
  

Turing Machines
Part II

Problem Set Five due 
in the box up front 
using a late day.

Problem Set Five due 
in the box up front 
using a late day.



  

Hello Condensed Slide Readers!
 

This lecture is almost entirely animations that 
show how each Turing machine would be built 
and how the machine works.  I've tried to 
condense the slides here, but I think a lot 
got lost in the conversion.
 

I would recommend reviewing the full slide 
deck to walk through each animation and see 
how the overall constructions work.
 

Hope this helps!
 

-Keith
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The Turing Machine

● A Turing machine consists of three parts:
● A finite-state control that issues commands,
● an infinite tape for input and scratch space, and
● a tape head that can read and write a single tape 

cell.

● At each step, the Turing machine
● writes a symbol to the tape cell under the tape head,
● changes state, and
● moves the tape head to the left or to the right.



  

Clear a
1

Clear a
1

Go to
end

Check
for 0

Go to
end

Check
for 0

Go to
start
Go to
start

start

0 → , R☐                        0 → 0, R
                       1 → 1, R

                     → ☐ ☐, L

1 → , L☐0 → 0, L                       
1 → 1, L                       

                     → ☐ ☐, R

q
acc

q
acc

 → ☐ ☐, R                     

q
acc

q
rej

1 → , R☐

 → ☐ ☐, R
0 → 0, R



  

Key Idea: Subroutines

● A subroutine of a Turing machine is a 
small set of states in the TM such that 
performs a small computation.

● Usually, a single entry state and a single 
exit state.

● Many very complicated tasks can be 
performed by TMs by breaking those 
tasks into smaller subroutines.



  

Turing Machines and Math

● Turing machines are capable of 
performing
● Addition
● Subtraction
● Multiplication
● Integer division
● Exponentiation
● Integer logarithms
● Plus a whole lot more...



  

Outline for Today

● List Processing
● Turing machines that operate on sequences.

● Exhaustive Search
● A fundamentally different approach to 

designing Turing machines.

● Nondeterministic Turing Machines
● What does a Turing machine with Magic 

Superpowers look like?

● The Church-Turing Thesis (ITA)
● Just how powerful are Turing machines?



  

List Processing

● Suppose we have a list of strings 
represented as

w1 : w2 : … : wn :   

● What sorts of transformations can we 
perform on this list using a Turing 
machine?



  

Example: Take Odds

● Given a list of 2n strings encoded as 
follows:

w1 : w2 : … : w2n :   

filter the list to get back just the 
odd-numbered entries:

w1 : w3 : … : w2n – 1 :

● How might we do this with a Turing 
machine?
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Turing Machine Memory

● Turing machines often contain many 
seemingly replicated states in order to 
store a finite amount of extra 
information.

● A Turing machine can remember one of k 
different constants by copying its states k 
times, once for each possible value, and 
wiring those states appropriately.



  

Turing Machines and Lists

● Turing machines can perform many 
operations on lists:
● Concatenate two lists.
● Reverse a list.
● Sort a list.
● Find the maximum element of a list.
● And a whole lot more!



  

The Power of Turing Machines

● Turing machines can
● Perform standard arithmetic operations 

(addition, subtraction, multiplication, 
division, exponentiation, etc.)

● Manipulate lists of elements (searching, 
sorting, reversing, etc.)

● What else can Turing machines do?



  

The Hailstone Sequence

● Consider the following procedure, 
starting with some n ∈ ℕ, where n > 0:
● If n = 1, you are done.
● If n is even, set n = n / 2.
● Otherwise, set n = 3n + 1.
● Repeat.

● Question: Given a number n, does this 
process terminate?
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The Hailstone Sequence

● Let Σ = {1} and consider the language

   L = { 1n | n > 0 and the hailstone
                   sequence terminates for n }.

● Could we build a TM for L?



  

The Hailstone Turing Machine

● Intuitively, we can build a TM for the 
hailstone language as follows: the 
machine M does the following:
● If the input is ε, reject.
● While the input is not 1:

– If the input has even length, halve the length of 
the string.

– If the input has odd length, triple the length of 
the string and append a 1.

● Accept.



  

Does this Turing machine always accept?



  

The Collatz Conjecture

● It is unknown whether this process will 
terminate for all natural numbers.

● In other words, no one knows whether 
the TM described in the previous 
slides will always stop running!

● The conjecture (claim) that this always 
terminates is called the Collatz 
Conjecture.



  

An Important Observation

● Unlike the other automata we've seen so 
far, Turing machines choose for 
themselves whether to accept or reject.

● It is therefore possible for a TM to run 
forever without accepting or rejecting.



  

Some Important Terminology

● Let M be a Turing machine.

● M accepts a string w if it enters the accept state when run on w.

● M rejects a string w if it enters the reject state when run on w.

● M loops infinitely (or just loops) on a string w if when run on w 
it enters neither the accept or reject state.

● M does not accept w if it either rejects w or loops infinitely on w.

● M does not reject w w if it either accepts w or loops on w.

● M halts on w if it accepts w or rejects w.

Accept

Loop

Reject
does not accept                                     

does not reject                               

halts



  

The Language of a TM

● The language of a Turing machine M, denoted 
(ℒ M), is the set of all strings that M accepts:

ℒ(M) = { w ∈ Σ* | M accepts w }

● For any w ∈ (ℒ M), M accepts w.

● For any w ∉ (ℒ M), M does not accept w.
● It might loop forever, or it might explicitly reject.

● A language is called recognizable iff it is the 
language of some TM.

● Notation: RE is the set of all recognizable 
languages.

L ∈ RE   iff   L is recognizable    



  

Time Out For Announcements!



  

Office Hours Schedule

● We've update our office hours schedule 
to shift office hours more toward 
Monday.

● Check the website for the updated 
schedule!



  

Your Questions!



  

“What is your favorite 103 topic and why?”

Stay tuned... 
we're about to 

get there!

Stay tuned... 
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get there!



  

Worklist Algorithms
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A Recognizable Language

● Let Σ = { M, I, U } and consider the language 
L = { w ∈ Σ* | Using the four provided rules, it 
is possible to convert w into MU }

● Some strings are in this language (for 
example, MU ∈ L, MIII ∈ L, MUUU ∈ L).

● Some strings are not in this language (for 
example, I ∉ L MI ∉ L MIIU ∉ L).

● Could we build a Turing machine for L?



  

TM Design Trick: Worklists

● It is possible to design TMs that search over an 
infinite space using a worklist.

● Conceptually, the TM
● Finds all possible options one step away from 

the original input,
● Appends each of them to the end of the worklist,
● Clears the current option, then
● Grabs the next element from the worklist to 

process.
● This Turing machine is not guaranteed to 

halt.



  

The Power of TMs

● The worklist approach makes that all of the 
following languages are recognizable:
● Any context-free language: simulate all possible 

production rules and see if the target string can 
be derived.

● Solving a maze – use the worklist to explore all 
paths of length 0, 1, 2, … until a solution is 
found.

● Determining whether a polynomial has an 
integer zeros: try 0, -1, +1, -2, +2, -3, +3, … 
until a result is found.



  

Searching and Guessing



  

Nondeterminism Revisited

● Recall: One intuition for nondeterminism 
is perfect guessing.
● The machine has many options, and 

somehow magically knows which guess to 
make.

● With regular languages, we could 
generalize DFAs with NFAs.

● What happens if we do this for Turing 
machines?



  

Nondeterministic TMs

● A nondeterministic Turing machine (or 
NTM) is a variant on a Turing machine 
where there can be any number of transitions 
for a given state/tape symbol combination.
● Notation: “Turing machine” or “TM” refers to a 

deterministic Turing machine unless specified 
otherwise.  The term DTM specifically represents 
a deterministic TM.

● The NTM accepts iff there is some possible 
series of choices it can make such that it 
accepts.



  

Questions for Now

● How can we build an intuition for 
nondeterministic Turing machines?

● What sorts of problems can we solve with 
NTMs?

● What is the relative power of NTMs and 
DTMs?



  

Designing NTMs

● When designing NTMs, it is often useful to use 
the approach of guess and check:
● Nondeterministically guess some object that can 

“prove” that w ∈ L.
● Deterministically verify that you have guessed the 

right object.

● If w ∈ L, there will be some guess that causes the 
machine to accept.

● If w ∉ L, then no guess will ever cause the 
machine to accept.



  

Composite Numbers

● A natural number n ≥ 2 is called 
composite iff it has a factor other than 1 
and n.

● Equivalently: there are two natural 
numbers r ≥ 2 and s ≥ 2 such that 
rs = n.

● Let Σ = {1} and consider the language

L = { 1n | n is composite }   

● How might we design an NTM for L?



  

A Sketch of the NTM

● We saw how to build a TM that checks for 
correct multiplication.

● Have our NTM
● Nondeterministically guess two factors, then
● Deterministically run the multiplication TM.

… 1 1 1 1 1 1 1 1 1 1 …
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Nondeterminism and States

● When working with NFAs, we could think of 
the NFA as being in multiple states at the same 
time.

● You cannot think of NTMs this way.
● In NFAs, the only memory is the current state. 

In an NTM, memory includes the current state 
and the tape contents.

● If you're using the “massive parallelism” 
intuition, think about the machine cloning itself 
for all possible next steps, with each machine 
getting its own copy of the tape.



  

Designing NTMs

● Suppose that we have a CFG G.
● Can we build a TM M where (ℒ M) = (ℒ G)?
● Idea: Nondeterministically guess which 

productions ought to be applied.
● Keep the original string on the input tape.
● Keep guessing productions until no nonterminals 

remain.
● Accept if the resulting string matches.



  

The Story So Far

● We now have two different models of 
solving search problems:
● Build a worklist and explicitly step through 

all options.
● Use a nondeterministic Turing machine.

● Are these two approaches equivalent?
● That is, are NTMs and DTMs equal in 

power?



  

Next Time

● The Church-Turing Thesis
● Just how powerful are Turing machines?

● Encodings
● How do we compute over arbitrary objects?

● The Universal Turing Machine
● Can TMs compute over themselves?

● The Limits of Turing Machines (ITA)
● A language not in RE.
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