Context-Free Grammars

Describing Languages

- We've seen two models for the regular languages:
- Automata accept precisely the strings in the language.
- Regular expressions describe precisely the strings in the language.
- Finite automata recognize strings in the language.
- Perform a computation to determine whether a specific string is in the language.
- Regular expressions match strings in the language.
- Describe the general shape of all strings in the language.

Context-Free Grammars

- A context-free grammar (or CFG) is an entirely different formalism for defining a class of languages.
- Goal: Give a procedure for listing off all strings in the language.
- CFGs are best explained by example...

Arithmetic Expressions

- Suppose we want to describe all legal arithmetic expressions using addition, subtraction, multiplication, and division.
- Here is one possible CFG:

$$
\begin{aligned}
& \mathbf{E} \rightarrow \text { int } \\
& \mathbf{E} \rightarrow \mathbf{E} \mathbf{O p} \mathbf{E} \\
& \mathbf{E} \rightarrow(\mathbf{E}) \\
& \mathbf{O p} \rightarrow+ \\
& \mathbf{O p} \rightarrow- \\
& \mathbf{O p} \rightarrow \text { * } \\
& \mathbf{O p} \rightarrow /
\end{aligned}
$$

Arithmetic Expressions

- Suppose we want to describe all legal arithmetic expressions using addition, subtraction, multiplication, and division.
- Here is one possible CFG:

$$
\begin{aligned}
& \mathbf{E} \rightarrow \text { int } \\
& \mathbf{E} \rightarrow \mathbf{E} \mathbf{O p} \mathbf{E} \\
& \mathbf{E} \rightarrow(\mathbf{E}) \\
& \mathbf{O p} \rightarrow+ \\
& \mathbf{O p} \rightarrow- \\
& \mathbf{O p} \rightarrow \text { * } \\
& \mathbf{O p} \rightarrow /
\end{aligned}
$$

$$
\begin{aligned}
& \text { E } \\
\Rightarrow & \text { E Op E } \\
\Rightarrow & \text { E Op int } \\
\Rightarrow & \text { int Op int } \\
\Rightarrow & \text { int / int }
\end{aligned}
$$

Context-Free Grammars

- Formally, a context-free grammar is a collection of four objects:
- A set of nonterminal symbols (also called variables),
- A set of terminal symbols (the alphabet of the CFG)
- A set of production rules saying how each nonterminal can be converted by a string of terminals and nonterminals, and
- A start symbol (which must be a nonterminal) that begins the derivation.
$E \rightarrow$ int
$\mathrm{E} \rightarrow \mathrm{EOp} \mathrm{E}$
$E \rightarrow(E)$
Op $\rightarrow+$
Op \rightarrow -
Op \rightarrow *
Op \rightarrow /

Some CFG Notation

- Capital letters in Bold Red Uppercase will represent nonterminals.
- i.e. A, B, C, D
- Lowercase letters in blue monospace will represent terminals.
- i.e. $\mathrm{t}, \mathrm{u}, \mathrm{v}$, w
- Lowercase Greek letters in gray italics will represent arbitrary strings of terminals and nonterminals.
- i.e. $\boldsymbol{\alpha}, \boldsymbol{\nu}, \boldsymbol{\omega}$

A Notational Shorthand

$$
\begin{aligned}
& \text { E } \rightarrow \text { int | E Op E | (E) } \\
& \text { Op } \rightarrow+|-|*| /
\end{aligned}
$$

Derivations

$$
\begin{aligned}
& \begin{array}{l}
\text { E } \rightarrow \text { E Op E } \mid \text { int } \mid(E) \\
O p \rightarrow+|*|-\mid /
\end{array} \\
& \text { E } \\
& \Rightarrow \text { E Op E } \\
& \Rightarrow \text { E Op (E) } \\
& \Rightarrow \text { E Op (E Op E) } \\
& \Rightarrow \text { E * (E Op E) } \\
& \Rightarrow \text { int * (E Op E) } \\
& \Rightarrow \text { int * (int Op E) } \\
& \Rightarrow \text { int * (int Op int) } \\
& \Rightarrow \text { int * (int + int) }
\end{aligned}
$$

- A sequence of steps where nonterminals are replaced by the right-hand side of a production is called a derivation.
- If string \boldsymbol{a} derives string $\boldsymbol{\omega}$, we write $\boldsymbol{a}=^{*} \boldsymbol{\omega}$.
- In the example on the left, we see $\mathbf{E} \Rightarrow^{*}$ int * (int + int).

The Language of a Grammar

- If G is a CFG with alphabet Σ and start symbol \mathbf{S}, then the language of \boldsymbol{G} is the set

$$
\mathscr{L}(G)=\left\{\omega \in \Sigma^{*} \mid \mathbf{S} \Rightarrow^{*} \omega\right\}
$$

- That is, $\mathscr{L}(G)$ is the set of strings derivable from the start symbol.
- Note: $\boldsymbol{\omega}$ must be in Σ^{*}, the set of strings made from terminals. Strings involving nonterminals aren't in the language.

More Context-Free Grammars

- Chemicals!
$\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{5} \mathrm{~S}$
$\mathrm{Cu}_{3}\left(\mathrm{CO}_{3}\right)_{2}(\mathrm{OH})_{2}$ MnO_{4}^{-}
\mathbf{S}^{2-}

Form \rightarrow Cmp | Cmp Ion
Cmp \rightarrow Term | Term Num | Cmp Cmp
Term \rightarrow Elem \| (Cmp)
Elem $\rightarrow \mathrm{H}|\mathrm{He}| \mathrm{Li}|\mathrm{Be}| \mathrm{B}|\mathrm{C}| \ldots$
Ion $\rightarrow+\mid$ - IonNum $+\mid$ IonNum -
IonNum $\rightarrow 2|3| 4 \mid \ldots$
Num $\rightarrow 1$ | IonNum

CFGs for Chemistry

Form $\rightarrow \mathbf{C m p} \mid \mathbf{C m p}$ Ion
Cmp \rightarrow Term | Term Num | Cmp Cmp
Term \rightarrow Elem \| (Cmp)
Elem $\rightarrow \mathrm{H}|\mathrm{He}| \mathrm{Li}|\mathrm{Be}| \mathrm{B}|\mathrm{C}| \ldots$
Ion $\rightarrow+\mid$ - IonNum + | IonNum -
IonNum $\rightarrow 2|3| 4 \mid \ldots$
Num $\rightarrow 1$ | IonNum

Form
= Cmp Ion
= Cmp Cmp Ion
= Cmp Term Num Ion
\Rightarrow Term Term Num Ion
\Rightarrow Elem Term Num Ion
\Rightarrow Mn Term Num Ion
\Rightarrow Mn Elem Num Ion
= MnO Num Ion
\Rightarrow MnO IonNum Ion
$\Rightarrow \mathrm{MnO}_{4}$ Ion
$\Rightarrow \mathrm{MnO}_{4}^{-}$

CFGs for Programming Languages

```
BLOCK }->\mathrm{ STMT
    | { STMTS }
STMTS }->
    | STMT STMTS
STMT -> EXPR;
    | if (EXPR) BLOCK
    while (EXPR) BLOCK
    | do BLOCK while (EXPR);
    BLOCK
    ...
EXPR ->
var
const
EXPR + EXPR
EXPR - EXPR
EXPR = EXPR
```


Context-Free Languages

- A language L is called a context-free language (or CFL) iff there is a CFG G such that $L=\mathscr{L}(G)$.
- Questions:
- What languages are context-free?
- How are context-free and regular languages related?

From Regexes to CFGs

- CFGs don't have the Kleene star, parenthesized expressions, or internal | operators.
- However, we can convert regular expressions to CFGs as follows:

$$
\mathrm{S} \rightarrow \mathrm{a} * \mathrm{~b}
$$

From Regexes to CFGs

- CFGs don't have the Kleene star, parenthesized expressions, or internal | operators.
- However, we can convert regular expressions to CFGs as follows:

$$
\begin{aligned}
& \mathbf{S} \rightarrow \mathbf{A b} \\
& \mathbf{A} \rightarrow \mathbf{A a} \mid \varepsilon
\end{aligned}
$$

From Regexes to CFGs

- CFGs don't have the Kleene star, parenthesized expressions, or internal | operators.
- However, we can convert regular expressions to CFGs as follows:

$$
S \rightarrow a(b \mid c *)
$$

From Regexes to CFGs

- CFGs don't have the Kleene star, parenthesized expressions, or internal | operators.
- However, we can convert regular expressions to CFGs as follows:

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{aX} \\
& \mathrm{X} \rightarrow \mathrm{~b} \mid \mathrm{C} \\
& \mathrm{C} \rightarrow \mathrm{Cc} \mid \varepsilon
\end{aligned}
$$

Regular Languages and CFLs

- Theorem: Every regular language is context-free.
- Proof Idea: Use the construction from the previous slides to convert a regular expression for L into a CFG for L.

The Language of a Grammar

- Consider the following CFG G:

$$
\mathrm{S} \rightarrow \mathrm{aSb} \mid \varepsilon
$$

- What strings can this generate?

$$
\mathscr{L}(G)=\left\{\mathbf{a}^{n} \mathbf{b}^{n} \mid n \in \mathbb{N}\right\}
$$

All Languages

http://xkcd.com/1090/

Designing CFGs

- Like designing DFAs, NFAs, and regular expressions, designing CFGs is a craft.
- When thinking about CFGs:
- Think recursively: Build up bigger structures from smaller ones.
- Have a construction plan: Know in what order you will build up the string.

Designing CFGs

- Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$ and let $L=\left\{w \in \Sigma^{*} \mid w\right.$ is a palindrome \}
- We can design a CFG for L by thinking inductively:
- Base case: ε, a, and b are palindromes.
- If ω is a palindrome, then a ω a and b $\omega \mathrm{b}$ are palindromes.

$$
\mathrm{S} \rightarrow \varepsilon|\mathrm{a}| \mathrm{b}|\mathrm{aSa}| \mathrm{bSb}
$$

Designing CFGs

- Let $\Sigma=\{()$,$\} and let L=\left\{w \in \Sigma^{*} \mid w\right.$ is a string of balanced parentheses $\}$
- We can think about how we will build strings in this language as follows:
- The empty string is balanced.
- Any two strings of balanced parentheses can be concatenated.
- Any string of balanced parentheses can be parenthesized.

$$
S \rightarrow S S|(S)| \varepsilon
$$

Designing CFGs: Watch Out!

- When designing CFGs, remember that each nonterminal can be expanded out independently of the others.
- Let $\Sigma=\{\mathbf{a}, \stackrel{?}{=}\}$ and let $L=\left\{\mathbf{a}^{n} \stackrel{\underline{?}}{\underline{=}} \mathbf{a}^{n} \mid n \in \mathbb{N}\right\}$. Is the following a CFG for L ?
- $\mathbf{S} \rightarrow \mathbf{X}=\underline{\mathbf{I}} \mathbf{X}$
- $\mathbf{X} \rightarrow \mathbf{a X} \mid \varepsilon$

$$
\begin{aligned}
& \text { S } \\
& \Rightarrow \mathrm{X}^{?} \mathrm{P} \\
& \Rightarrow \mathrm{aX}^{2}=\mathbf{X} \\
& \Rightarrow \mathrm{aaX}{ }^{\underline{3}} \mathbf{X} \\
& \Rightarrow a a^{2}=\mathbf{X} \\
& \Rightarrow a a^{3}=\mathrm{aX} \\
& \Rightarrow a a^{3}=\mathrm{a}
\end{aligned}
$$

Finding a Build Order

- Let $\Sigma=\{a, \stackrel{?}{=}\}$ and let $L=\left\{a^{n}{ }^{n} a^{n} \mid n \in \mathbb{N}\right\}$.
- To build a CFG for L, we need to be more clever with how we construct the string.
- Idea: Build from the ends inward.
- Gives this grammar: $\mathrm{S} \rightarrow \mathrm{aSa} \mid \stackrel{?}{=}$

$$
\begin{aligned}
& \mathrm{S} \\
\Rightarrow & \mathrm{aSa} \\
\Rightarrow & \mathrm{aaSaa} \\
\Rightarrow & \text { aaaSaaa } \\
\Rightarrow & \text { aaa }{ }^{\frac{?}{2}} \mathrm{aaa}
\end{aligned}
$$

Designing CFGs: A Caveat

- Let $\Sigma=\{\mathbf{1}, \mathbf{r}\}$ and let $L=\left\{w \in \Sigma^{*} \mid w\right.$ has the same number of 1 's and r 's \}
- Is this a grammar for L ?

$$
\mathrm{S} \rightarrow 1 \mathrm{Sr}|r \mathrm{~S} 1| \varepsilon
$$

- Can you derive the string lrrı?

Designing CFGs: A Caveat

- When designing a CFG for a language, make sure that it
- generates all the strings in the language and
- never generates a string outside the language.
- The first of these can be tricky - make sure to test your grammars!
- You'll design your own CFG for this language on the next problem set.

CFG Caveats II

- Is the following grammar a CFG for the language $\left\{\mathbf{a}^{n} \mathbf{b}^{n} \mid n \in \mathbb{N}\right\}$?

$$
\mathrm{S} \rightarrow \mathrm{aSb}
$$

- What strings can you derive?
- Answer: None!
- What is the language of the grammar?
- Answer: Ø
- When designing CFGs, make sure your recursion actually terminates!

Parse Trees

Parse Trees

$$
\begin{gathered}
\mathbf{E} \rightarrow \mathbf{E} \text { Op E } \mid \text { int } \mid(\mathbf{E}) \\
\mathbf{O p} \rightarrow+|*|-\mid /
\end{gathered}
$$

Parse Trees

- A parse tree is a tree encoding the steps in a derivation.
- Each internal node is labeled with a nonterminal.
- Each leaf node is labeled with a terminal.
- Reading the leaves from left to right gives the string that was produced.

Parsing

- Given a context-free grammar, the problem of parsing a string is to find a parse tree for that string.
- Applications to compilers:
- Given a CFG describing the structure of a programming language and an input program (string), recover the parse tree.
- The parse tree represents the structure of the program - what's declared where, how expressions nest, etc.

Challenges in Parsing

A Serious Problem

$$
\begin{aligned}
& \text { E } \rightarrow \text { Ep E } \mid \text { int } \\
& \text { Op } \rightarrow+|*|-\mid /
\end{aligned}
$$

Ambiguity

- A CFG is said to be ambiguous if there is at least one string with two or more parse trees.
- Note that ambiguity is a property of grammars, not languages: there can be multiple grammars for the same language, where some are ambiguous and some aren't.
- Some languages are inherently ambiguous: there are no unambiguous grammars for those languages.

Resolving Ambiguity

- Designing unambiguous grammars is tricky and requires planning from the start.
- It's hard to start with an ambiguous grammar and to manually massage it into an unambiguous one.
- Often, have to throw the whole thing out and start over.

Resolving Ambiguity

- We have just seen that this grammar is ambiguous:

$$
\begin{aligned}
& \text { E } \rightarrow \text { Op E } \mid \text { int } \\
& \text { Op } \rightarrow+|-|*| /
\end{aligned}
$$

- Goals:
- Eliminate the ambiguity from the grammar.
- Make the only parse trees for the grammar the ones corresponding to operator precedence.

Operator Precedence

- Can often eliminate ambiguity from grammars with operator precedence issues by building precedences into the grammar.
- Since * and / bind more tightly than + and -, think of an expression as a series of "blocks" of terms multiplied and divided together joined by +s and -s .
int * int * int + int * int - int

Operator Precedence

- Can often eliminate ambiguity from grammars with operator precedence issues by building precedences into the grammar.
- Since * and / bind more tightly than + and -, think of an expression as a series of "blocks" of terms multiplied and divided together joined by +s and -s .
int * int * int + int * int - int

Rebuilding the Grammar

- Idea: Force a construction order where
- First decide how many "blocks" there will be of terms joined by + and -.
- Then, expand those blocks by filling in the integers multiplied and divided together.
- One possible grammar:

$$
\begin{aligned}
& \mathbf{S} \rightarrow \mathbf{T}|\mathrm{T}+\mathrm{S}| \mathrm{T}-\mathbf{S} \\
& \mathrm{T} \rightarrow \text { int } \mid \text { int * } \mathrm{T} \mid \text { int } / \mathrm{T}
\end{aligned}
$$

An Unambiguous Grammar

$$
\begin{gathered}
\mathbf{S} \rightarrow \mathbf{T}|\mathbf{T}+\mathbf{S}| \mathbf{T}-\mathbf{S} \\
\mathbf{T} \rightarrow \text { int } \mid \text { int * } \mathbf{T} \mid \text { int } / \mathbf{T}
\end{gathered}
$$

Summary

- Context-free grammars give a formalism for describing languages by generating all the strings in the language.
- Context-free languages are a strict superset of the regular languages.
- CFGs can be designed by finding a "build order" for a given string.
- Ambiguous grammars generate some strings with two different parse trees.

Next Time

- Turing Machines
- What does a computer with unbounded memory look like?
- How do you program them?

