

Context-Free Grammars

Describing Languages

● We've seen two models for the regular languages:
● Automata accept precisely the strings in the

language.
● Regular expressions describe precisely the strings

in the language.

● Finite automata recognize strings in the language.
● Perform a computation to determine whether a

specific string is in the language.

● Regular expressions match strings in the language.
● Describe the general shape of all strings in the

language.

Context-Free Grammars

● A context-free grammar (or CFG) is an
entirely different formalism for defining a
class of languages.

● Goal: Give a procedure for listing off all
strings in the language.

● CFGs are best explained by example...

Arithmetic Expressions

● Suppose we want to describe all legal arithmetic
expressions using addition, subtraction,
multiplication, and division.

● Here is one possible CFG:

E → int

E → E Op E

E → (E)

Op → +

Op → -

Op → *

Op → /

E
⇒ E Op E
⇒ E Op (E)
⇒ E Op (E Op E)
⇒ E * (E Op E)
⇒ int * (E Op E)
⇒ int * (int Op E)
⇒ int * (int Op int)
⇒ int * (int + int)

Arithmetic Expressions

● Suppose we want to describe all legal arithmetic
expressions using addition, subtraction,
multiplication, and division.

● Here is one possible CFG:

E → int

E → E Op E

E → (E)

Op → +

Op → -

Op → *

Op → /

E
⇒ E Op E
⇒ E Op int
⇒ int Op int
⇒ int / int

Context-Free Grammars

● Formally, a context-free grammar
is a collection of four objects:

● A set of nonterminal symbols
(also called variables),

● A set of terminal symbols (the
alphabet of the CFG)

● A set of production rules saying
how each nonterminal can be
converted by a string of terminals
and nonterminals, and

● A start symbol (which must be a
nonterminal) that begins the
derivation.

E → int

E → E Op E

E → (E)

Op → +

Op → -

Op → *

Op → /

Some CFG Notation

● Capital letters in Bold Red Uppercase
will represent nonterminals.
● i.e. A, B, C, D

● Lowercase letters in blue monospace will
represent terminals.
● i.e. t, u, v, w

● Lowercase Greek letters in gray italics
will represent arbitrary strings of
terminals and nonterminals.
● i.e. α, γ, ω

A Notational Shorthand

E → int | E Op E | (E)

Op → + | - | * | /

Derivations

⇒ E

⇒ E Op E

⇒ E Op (E)

⇒ E Op (E Op E)

⇒ E * (E Op E)

⇒ int * (E Op E)

⇒ int * (int Op E)

⇒ int * (int Op int)

⇒ int * (int + int)

● A sequence of steps where
nonterminals are replaced by
the right-hand side of a
production is called a
derivation.

● If string α derives string ω, we
write α ⇒* ω.

● In the example on the left, we
see E ⇒* int * (int + int).

E → E Op E | int | (E)
Op → + | * | - | /

The Language of a Grammar

● If G is a CFG with alphabet Σ and start
symbol S, then the language of G is the
set

ℒ(G) = { ω ∈ Σ* | S ⇒* ω }
● That is, (ℒ G) is the set of strings

derivable from the start symbol.
● Note: ω must be in Σ*, the set of strings

made from terminals. Strings involving
nonterminals aren't in the language.

More Context-Free Grammars

● Chemicals!

C19H14O5S

Cu3(CO3)2(OH)2

MnO4
-

S2-

Form → Cmp | Cmp Ion

Cmp → Term | Term Num | Cmp Cmp

Term → Elem | (Cmp)

Elem → H | He | Li | Be | B | C | …

Ion → + | - | IonNum + | IonNum -

IonNum → 2 | 3 | 4 | ...

Num → 1 | IonNum

CFGs for Chemistry
Form

⇒ Cmp Ion

⇒ Cmp Cmp Ion

⇒ Cmp Term Num Ion

⇒ Term Term Num Ion

⇒ Elem Term Num Ion

⇒ Mn Term Num Ion

⇒ Mn Elem Num Ion

⇒ MnO Num Ion

⇒ MnO IonNum Ion

⇒ MnO4 Ion

⇒ MnO4
-

Form → Cmp | Cmp Ion

Cmp → Term | Term Num | Cmp Cmp

Term → Elem | (Cmp)

Elem → H | He | Li | Be | B | C | …

Ion → + | - | IonNum + | IonNum -

IonNum → 2 | 3 | 4 | ...

Num → 1 | IonNum

CFGs for Programming Languages
BLOCK → STMT

 | { STMTS }

STMTS → ε
 | STMT STMTS

STMT → EXPR;
 | if (EXPR) BLOCK
 | while (EXPR) BLOCK

 | do BLOCK while (EXPR);
 | BLOCK
 | …

EXPR → var
| const

 | EXPR + EXPR
 | EXPR – EXPR
 | EXPR = EXPR
 | ...

{
var = var * var;
if (var) var = const;
while (var) {

var = var + const;
}

}

Context-Free Languages

● A language L is called a context-free
language (or CFL) iff there is a CFG G
such that L = (ℒ G).

● Questions:
● What languages are context-free?
● How are context-free and regular languages

related?

From Regexes to CFGs

● CFGs don't have the Kleene star,
parenthesized expressions, or internal |
operators.

● However, we can convert regular
expressions to CFGs as follows:

S → a*b

From Regexes to CFGs

● CFGs don't have the Kleene star,
parenthesized expressions, or internal |
operators.

● However, we can convert regular
expressions to CFGs as follows:

S → Ab
A → Aa | ε

From Regexes to CFGs

● CFGs don't have the Kleene star,
parenthesized expressions, or internal |
operators.

● However, we can convert regular
expressions to CFGs as follows:

S → a(b|c*)

From Regexes to CFGs

● CFGs don't have the Kleene star,
parenthesized expressions, or internal |
operators.

● However, we can convert regular
expressions to CFGs as follows:

S → aX
X → b | C
C → Cc | ε

Regular Languages and CFLs

● Theorem: Every regular language is
context-free.

● Proof Idea: Use the construction from
the previous slides to convert a regular
expression for L into a CFG for L. ■

The Language of a Grammar

● Consider the following CFG G:

S → aSb | ε
● What strings can this generate?

 ℒ(G) = { anbn | n ∈ ℕ }

Sa baaa b b baa b b

Regular
Languages CFLs

All Languages

http://xkcd.com/1090/

Designing CFGs

● Like designing DFAs, NFAs, and regular
expressions, designing CFGs is a craft.

● When thinking about CFGs:
● Think recursively: Build up bigger

structures from smaller ones.
● Have a construction plan: Know in what

order you will build up the string.

Designing CFGs

● Let Σ = {a, b} and let L = {w ∈ Σ* | w is
a palindrome }

● We can design a CFG for L by thinking
inductively:
● Base case: ε, a, and b are palindromes.

● If ω is a palindrome, then aωa and bωb are
palindromes.

S → ε | a | b | aSa | bSb

Designing CFGs

● Let Σ = {(,)} and let L = {w ∈ Σ* | w is a
string of balanced parentheses }

● We can think about how we will build
strings in this language as follows:
● The empty string is balanced.
● Any two strings of balanced parentheses can be

concatenated.
● Any string of balanced parentheses can be

parenthesized.

S → SS | (S) | ε

Designing CFGs: Watch Out!

● When designing CFGs, remember that each
nonterminal can be expanded out
independently of the others.

● Let Σ = {a, ≟} and let L = {an≟an | n ∈ ℕ }. Is
the following a CFG for L?
● S → X≟X

● X → aX | ε

S
⇒ X≟X
⇒ aX≟X
⇒ aaX≟X
⇒ aa≟X
⇒ aa a≟ X
⇒ aa a≟

Finding a Build Order

● Let Σ = {a, ≟} and let L = {an≟an | n ∈ ℕ }.

● To build a CFG for L, we need to be more
clever with how we construct the string.

● Idea: Build from the ends inward.

● Gives this grammar: S → aSa | ≟

S
⇒ aSa
⇒ aaSaa
⇒ aaaSaaa
⇒ aaa aaa≟

Designing CFGs: A Caveat

● Let Σ = {l, r} and let L = {w ∈ Σ* | w
has the same number of l's and r's }

● Is this a grammar for L?

S → lSr | rSl | ε

● Can you derive the string lrrl?

Designing CFGs: A Caveat

● When designing a CFG for a language,
make sure that it
● generates all the strings in the language and
● never generates a string outside the

language.

● The first of these can be tricky – make
sure to test your grammars!

● You'll design your own CFG for this
language on the next problem set.

CFG Caveats II

● Is the following grammar a CFG for the
language { anbn | n ∈ ℕ }?

S → aSb
● What strings can you derive?

● Answer: None!
● What is the language of the grammar?

● Answer: Ø
● When designing CFGs, make sure your

recursion actually terminates!

Parse Trees

Parse Trees

⇒ E

⇒ E Op E

⇒ int Op E

⇒ int * E

⇒ int * (E)

⇒ int * (E Op E)

⇒ int * (int Op E)

⇒ int * (int + E)

⇒ int * (int + int)

E

E EOp

int *

E

(int + int)

E EOp

E → E Op E | int | (E)
Op → + | * | - | /

Parse Trees

● A parse tree is a tree encoding the steps
in a derivation.

● Each internal node is labeled with a
nonterminal.

● Each leaf node is labeled with a terminal.
● Reading the leaves from left to right

gives the string that was produced.

Parsing

● Given a context-free grammar, the
problem of parsing a string is to find a
parse tree for that string.

● Applications to compilers:
● Given a CFG describing the structure of a

programming language and an input
program (string), recover the parse tree.

● The parse tree represents the structure of
the program – what's declared where, how
expressions nest, etc.

Challenges in Parsing

E

E EOp

int * int + int

E EOp

E

E EOp

int * int

E EOp

+ int

A Serious Problem

int * (int + int) (int * int) + int

E → E Op E | int
Op → + | * | - | /

Ambiguity

● A CFG is said to be ambiguous if there is
at least one string with two or more parse
trees.

● Note that ambiguity is a property of
grammars, not languages: there can be
multiple grammars for the same language,
where some are ambiguous and some
aren't.

● Some languages are inherently ambiguous:
there are no unambiguous grammars for
those languages.

Resolving Ambiguity

● Designing unambiguous grammars is
tricky and requires planning from the
start.

● It's hard to start with an ambiguous
grammar and to manually massage it into
an unambiguous one.

● Often, have to throw the whole thing out
and start over.

Resolving Ambiguity

● We have just seen that this grammar is
ambiguous:

 E → E Op E | int

 Op → + | - | * | /

● Goals:
● Eliminate the ambiguity from the grammar.
● Make the only parse trees for the grammar

the ones corresponding to operator
precedence.

Operator Precedence

● Can often eliminate ambiguity from
grammars with operator precedence
issues by building precedences into the
grammar.

● Since * and / bind more tightly than +
and -, think of an expression as a series
of “blocks” of terms multiplied and
divided together joined by +s and -s.

int int* * int int+ * int - int

Operator Precedence

● Can often eliminate ambiguity from
grammars with operator precedence
issues by building precedences into the
grammar.

● Since * and / bind more tightly than +
and -, think of an expression as a series
of “blocks” of terms multiplied and
divided together joined by +s and -s.

int int* * int int+ * int - int

Rebuilding the Grammar

● Idea: Force a construction order where
● First decide how many “blocks” there will be

of terms joined by + and -.
● Then, expand those blocks by filling in the

integers multiplied and divided together.

● One possible grammar:

 S → T | T + S | T - S

 T → int | int * T | int / T

An Unambiguous Grammar

int * int + int

S → T | T + S | T – S
T → int | int * T | int / T

T

T

T

S

S

int + int * int

S

T

S

T

T

Summary

● Context-free grammars give a formalism
for describing languages by generating
all the strings in the language.

● Context-free languages are a strict
superset of the regular languages.

● CFGs can be designed by finding a “build
order” for a given string.

● Ambiguous grammars generate some
strings with two different parse trees.

Next Time

● Turing Machines
● What does a computer with unbounded

memory look like?
● How do you program them?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

