Accept.

Does this Turing machine always accept?

The Collatz Conjecture

- It is unknown whether this process will terminate for all natural numbers.
- In other words, no one knows whether the TM described in the previous slides will always stop running!
- The conjecture (claim) that this always terminates is called the Collatz Conjecture.

An Important Observation

- Unlike the other automata we've seen so far, Turing machines choose for themselves whether to accept or reject.
- It is therefore possible for a TM to run forever without accepting or rejecting.

Some Important Terminology

- Let M be a Turing machine.
- M accepts a string w if it enters the accept state when run on w.
- M rejects a string w if it enters the reject state when run on w.
- M loops infinitely (or just loops) on a string w if when run on w it enters neither the accept or reject state.
- M does not accept \boldsymbol{w} if it either rejects w or loops infinitely on w.
- M does not reject $\boldsymbol{w} w$ if it either accepts w or loops on w.
- M halts on \boldsymbol{w} if it accepts w or rejects w.

The Language of a TM

- The language of a Turing machine M, denoted $\mathscr{L}(M)$, is the set of all strings that M accepts:

$$
\mathscr{L}(M)=\left\{w \in \Sigma^{*} \mid M \text { accepts } w\right\}
$$

- For any $w \in \mathscr{L}(M), M$ accepts w.
- For any $w \notin \mathscr{L}(M), M$ does not accept w.
- It might loop forever, or it might explicitly reject.
- A language is called recognizable iff it is the language of some TM.
- Notation: RE is the set of all recognizable languages.
$L \in \mathbf{R E}$ iff L is recognizable

Time Out For Announcements!

Office Hours Schedule

- We've update our office hours schedule to shift office hours more toward Monday.
- Check the website for the updated schedule!

Your Questions!

"What is your favorite 103 topic and why?"
stay tuned...
we're about to get there!

Worklist Algorithms

A Recognizable Language

- Let $\Sigma=\{\mathbf{M}, \mathbf{I}, \mathbf{U}\}$ and consider the language $L=\left\{w \in \Sigma^{*} \mid\right.$ Using the four provided rules, it is possible to convert w into MU \}
- Some strings are in this language (for example, MU $\in L$, MIII $\in L$, MUUU $\in L$).
- Some strings are not in this language (for example, I $\notin L$ MI $\notin L$ MIIU $\notin L)$.
- Could we build a Turing machine for L ?

TM Design Trick: Worklists

- It is possible to design TMs that search over an infinite space using a worklist.
- Conceptually, the TM
- Finds all possible options one step away from the original input,
- Appends each of them to the end of the worklist,
- Clears the current option, then
- Grabs the next element from the worklist to process.
- This Turing machine is not guaranteed to halt.

The Power of TMs

- The worklist approach makes that all of the following languages are recognizable:
- Any context-free language: simulate all possible production rules and see if the target string can be derived.
- Solving a maze - use the worklist to explore all paths of length $0,1,2, \ldots$ until a solution is found.
- Determining whether a polynomial has an integer zeros: try $0,-1,+1,-2,+2,-3,+3, \ldots$ until a result is found.

Searching and Guessing

Nondeterminism Revisited

- Recall: One intuition for nondeterminism is perfect guessing.
- The machine has many options, and somehow magically knows which guess to make.
- With regular languages, we could generalize DFAs with NFAs.
- What happens if we do this for Turing machines?

Nondeterministic TMs

- A nondeterministic Turing machine (or NTM) is a variant on a Turing machine where there can be any number of transitions for a given state/tape symbol combination.
- Notation: "Turing machine" or "TM" refers to a deterministic Turing machine unless specified otherwise. The term DTM specifically represents a deterministic TM.
- The NTM accepts iff there is some possible series of choices it can make such that it accepts.

Questions for Now

- How can we build an intuition for nondeterministic Turing machines?
- What sorts of problems can we solve with NTMs?
- What is the relative power of NTMs and DTMs?

Designing NTMs

- When designing NTMs, it is often useful to use the approach of guess and check:
- Nondeterministically guess some object that can "prove" that $w \in L$.
- Deterministically verify that you have guessed the right object.
- If $w \in L$, there will be some guess that causes the machine to accept.
- If $w \notin L$, then no guess will ever cause the machine to accept.

Composite Numbers

- A natural number $n \geq 2$ is called composite iff it has a factor other than 1 and n.
- Equivalently: there are two natural numbers $r \geq 2$ and $s \geq 2$ such that $r s=n$.
- Let $\Sigma=\{1\}$ and consider the language

$$
L=\left\{1^{n} \mid n \text { is composite }\right\}
$$

- How might we design an NTM for L ?

A Sketch of the NTM

- We saw how to build a TM that checks for correct multiplication.
- Have our NTM
- Nondeterministically guess two factors, then
- Deterministically run the multiplication TM.

$$
\begin{array}{l|l|l|l|l|l|l|l|l|l}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array} \ldots
$$

Nondeterminism and States

- When working with NFAs, we could think of the NFA as being in multiple states at the same time.
- You cannot think of NTMs this way.
- In NFAs, the only memory is the current state. In an NTM, memory includes the current state and the tape contents.
- If you're using the "massive parallelism" intuition, think about the machine cloning itself for all possible next steps, with each machine getting its own copy of the tape.

Designing NTMs

- Suppose that we have a CFG G.
- Can we build a TM M where $\mathscr{L}(M)=\mathscr{L}(G)$?
- Idea: Nondeterministically guess which productions ought to be applied.
- Keep the original string on the input tape.
- Keep guessing productions until no nonterminals remain.
- Accept if the resulting string matches.

The Story So Far

- We now have two different models of solving search problems:
- Build a worklist and explicitly step through all options.
- Use a nondeterministic Turing machine.
- Are these two approaches equivalent?
- That is, are NTMs and DTMs equal in power?

Next Time

- The Church-Turing Thesis
- Just how powerful are Turing machines?
- Encodings
- How do we compute over arbitrary objects?
- The Universal Turing Machine
- Can TMs compute over themselves?
- The Limits of Turing Machines (ITA)
- A language not in RE.

