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Hello Condensed Slide Readers!
 

This lecture is almost entirely animations that 
show how each Turing machine would be built 
and how the machine works.  I've tried to 
condense the slides here, but I think a lot 
got lost in the conversion.
 

I would recommend reviewing the full slide 
deck to walk through each animation and see 
how the overall constructions work.
 

Hope this helps!
 

-Keith
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Are some problems inherently
harder than others?
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The Problem

● Finite automata accept precisely the 
regular languages.

● We may need unbounded memory to 
recognize context-free languages.
● e.g. { 0n1n | n ∈ ℕ } requires unbounded 

counting.

● How do we build an automaton with 
finitely many states but unbounded 
memory?



  

A Better Memory Device

● A Turing machine is a finite automaton equipped 
with an infinite tape as its memory.

● The tape begins with the input to the machine written 
on it, surrounded by infinitely many blank cells.

● The machine has a tape head that can read and write 
a single memory cell at a time.

 

 

 

 

0 0 1… …



  

The Turing Machine

● A Turing machine consists of three parts:
● A finite-state control that issues commands,
● an infinite tape for input and scratch space, 

and
● a tape head that can read and write a single 

tape cell.
● At each step, the Turing machine

● writes a symbol to the tape cell under the tape 
head,

● changes state, and
● moves the tape head to the left or to the right.



  

Input and Tape Alphabets

● A Turing machine has two alphabets:
● An input alphabet Σ.  All input strings are written 

in the input alphabet.
● A tape alphabet Γ, where Σ ⊆ Γ.  The tape alphabet 

contains all symbols that can be written onto the 
tape.

● The tape alphabet Γ can contain any number of 
symbols, but always contains at least one blank 
symbol, denoted .  You are guaranteed  ∉ Σ.☐ ☐

● At startup, the Turing machine begins with an 
infinite tape of  symbols with the input written at ☐
some location.  The tape head is positioned at the 
start of the input.



  

A Simple Turing Machine
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1 → , R☐
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                   → ☐ ☐, R

q
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Each transition of the form
 

x → y, D
 

means “upon reading x, replace it with 
symbol y and move the tape head in 
direction D (which is either L or R). 
 The symbol ☐ represents the blank 

symbol.

Each transition of the form
 

x → y, D
 

means “upon reading x, replace it with 
symbol y and move the tape head in 
direction D (which is either L or R). 
 The symbol ☐ represents the blank 

symbol.

This special accept 
state causes the 

machine to 
immediately accept.
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state causes the 

machine to 
immediately accept.

This special reject 
state causes the 

machine to 
immediately reject.

This special reject 
state causes the 

machine to 
immediately reject.



  

Accepting and Rejecting States

● Unlike DFAs, Turing machines do not 
stop processing the input when they 
finish reading it.

● Turing machines decide when (and if!) 
they will accept or reject their input.

● Turing machines can enter infinite loops 
and never accept or reject; more on that 
later...



  

Designing Turing Machines

● Despite their simplicity, Turing machines 
are very powerful computing devices.

● Today's lecture explores how to design 
Turing machines for various languages.



  

Designing Turing Machines

● Let Σ = {0, 1} and consider the language 
L = {0n1n | n ∈ ℕ }.

● We know that L is context-free.
● How might we build a Turing machine 

for it?



  

L = {0n1n | n ∈ ℕ } 

0 0 0 1 1 1… …
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A Recursive Approach

● The string ε is in L.
● The string 0w1 is in L iff w is in L.

● Any string starting with 1 is not in L.

● Any string ending with 0 is not in L.
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0 → , R☐                        0 → 0, R
                       1 → 1, R

                     → ☐ ☐, L
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                     → ☐ ☐, R
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1 → , R☐

 → ☐ ☐, R
0 → 0, R



  

Time-Out For Announcements!



  

Problem Set Six

● Problem Set Six out, due next Monday at 
2:15PM.
● Explore the limits of regular languages!
● Play around with context-free languages!

● New office hours schedule to be released 
soon; stay tuned!



  

Midterms Graded

● Midterms have been graded and will be 
returned at end of lecture.

● We curve generously in this course. 
Look at your relative score rather than 
your raw score.

● Solutions and graded exams will be 
released at end of lecture. You can pick 
them up in the return filing cabinet in 
Gates if you don't pick it up today.



  

Talk this Thursday

● Charlie Hale of Google[x] will be talking 
about policy implications of new technology.

● This Thursday, November 7 from
6:30PM – 7:30PM in Gates 463.

● Dinner will be served; please RSVP so we can 
estimate headcount!

● Totally optional, but should be a lot of fun!



  

Your Questions



  

“Can you give us any information about 
how scores on problem sets/exams 

translate into letter grades for this course? 
What are some ballpark numbers that 

would translate into an A, B, etc?”



  

More Turing Machines



  

Multiplication

● Let Σ = {1, ×, =} and consider the 
language L = { 1m×1n=1mn | m, n ∈ ℕ }

● This language is not regular (can prove 
using the Myhill-Nerode theorem)

● This language is not context-free (can 
prove this with the pumping lemma for 
context-free languages, though we 
didn't cover it this quarter).

● Can we build a TM for it?



  

Things To Watch For

● The input has to have the right format.
● Don't allow 11==×11×, etc.

● The input must do the multiplication 
correctly.
● Don't allow 11×11=11111, for example.

● How do we handle this?



  

Key Idea: Subroutines

● A subroutine of a Turing machine is a 
small set of states in the TM such that 
performs a small computation.

● Design states where
● There is a designated entry state where the 

subroutine begins, and
● There is a designated exit state where the 

subroutine ends.

● Design complex TMs by building smaller 
parts to handle each task.



  

Check that the
input is structured

properly

Check that the
multiplication is

correct.

L = {1m×1n=1mn | m, n ∈ ℕ } 

start    



  

Validating the Input

● First, we need to check that the structure 
of the input is correct by rejecting 
strings that aren't of the form 1m×1n=1p.

● Just need to check the relative ordering 
of the symbols, not the quantities.

● Useful fact: strings are in this relative 
order iff the string is in the language 
given by regex 1*×1*=1*.

● Start with a DFA for this language and 
convert it to a TM!



  

Before
×

After
×

After
=

Go to
Start

end

Check
for 0

Before
×

start

After
×

After
=

1 → 1, R 1 → 1, R 1 → 1, R

Checking for 1*×1*=1*

× → ×, R = → =, R

q
rej

q
rej

= → =, R                                              
 → ☐ ☐, R                                             

× → ×, R                 
 → ☐ ☐, R                       = → =, R

    × → ×, R

Go to
start

 → ☐ ☐, L

end

 → ☐ ☐, R                     

1 → 1, L
× → ×, L
= → =, L



  

Performing Multiplication

● How would you check that m × n = p?
● Idea: Use a recursive/inductive approach 

to multiplication:
● 0 × n = p iff p = 0
● (m + 1) × n = p iff m × n = p – n

● To check the multiplication, we can keep 
subtracting one from m and subtracting 
n from p until m is zero. We can then 
check at that time if p is zero.



  

Checking if m × n = p

Set
m = m – 1

Set
p = p – n

NOIs m = 0?

Is p = 0? AcceptReject

YES          

YESNO

Start!
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           1 → 1, R
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1 → 1, L
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End of
Routine

× → ×, R                     



  

The Final Piece

● If m = 0, we need to check that p = 0.
● Input has form ×1n=1p.

● In other words, accept iff string matches 
the regular expression ×1*=.

● Exercise: Build a TM to check this!



  

Turing Machines and Math

● Turing machines are capable of 
performing
● Addition
● Subtraction
● Multiplication
● Integer division
● Exponentiation
● Integer logarithms
● Plus a whole lot more...



  

Next Time

● More Turing Machines
● Worklist approaches.

● Nondeterministic Turing Machines
● Turing machines with Magic Superpowers!
● How powerful are they?

● The Church-Turing Thesis
● Just how powerful are Turing machines?
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