## Turing Machines Part One

Problem Set Five
due in the box up
front.

Hello Condensed slide Readers:
This lecture is almost entirely animations that show how each Turing machine would be built and how the machine works. I've tried to condense the slides here, but I think a lot got lost in the conversion.

I would recommend reviewing the full slide deck to walk through each animation and see how the overall constructions work.

Hope this helps:

Are some problems inherently harder than others?

## Languages recognizable by any feasible <br> computing machine

All Languages

## That same drawing, to scale.

All Languages

## The Problem

- Finite automata accept precisely the regular languages.
- We may need unbounded memory to recognize context-free languages.
- e.g. $\left\{0^{n} 1^{n} \mid n \in \mathbb{N}\right\}$ requires unbounded counting.
- How do we build an automaton with finitely many states but unbounded memory?


## A Better Memory Device

- A Turing machine is a finite automaton equipped with an infinite tape as its memory.
- The tape begins with the input to the machine written on it, surrounded by infinitely many blank cells.
- The machine has a tape head that can read and write a single memory cell at a time.



## The Turing Machine

- A Turing machine consists of three parts:
- A finite-state control that issues commands,
- an infinite tape for input and scratch space, and
- a tape head that can read and write a single tape cell.
- At each step, the Turing machine
- writes a symbol to the tape cell under the tape head,
- changes state, and
- moves the tape head to the left or to the right.


## Input and Tape Alphabets

- A Turing machine has two alphabets:
- An input alphabet $\Sigma$. All input strings are written in the input alphabet.
- A tape alphabet $\Gamma$, where $\Sigma \subseteq \Gamma$. The tape alphabet contains all symbols that can be written onto the tape.
- The tape alphabet $\Gamma$ can contain any number of symbols, but always contains at least one blank symbol, denoted $\square$. You are guaranteed $\square \notin \Sigma$.
- At startup, the Turing machine begins with an infinite tape of $\square$ symbols with the input written at some location. The tape head is positioned at the start of the input.


## A Simple Turing Machine



This special accept state causes the machine to immediately accept.

Each transition of the form

$$
x \rightarrow y, \mathbf{D}
$$

means "upon reading $\boldsymbol{x}$, replace it with symbol $\boldsymbol{y}$ and move the tape head in direction $\mathbf{D}$ (which is either $\mathbf{L}$ or $\mathbf{R}$ ). The symbol $\square$ represents the blank symbol.

This special reject state causes the machine to immediately reject.

## Accepting and Rejecting States

- Unlike DFAs, Turing machines do not stop processing the input when they finish reading it.
- Turing machines decide when (and if!) they will accept or reject their input.
- Turing machines can enter infinite loops and never accept or reject; more on that later...


## Designing Turing Machines

- Despite their simplicity, Turing machines are very powerful computing devices.
- Today's lecture explores how to design Turing machines for various languages.


## Designing Turing Machines

- Let $\Sigma=\{0,1\}$ and consider the language $L=\left\{0^{n} 1^{n} \mid n \in \mathbb{N}\right\}$.
- We know that $L$ is context-free.
- How might we build a Turing machine for it?

$$
L=\left\{0^{n} 1^{n} \mid n \in \mathbb{N}\right\}
$$


$\begin{array}{lllllll}0 & 0 & 0 & 1 & 1\end{array}$


## A Recursive Approach

- The string $\varepsilon$ is in $L$.
- The string $0 w 1$ is in $L$ iff $w$ is in $L$.
- Any string starting with 1 is not in $L$.
- Any string ending with 0 is not in $L$.

$$
\begin{aligned}
\square & \rightarrow \square, R \\
\mathbf{0} & \rightarrow \mathbf{0}, \mathbf{R}
\end{aligned}
$$



## Time-Out For Announcements!

## Problem Set Six

- Problem Set Six out, due next Monday at 2:15PM.
- Explore the limits of regular languages!
- Play around with context-free languages!
- New office hours schedule to be released soon; stay tuned!


## Midterms Graded

- Midterms have been graded and will be returned at end of lecture.
- We curve generously in this course. Look at your relative score rather than your raw score.
- Solutions and graded exams will be released at end of lecture. You can pick them up in the return filing cabinet in Gates if you don't pick it up today.


## Talk this Thursday

- Charlie Hale of Google[x] will be talking about policy implications of new technology.
- This Thursday, November 7 from 6:30PM - 7:30PM in Gates 463.
- Dinner will be served; please RSVP so we can estimate headcount!
- Totally optional, but should be a lot of fun!


## Your Questions

"Can you give us any information about how scores on problem sets/exams translate into letter grades for this course? What are some ballpark numbers that would translate into an A, B, etc?"

More Turing Machines

## Multiplication

- Let $\Sigma=\{1, \times,=\}$ and consider the language $L=\left\{1^{m} \times 1^{n}=1^{m n} \mid m, n \in \mathbb{N}\right\}$
- This language is not regular (can prove using the Myhill-Nerode theorem)
- This language is not context-free (can prove this with the pumping lemma for context-free languages, though we didn't cover it this quarter).
- Can we build a TM for it?


## Things To Watch For

- The input has to have the right format.
- Don't allow 11==x11x, etc.
- The input must do the multiplication correctly.
- Don't allow $11 \times 11=11111$, for example.
-How do we handle this?


## Key Idea: Subroutines

- A subroutine of a Turing machine is a small set of states in the TM such that performs a small computation.
- Design states where
- There is a designated entry state where the subroutine begins, and
- There is a designated exit state where the subroutine ends.
- Design complex TMs by building smaller parts to handle each task.


## $L=\left\{1^{m} \times 1^{n}=1^{m n} \mid m, n \in \mathbb{N}\right\}$



## Validating the Input

- First, we need to check that the structure of the input is correct by rejecting strings that aren't of the form $1^{m} \times 1^{n}=1^{p}$.
- Just need to check the relative ordering of the symbols, not the quantities.
- Useful fact: strings are in this relative order iff the string is in the language given by regex $1^{*} \times 1^{*}=1^{*}$.
- Start with a DFA for this language and convert it to a TM!


## Checking for $1^{*} \times 1^{*}=1^{*}$



## Performing Multiplication

- How would you check that $m \times n=p$ ?
- Idea: Use a recursive/inductive approach to multiplication:
- $0 \times n=p$ iff $p=0$
- $(m+1) \times n=p$ iff $m \times n=p-n$
- To check the multiplication, we can keep subtracting one from $m$ and subtracting $n$ from $p$ until $m$ is zero. We can then check at that time if $p$ is zero.


## Checking if $m \times n=p$




## The Final Piece

- If $m=0$, we need to check that $p=0$.
- Input has form $\times 1^{n}=1^{p}$.
- In other words, accept iff string matches the regular expression $\times 1^{*}=$.
- Exercise: Build a TM to check this!


## Turing Machines and Math

- Turing machines are capable of performing
- Addition
- Subtraction
- Multiplication
- Integer division
- Exponentiation
- Integer logarithms
- Plus a whole lot more...


## Next Time

- More Turing Machines
- Worklist approaches.
- Nondeterministic Turing Machines
- Turing machines with Magic Superpowers!
- How powerful are they?
- The Church-Turing Thesis
- Just how powerful are Turing machines?

