
  

Context-Free Grammars



  

Describing Languages

● We've seen two models for the regular languages:
● Automata accept precisely the strings in the 

language.
● Regular expressions describe precisely the strings 

in the language.

● Finite automata recognize strings in the language.
● Perform a computation to determine whether a 

specific string is in the language.

● Regular expressions match strings in the language.
● Describe the general shape of all strings in the 

language.



  

Context-Free Grammars

● A context-free grammar (or CFG) is an 
entirely different formalism for defining a 
class of languages.

● Goal: Give a procedure for listing off all 
strings in the language.

● CFGs are best explained by example...



  

Arithmetic Expressions

● Suppose we want to describe all legal arithmetic 
expressions using addition, subtraction, 
multiplication, and division.

● Here is one possible CFG:

E → int

E → E Op E

E → (E)

Op → +

Op → -

Op → *

Op → /

E
⇒ E Op E
⇒ E Op (E)
⇒ E Op (E Op E)
⇒ E * (E Op E)
⇒ int * (E Op E)
⇒ int * (int Op E)
⇒ int * (int Op int)
⇒ int * (int + int)



  

Arithmetic Expressions

● Suppose we want to describe all legal arithmetic 
expressions using addition, subtraction, 
multiplication, and division.

● Here is one possible CFG:

E → int

E → E Op E

E → (E)

Op → +

Op → -

Op → *

Op → /

E
⇒ E Op E
⇒ E Op int
⇒ int Op int
⇒ int / int



  

Context-Free Grammars

● Formally, a context-free grammar 
is a collection of four objects:

● A set of nonterminal symbols
(also called variables),

● A set of terminal symbols (the 
alphabet of the CFG)

● A set of production rules saying 
how each nonterminal can be 
converted by a string of terminals 
and nonterminals, and

● A start symbol (which must be a 
nonterminal) that begins the 
derivation.

E → int

E → E Op E

E → (E)

Op → +

Op → -

Op → *

Op → /



  

Some CFG Notation

● Capital letters in Bold Red Uppercase 
will represent nonterminals.
● i.e. A, B, C, D

● Lowercase letters in blue monospace will 
represent terminals.
● i.e. t, u, v, w

● Lowercase Greek letters in gray italics 
will represent arbitrary strings of 
terminals and nonterminals.
● i.e. α, γ, ω



  

A Notational Shorthand

E → int | E Op E | (E)

Op → + | - | * | /



  

Derivations

⇒ E

⇒ E Op E

⇒ E Op (E)

⇒ E Op (E Op E)

⇒ E * (E Op E)

⇒ int * (E Op E)

⇒ int * (int Op E)

⇒ int * (int Op int)

⇒ int * (int + int)

● A sequence of steps where 
nonterminals are replaced by 
the right-hand side of a 
production is called a 
derivation.

● If string α derives string ω, we 
write α ⇒* ω.

● In the example on the left, we 
see E ⇒* int * (int + int).

E → E Op E | int | (E)
Op → + | * | - | /



  

The Language of a Grammar

● If G is a CFG with alphabet Σ and start 
symbol S, then the language of G is the 
set

ℒ(G) = { ω ∈ Σ* | S ⇒* ω }
● That is, (ℒ G) is the set of strings 

derivable from the start symbol.
● Note: ω must be in Σ*, the set of strings 

made from terminals. Strings involving 
nonterminals aren't in the language.



  

More Context-Free Grammars

● Chemicals!

C19H14O5S

Cu3(CO3)2(OH)2

MnO4
-

S2-

Form → Cmp | Cmp Ion

Cmp → Term | Term Num | Cmp Cmp

Term → Elem | (Cmp)

Elem → H | He | Li | Be | B | C |  …

Ion → + | - | IonNum + | IonNum -

IonNum → 2 | 3 | 4 | ...

Num → 1 | IonNum



  

CFGs for Chemistry
Form

⇒ Cmp Ion

⇒ Cmp Cmp Ion

⇒ Cmp Term Num Ion

⇒ Term Term Num Ion

⇒ Elem Term Num Ion

⇒ Mn Term Num Ion

⇒ Mn Elem Num Ion

⇒ MnO Num Ion

⇒ MnO IonNum Ion

⇒ MnO4 Ion

⇒ MnO4
-

Form → Cmp | Cmp Ion

Cmp → Term | Term Num | Cmp Cmp

Term → Elem | (Cmp)

Elem → H | He | Li | Be | B | C |  …

Ion → + | - | IonNum + | IonNum -

IonNum → 2 | 3 | 4 | ...

Num → 1 | IonNum



  

CFGs for Programming Languages
BLOCK → STMT

  | { STMTS }

STMTS →   ε
 | STMT STMTS

STMT  →   EXPR;
 | if (EXPR) BLOCK
  | while (EXPR) BLOCK

   | do BLOCK while (EXPR);
   | BLOCK
   | …

EXPR → var
| const

  | EXPR + EXPR
  | EXPR – EXPR
  | EXPR = EXPR
  | ...

{
var = var * var;
if (var) var = const;
while (var) {

var = var + const;
}

}



  

Context-Free Languages

● A language L is called a context-free 
language (or CFL) iff there is a CFG G 
such that L = (ℒ G).

● Questions:
● What languages are context-free?
● How are context-free and regular languages 

related?



  

From Regexes to CFGs

● CFGs don't have the Kleene star, 
parenthesized expressions, or internal | 
operators.

● However, we can convert regular 
expressions to CFGs as follows:

S → a*b



  

From Regexes to CFGs

● CFGs don't have the Kleene star, 
parenthesized expressions, or internal | 
operators.

● However, we can convert regular 
expressions to CFGs as follows:

S → Ab
A → Aa | ε



  

From Regexes to CFGs

● CFGs don't have the Kleene star, 
parenthesized expressions, or internal | 
operators.

● However, we can convert regular 
expressions to CFGs as follows:

S → a(b|c*)



  

From Regexes to CFGs

● CFGs don't have the Kleene star, 
parenthesized expressions, or internal | 
operators.

● However, we can convert regular 
expressions to CFGs as follows:

S → aX
X → b | C
C → Cc | ε



  

Regular Languages and CFLs

● Theorem: Every regular language is 
context-free.

● Proof Idea: Use the construction from 
the previous slides to convert a regular 
expression for L into a CFG for L. ■



  

The Language of a Grammar

● Consider the following CFG G:

S → aSb | ε
● What strings can this generate?

 ℒ(G) = { anbn | n ∈ ℕ }   

Sa baaa b b baa b b



  

Regular
Languages CFLs

All Languages



  

http://xkcd.com/1090/



  

Designing CFGs

● Like designing DFAs, NFAs, and regular 
expressions, designing CFGs is a craft.

● When thinking about CFGs:
● Think recursively: Build up bigger 

structures from smaller ones.
● Have a construction plan: Know in what 

order you will build up the string.



  

Designing CFGs

● Let Σ = {a, b} and let L = {w ∈ Σ* | w is 
a palindrome }

● We can design a CFG for L by thinking 
inductively:
● Base case: ε, a, and b are palindromes.

● If ω is a palindrome, then aωa and bωb are 
palindromes.

S → ε | a | b | aSa | bSb



  

Designing CFGs

● Let Σ = {(, )} and let L = {w ∈ Σ* | w is a 
string of balanced parentheses }

● We can think about how we will build 
strings in this language as follows:
● The empty string is balanced.
● Any two strings of balanced parentheses can be 

concatenated.
● Any string of balanced parentheses can be 

parenthesized.

S → SS | (S) | ε



  

Designing CFGs: Watch Out!

● When designing CFGs, remember that each 
nonterminal can be expanded out 
independently of the others.

● Let Σ = {a, ≟} and let L = {an≟an | n ∈ ℕ }. Is 
the following a CFG for L?
● S → X≟X

● X → aX | ε

S
⇒ X≟X
⇒ aX≟X
⇒ aaX≟X
⇒ aa≟X
⇒ aa a≟ X
⇒ aa a≟



  

Finding a Build Order

● Let Σ = {a, ≟} and let L = {an≟an | n ∈ ℕ }.

● To build a CFG for L, we need to be more 
clever with how we construct the string.

● Idea: Build from the ends inward.

● Gives this grammar: S → aSa | ≟

S
⇒ aSa
⇒ aaSaa
⇒ aaaSaaa
⇒ aaa aaa≟



  

Designing CFGs: A Caveat

● Let Σ = {l, r} and let L = {w ∈ Σ* | w 
has the same number of l's and r's }

● Is this a grammar for L?

S → lSr | rSl | ε

● Can you derive the string lrrl?



  

Designing CFGs: A Caveat

● When designing a CFG for a language, 
make sure that it
● generates all the strings in the language and
● never generates a string outside the 

language.

● The first of these can be tricky – make 
sure to test your grammars!

● You'll design your own CFG for this 
language on the next problem set.



  

CFG Caveats II

● Is the following grammar a CFG for the 
language { anbn | n ∈ ℕ }?

S → aSb
● What strings can you derive?

● Answer: None!
● What is the language of the grammar?

● Answer: Ø
● When designing CFGs, make sure your 

recursion actually terminates!



  

Parse Trees



  

Parse Trees

⇒ E

⇒ E Op E

⇒ int Op E

⇒ int * E

⇒ int * (E)

⇒ int * (E Op E)

⇒ int * (int Op E)

⇒ int * (int + E)

⇒ int * (int + int)

E

E EOp

int *

E

( int + int )

E EOp

E → E Op E | int | (E)
Op → + | * | - | /



  

Parse Trees

● A parse tree is a tree encoding the steps 
in a derivation.

● Each internal node is labeled with a 
nonterminal.

● Each leaf node is labeled with a terminal.
● Reading the leaves from left to right 

gives the string that was produced.



  

Parsing

● Given a context-free grammar, the 
problem of parsing a string is to find a 
parse tree for that string.

● Applications to compilers:
● Given a CFG describing the structure of a 

programming language and an input 
program (string), recover the parse tree.

● The parse tree represents the structure of 
the program – what's declared where, how 
expressions nest, etc.



  

Challenges in Parsing



  

E

E EOp

int * int + int

E EOp

E

E EOp

int * int

E EOp

+ int

A Serious Problem

int * (int + int) (int * int) + int

E → E Op E | int
Op → + | * | - | /



  

Ambiguity

● A CFG is said to be ambiguous if there is 
at least one string with two or more parse 
trees.

● Note that ambiguity is a property of 
grammars, not languages: there can be 
multiple grammars for the same language, 
where some are ambiguous and some 
aren't.

● Some languages are inherently ambiguous: 
there are no unambiguous grammars for 
those languages.



  

Resolving Ambiguity

● Designing unambiguous grammars is 
tricky and requires planning from the 
start.

● It's hard to start with an ambiguous 
grammar and to manually massage it into 
an unambiguous one.

● Often, have to throw the whole thing out 
and start over.



  

Resolving Ambiguity

● We have just seen that this grammar is 
ambiguous:

      E → E Op E | int

       Op → + | - | * | /

● Goals:
● Eliminate the ambiguity from the grammar.
● Make the only parse trees for the grammar 

the ones corresponding to operator 
precedence.



  

Operator Precedence

● Can often eliminate ambiguity from 
grammars with operator precedence 
issues by building precedences into the 
grammar.

● Since * and / bind more tightly than + 
and -, think of an expression as a series 
of “blocks” of terms multiplied and 
divided together joined by +s and -s.

int int* * int int+ * int - int



  

Operator Precedence

● Can often eliminate ambiguity from 
grammars with operator precedence 
issues by building precedences into the 
grammar.

● Since * and / bind more tightly than + 
and -, think of an expression as a series 
of “blocks” of terms multiplied and 
divided together joined by +s and -s.

int int* * int int+ * int - int



  

Rebuilding the Grammar

● Idea: Force a construction order where
● First decide how many “blocks” there will be 

of terms joined by + and -.
● Then, expand those blocks by filling in the 

integers multiplied and divided together.

● One possible grammar:

   S → T | T + S | T - S

   T → int | int * T | int / T



  

An Unambiguous Grammar

int * int + int

S → T | T + S | T – S
T → int | int * T | int / T

T

T

T

S

S

int + int * int

S

T

S

T

T



  

Summary

● Context-free grammars give a formalism 
for describing languages by generating 
all the strings in the language.

● Context-free languages are a strict 
superset of the regular languages.

● CFGs can be designed by finding a “build 
order” for a given string.

● Ambiguous grammars generate some 
strings with two different parse trees.



  

Next Time

● Turing Machines
● What does a computer with unbounded 

memory look like?
● How do you program them?
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