

Turing Machines
Part One

Problem Set Five
due in the box up

front.

Problem Set Five
due in the box up

front.

Hello Condensed Slide Readers!

This lecture is almost entirely animations that
show how each Turing machine would be built
and how the machine works. I've tried to
condense the slides here, but I think a lot
got lost in the conversion.

I would recommend reviewing the full slide
deck to walk through each animation and see
how the overall constructions work.

Hope this helps!

-Keith

Hello Condensed Slide Readers!

This lecture is almost entirely animations that
show how each Turing machine would be built
and how the machine works. I've tried to
condense the slides here, but I think a lot
got lost in the conversion.

I would recommend reviewing the full slide
deck to walk through each animation and see
how the overall constructions work.

Hope this helps!

-Keith

Are some problems inherently
harder than others?

Regular
Languages CFLs

All Languages

Languages
recognizable by

any feasible
computing

machine

 All Languages

That same drawing, to scale.

The Problem

● Finite automata accept precisely the
regular languages.

● We may need unbounded memory to
recognize context-free languages.
● e.g. { 0n1n | n ∈ ℕ } requires unbounded

counting.

● How do we build an automaton with
finitely many states but unbounded
memory?

A Better Memory Device

● A Turing machine is a finite automaton equipped
with an infinite tape as its memory.

● The tape begins with the input to the machine written
on it, surrounded by infinitely many blank cells.

● The machine has a tape head that can read and write
a single memory cell at a time.

0 0 1… …

The Turing Machine

● A Turing machine consists of three parts:
● A finite-state control that issues commands,
● an infinite tape for input and scratch space,

and
● a tape head that can read and write a single

tape cell.
● At each step, the Turing machine

● writes a symbol to the tape cell under the tape
head,

● changes state, and
● moves the tape head to the left or to the right.

Input and Tape Alphabets

● A Turing machine has two alphabets:
● An input alphabet Σ. All input strings are written

in the input alphabet.
● A tape alphabet Γ, where Σ ⊆ Γ. The tape alphabet

contains all symbols that can be written onto the
tape.

● The tape alphabet Γ can contain any number of
symbols, but always contains at least one blank
symbol, denoted . You are guaranteed ∉ Σ.☐ ☐

● At startup, the Turing machine begins with an
infinite tape of symbols with the input written at ☐
some location. The tape head is positioned at the
start of the input.

A Simple Turing Machine

q
0

q
acc

q
rej

q
1

start

1 → , R☐

1 → , R☐

 → ☐ ☐, R

 → ☐ ☐, R

q
acc

q
rej

Each transition of the form

x → y, D

means “upon reading x, replace it with
symbol y and move the tape head in
direction D (which is either L or R).
 The symbol ☐ represents the blank

symbol.

Each transition of the form

x → y, D

means “upon reading x, replace it with
symbol y and move the tape head in
direction D (which is either L or R).
 The symbol ☐ represents the blank

symbol.

This special accept
state causes the

machine to
immediately accept.

This special accept
state causes the

machine to
immediately accept.

This special reject
state causes the

machine to
immediately reject.

This special reject
state causes the

machine to
immediately reject.

Accepting and Rejecting States

● Unlike DFAs, Turing machines do not
stop processing the input when they
finish reading it.

● Turing machines decide when (and if!)
they will accept or reject their input.

● Turing machines can enter infinite loops
and never accept or reject; more on that
later...

Designing Turing Machines

● Despite their simplicity, Turing machines
are very powerful computing devices.

● Today's lecture explores how to design
Turing machines for various languages.

Designing Turing Machines

● Let Σ = {0, 1} and consider the language
L = {0n1n | n ∈ ℕ }.

● We know that L is context-free.
● How might we build a Turing machine

for it?

L = {0n1n | n ∈ ℕ }

0 0 0 1 1 1… …

… …

0 1 0… …

1 1 0 0… …

A Recursive Approach

● The string ε is in L.
● The string 0w1 is in L iff w is in L.

● Any string starting with 1 is not in L.

● Any string ending with 0 is not in L.

Clear a
1

Clear a
1

Go to
end

Check
for 0

Go to
end

Check
for 0

Go to
start
Go to
start

start

0 → , R☐ 0 → 0, R
 1 → 1, R

 → ☐ ☐, L

1 → , L☐0 → 0, L
1 → 1, L

 → ☐ ☐, R

q
acc

q
acc

 → ☐ ☐, R

q
acc

q
rej

1 → , R☐

 → ☐ ☐, R
0 → 0, R

Time-Out For Announcements!

Problem Set Six

● Problem Set Six out, due next Monday at
2:15PM.
● Explore the limits of regular languages!
● Play around with context-free languages!

● New office hours schedule to be released
soon; stay tuned!

Midterms Graded

● Midterms have been graded and will be
returned at end of lecture.

● We curve generously in this course.
Look at your relative score rather than
your raw score.

● Solutions and graded exams will be
released at end of lecture. You can pick
them up in the return filing cabinet in
Gates if you don't pick it up today.

Talk this Thursday

● Charlie Hale of Google[x] will be talking
about policy implications of new technology.

● This Thursday, November 7 from
6:30PM – 7:30PM in Gates 463.

● Dinner will be served; please RSVP so we can
estimate headcount!

● Totally optional, but should be a lot of fun!

Your Questions

“Can you give us any information about
how scores on problem sets/exams

translate into letter grades for this course?
What are some ballpark numbers that

would translate into an A, B, etc?”

More Turing Machines

Multiplication

● Let Σ = {1, ×, =} and consider the
language L = { 1m×1n=1mn | m, n ∈ ℕ }

● This language is not regular (can prove
using the Myhill-Nerode theorem)

● This language is not context-free (can
prove this with the pumping lemma for
context-free languages, though we
didn't cover it this quarter).

● Can we build a TM for it?

Things To Watch For

● The input has to have the right format.
● Don't allow 11==×11×, etc.

● The input must do the multiplication
correctly.
● Don't allow 11×11=11111, for example.

● How do we handle this?

Key Idea: Subroutines

● A subroutine of a Turing machine is a
small set of states in the TM such that
performs a small computation.

● Design states where
● There is a designated entry state where the

subroutine begins, and
● There is a designated exit state where the

subroutine ends.

● Design complex TMs by building smaller
parts to handle each task.

Check that the
input is structured

properly

Check that the
multiplication is

correct.

L = {1m×1n=1mn | m, n ∈ ℕ }

start

Validating the Input

● First, we need to check that the structure
of the input is correct by rejecting
strings that aren't of the form 1m×1n=1p.

● Just need to check the relative ordering
of the symbols, not the quantities.

● Useful fact: strings are in this relative
order iff the string is in the language
given by regex 1*×1*=1*.

● Start with a DFA for this language and
convert it to a TM!

Before
×

After
×

After
=

Go to
Start

end

Check
for 0

Before
×

start

After
×

After
=

1 → 1, R 1 → 1, R 1 → 1, R

Checking for 1*×1*=1*

× → ×, R = → =, R

q
rej

q
rej

= → =, R
 → ☐ ☐, R

× → ×, R
 → ☐ ☐, R = → =, R

 × → ×, R

Go to
start

 → ☐ ☐, L

end

 → ☐ ☐, R

1 → 1, L
× → ×, L
= → =, L

Performing Multiplication

● How would you check that m × n = p?
● Idea: Use a recursive/inductive approach

to multiplication:
● 0 × n = p iff p = 0
● (m + 1) × n = p iff m × n = p – n

● To check the multiplication, we can keep
subtracting one from m and subtracting
n from p until m is zero. We can then
check at that time if p is zero.

Checking if m × n = p

Set
m = m – 1

Set
p = p – n

NOIs m = 0?

Is p = 0? AcceptReject

YES

YESNO

Start!

Cross
off 1

Cross
off 1

Start
over
Start
over

Clear
Marks

Find a
1

Clear
Marks

Find a
1

Go to
×

Go to
×

Cross
off 1

Cross
off 1

Go to
End

Go to
End

Go to
×

Go to
×

start 1 → , R☐

1 → 1, R

× → ×, R 1 → 1, R

1 → 1, R
= → =, R

 → ☐ ☐, L

1 → , L☐

1 → 1, L
= → =, L
1 → 1, L

× → ×, R
 1 → 1, R

 = → =, L

1 → 1, L

× → ×, L

1 → 1, L

 → ☐ ☐, R

End of
Routine

× → ×, R

The Final Piece

● If m = 0, we need to check that p = 0.
● Input has form ×1n=1p.

● In other words, accept iff string matches
the regular expression ×1*=.

● Exercise: Build a TM to check this!

Turing Machines and Math

● Turing machines are capable of
performing
● Addition
● Subtraction
● Multiplication
● Integer division
● Exponentiation
● Integer logarithms
● Plus a whole lot more...

Next Time

● More Turing Machines
● Worklist approaches.

● Nondeterministic Turing Machines
● Turing machines with Magic Superpowers!
● How powerful are they?

● The Church-Turing Thesis
● Just how powerful are Turing machines?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

