
  

Nonregular Languages



  

Theorem: The following are all equivalent:
 

  · L is a regular language.
  · There is a DFA D such that (ℒ D) = L.
  · There is an NFA N such that (ℒ N) = L.
  · There is a regular expression R such that (ℒ R) = L.



  

Buttons as Finite-State Machines:

http://cs103.stanford.edu/button-fsm/

http://cs103.stanford.edu/button-fsm/


  

http://www.tti.unipa.it/~gneglia/ip_networks06/slides/TCPIP_State_Transition_Diagram.pdf

http://www.tti.unipa.it/~gneglia/ip_networks06/slides/TCPIP_State_Transition_Diagram.pdf


  

Computers as Finite Automata

● My computer has 8GB of RAM and 
750GB of hard disk space.

● That's a total of 758GB of memory, which 
is 6,511,170,420,736 bits.

● There are “only” 26,511,170,420,736 possible 
configurations of my computer.

● Could in principle build a DFA 
representing my computer, where there's 
one symbol per type of input the 
computer can receive.



  

A Powerful Intuition

● Regular languages correspond to 
problems that can be solved with 
finite memory.
● Only need to remember one of finitely many 

things.

● Nonregular languages correspond to 
problems that cannot be solved with 
finite memory.
● May need to remember one of infinitely 

many different things.



  

A Sample Language

● Let Σ = {a, b} and consider the following 
language:

L = {anbn | n ∈ ℕ }     

● That is, L is the language of all strings of 
n a's followed by n b's:

{ ε, ab, aabb, aaabbb, aaaabbbb, … }

● Is this language regular?



  

L = { anbn | n ∈ ℕ }

● Claim: When any DFA for L is run on any two of 
the strings ε, a, aa, aaa, aaaa, etc., the DFA must 
end in different states.

● Suppose an and am end up in the same state, where 
n ≠ m.

● Then anbn and ambn will end up in the same state. 
(Why?)

● The DFA will either accept a string not in the 
language or reject a string in the language, which 
it shouldn't be able to do.

● Can't place all these strings into different 
states; there are only finitely many states!



  

Theorem: The language L = { anbn | n ∈ ℕ } is not regular.

Proof: First, we'll prove that if D is a DFA for L, then when D is
run on any two different strings an and am, the DFA D must
end in different states. We proceed by contradiction. Suppose
D is a DFA for L where D ends in the same state when run on
two distinct strings an and am. Since D is deterministic, D
must end in the same state when run on strings anbn and ambn.
If this state is accepting, then D accepts ambn, which is not in
L. Otherwise, the state is rejecting, so D rejects anbn, which is
in L. Both cases contradict that D is a DFA for L, so our
assumption wrong. Thus D must end in different states.

Now we'll prove the theorem. Assume for the sake of 
contradiction that L is regular. Since L is regular, there must 
be a DFA D for L. Let n be the number of states in D. When D 
in run on the strings a0, a1 …, and an, by the pigeonhole 
principle since there are n + 1 strings and n states, at least 
two of these strings must end in the same state. Because of
the result proven above, we know this is impossible.

We have reached a contradiction, so our assumption was 
wrong. Thus L is not regular. ■
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Why This Matters

● We knew that not all languages are regular, 
and now we have a concrete example of a 
nonregular language!

● Intuition behind the proof:
● Find infinitely many strings that need to be in 

their own states.
● Use the pigeonhole principle to show that at 

least two of them must be in the same state.
● Conclude the language is not regular.



  

Practical Concerns

● Webpages are specified using HTML, a markup 
language where text is decorated with tags.

● Tags can nest arbitrarily but must be balanced:

<div><div>...<div> </div></div>...</div>

● Using similar logic to the previous proof, can 
prove that the language

{ <div>n</div>n | n ∈ ℕ }

is not regular.
● There is no regular expression that can parse 

HTML documents!



  

Another Language

● Consider the following language L over 
the alphabet Σ = {a, b, ≟}:

L = { w≟w | w ∈ {a, b}*}  

● L is the language all strings consisting of 
the same string of a's and b's twice, with 
a ≟ symbol in-between.

● Examples:

ab ab≟  ∈ L  bbb bbb≟  ∈ L  ≟ ∈ L

ab ba≟  ∉ L  bbb aaa≟  ∉ L b≟ ∉ L



  

Another Language

L = { w≟w | w ∈ {a, b}*}  

● This language corresponds to the 
following problem:

Given strings x and y, does x = y? 
● Justification: x = y iff x≟y ∈ L.

● Question: Is this language regular? 



  

L = { w≟w | w ∈ {a, b}*}

● Claim: Any DFA for L must place the strings ε, 
a, aa, aaa, aaaa, etc. into separate states.

● Suppose an and am end up in the same state, 
where n ≠ m.

● Then an a≟ n and am a≟ n will end up in the same 
state.

● The DFA will either accept a string not in the 
language or reject a string in the language, 
which it shouldn't be able to do.

● But that's impossible: we only have finitely 
many states!
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The General Pattern

● These previous two proofs have the following 
shape:
● Find an infinite collection of strings that cannot 

end up in the same state in any DFA for a 
language L.

● Conclude that since any DFA for L has only 
finitely many states, that L cannot be regular.

● Two questions:
● What makes the strings unable to end in the 

same state?
● Is there a bigger picture here?



  

Distinguishability

● Let L be a language over Σ.

● Two strings x, y ∈ Σ* are called 
distinguishable relative to L iff there is 
some string w ∈ Σ* where xw ∈ L and yw ∉ L.

● In other words, there is some (possibly empty) 
string w you can append to x and to y where 
one resulting string is in L and one is not.

● Intuitively: x and y can't end up in the same 
state in any DFA for L; otherwise, the DFA will 
be wrong on at least one of xw and yw.



  

Theorem (Myhill-Nerode): Let L be a
language over Σ. If there is a set S ⊆ Σ*
with the following properties:

 · S is infinite (i.e. it contains
  infinitely many strings).

  · if x, y ∈ S and x ≠ y, then x and y
   are distinguishable relative to L.

 then L is not regular.



  

Proof: Let L be an arbitrary language over Σ. Let S ⊆ Σ* be
an infinite set where for any distinct x, y ∈ S, the strings x
and y are distinguishable relative to L. We will prove that
L cannot be regular.

We proceed by contradiction; assume L is regular. Since L 
is regular, there is some DFA D whose language is L. Let 
the number of states in D be n. Choose any n + 1 different 
strings from S; since S is infinite, such strings must exist. 
By the pigeonhole principle, since D has n states and there 
are n + 1 strings, at least two of these strings must end in 
the same state when run through D; call them x and y.

Since x and y are distinguishable relative to L, there must 
be some string w such that xw ∈ L and yw ∉ L. Because D 
is deterministic and D ends in the same state when run on 
x and y, the DFA D must end in the same state when run 
on xw and yw. If that state is accepting, then D accepts 
yw, but yw ∉ L. If that state is rejecting, then D rejects xw, 
but xw ∈ L. In both cases, we reach a contradiction. Thus 
our assumption was wrong and L must be nonregular. ■
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yw, but yw ∉ L. If that state is rejecting, then D rejects xw, 
but xw ∈ L. In both cases, we reach a contradiction. Thus 
our assumption was wrong and L must be nonregular. ■
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Using Myhill-Nerode

● To prove that a language L is not regular 
using the Myhill-Nerode theorem, do the 
following:
● Find an infinite set of strings.
● Prove that any two distinct strings in that set 

are distinguishable relative to L.

● The tricky part is picking the right 
strings, but these proofs can be very 
short.



  

Theorem: The language L = { anbn | n ∈ ℕ } is not
regular.

Proof: Let S = { an | n ∈ ℕ }. This set is infinite
because it contains one string for each natural
number. Now, consider any strings an, am ∈ S
where an ≠ am. Then anan ∈ L and anam ∉ L, so an

and am are distinguishable relative to L. Thus S is
an infinite set of strings distinguishable
relative to L. Therefore, by the Myhill-Nerode
Theorem, L is not regular. ■



  

Theorem: The language L = { anbn | n ∈ ℕ } is not
regular.

Proof: Let S = { an | n ∈ ℕ }. This set is infinite
because it contains one string for each natural
number. Now, consider any strings an, am ∈ S
where an ≠ am. Then anan ∈ L and anam ∉ L, so an

and am are distinguishable relative to L. Thus S is
an infinite set of strings distinguishable
relative to L. Therefore, by the Myhill-Nerode
Theorem, L is not regular. ■



  

Theorem: The language L = { anbn | n ∈ ℕ } is not
regular.

Proof: Let S = { an | n ∈ ℕ }. This set is infinite
because it contains one string for each natural
number. Now, consider any strings an, am ∈ S
where an ≠ am. Then anan ∈ L and anam ∉ L, so an

and am are distinguishable relative to L. Thus S is
an infinite set of strings distinguishable
relative to L. Therefore, by the Myhill-Nerode
Theorem, L is not regular. ■



  

Theorem: The language L = { anbn | n ∈ ℕ } is not
regular.

Proof: Let S = { an | n ∈ ℕ }. This set is infinite
because it contains one string for each natural
number. Now, consider any strings an, am ∈ S
where an ≠ am. Then anan ∈ L and anam ∉ L, so an

and am are distinguishable relative to L. Thus S is
an infinite set of strings distinguishable
relative to L. Therefore, by the Myhill-Nerode
Theorem, L is not regular. ■



  

Theorem: The language L = { anbn | n ∈ ℕ } is not
regular.

Proof: Let S = { an | n ∈ ℕ }. This set is infinite
because it contains one string for each natural
number. Now, consider any strings an, am ∈ S
where an ≠ am. Then anbn ∈ L and ambn ∉ L, so an

and am are distinguishable relative to L. Thus S is
an infinite set of strings distinguishable
relative to L. Therefore, by the Myhill-Nerode
Theorem, L is not regular. ■



  

Theorem: The language L = { anbn | n ∈ ℕ } is not
regular.

Proof: Let S = { an | n ∈ ℕ }. This set is infinite
because it contains one string for each natural
number. Now, consider any strings an, am ∈ S
where an ≠ am. Then anbn ∈ L and ambn ∉ L, so an

and am are distinguishable relative to L. Thus S is
an infinite set of strings distinguishable
relative to L. Therefore, by the Myhill-Nerode
Theorem, L is not regular. ■



  

Theorem: The language L = { anbn | n ∈ ℕ } is not
regular.

Proof: Let S = { an | n ∈ ℕ }. This set is infinite
because it contains one string for each natural
number. Now, consider any strings an, am ∈ S
where an ≠ am. Then anbn ∈ L and ambn ∉ L, so an

and am are distinguishable relative to L. Thus S is
an infinite set of strings distinguishable
relative to L. Therefore, by the Myhill-Nerode
Theorem, L is not regular. ■



  

Theorem: The language L = { anbn | n ∈ ℕ } is not
regular.

Proof: Let S = { an | n ∈ ℕ }. This set is infinite
because it contains one string for each natural
number. Now, consider any strings an, am ∈ S
where an ≠ am. Then anbn ∈ L and ambn ∉ L, so an

and am are distinguishable relative to L. Thus S is
an infinite set of strings distinguishable
relative to L. Therefore, by the Myhill-Nerode
Theorem, L is not regular. ■



  

Theorem: The language L = { w≟w | w ∈ {a, b}*} is
not regular.

Proof: Let S = { an | n ∈ ℕ }. This set is infinite
because it contains one string for each natural
number. Now, consider any an, am ∈ S where
an ≠ am. Then an a≟ n ∈ L and am a≟ n ∉ L, so an and am

are distinguishable relative to L. Thus S is an
infinite set of strings that are all distinguishable
relative to L. Therefore, by the Myhill-Nerode
Theorem, L is not regular. ■



  

Why it Works

● The Myhill-Nerode Theorem is, 
essentially, a generalized version of the 
argument from before.
● If there are infinitely many distinguishable 

strings and only finitely many states, two 
distinguishable strings must end up in the 
same state.

● Therefore, two strings that cannot be in the 
same state must end in the same state.

● Proof focuses on the infinite set of 
strings, not the DFA mechanics.



  

Announcements!



  

Midterm Grading

● The TAs and I are going to try to get the 
midterms graded and returned at the end of 
Monday's lecture.

● We'll try to get Problem Set 4 graded and 
returned sometime next week.

● We'll release midterm solutions on Monday 
along with statistics and common mistakes. If 
you're curious to learn the answer to any of the 
problems, please feel free to email us or stop 
by office hours!



  

Back to CS103!



  

Another Language

● Consider the following language L over 
the alphabet Σ = {a}:

L = { an | n is a power of two }  

● L is the language of all strings of a's 
whose lengths are powers of two:

L = { a, aa, aaaa, aaaaaaaa, … }

● Question: Is L regular?



  

Some Math

● Consider any two powers of two 2n and 2m 
where 2 ≤ 2n < 2m.

● Then
● 2n + 2n = 2n+1 is a power of two.
● 2m + 2n = 2n(2m-n + 1) is not a power of two, 

because 2m-n + 1 is an odd divisor of 2m + 2n.
● Idea: Take our infinite set of strings to be the set 

of all strings whose length is a power of two 
greater than or equal to 2.

● Show any pair of strings a2ⁿ, a2ᵐ in the set are 
distinguishable by showing a2ⁿ distinguishes them.



  

Theorem: L = { an | n is a power of two } is not regular.

Proof: Let S = { a2ⁿ | n ∈ ℕ }. This set is infinite
because it contains one string for each positive
natural number. Let a2ⁿ, a2ᵐ ∈ S be any two strings in S
where a2ⁿ ≠ a2ᵐ. Assume without loss of generality that
n < m, so 1 ≤ n < m.

Consider the strings a2ⁿa2ⁿ and a2ᵐa2ⁿ. The string a2ⁿa2ⁿ 

has length 2n+1, which is a power of two, so a2ⁿa2ⁿ ∈ L. 
However, string a2ᵐa2ⁿ has length 2m

 + 2n
 = 2n(2m-n

 + 1). 
Since m > n, we know 2m-n + 1 is odd, and so 2m + 2n 
is not a power of two because it has an odd factor. 
Thus a2ᵐa2ⁿ

 ∉ L, so a2ⁿ
 and a2ᵐ

 are distinguishable 
relative to L.

Since S is an infinite set of strings distinguishable 
relative to L, by the Myhill-Nerode Theorem L is not 
regular. ■
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 + 2n
 = 2n(2m-n

 + 1). 
Since m > n, we know 2m-n + 1 is odd, and so 2m + 2n 
is not a power of two because it has an odd factor. 
Thus a2ᵐa2ⁿ

 ∉ L, so a2ⁿ
 and a2ᵐ

 are distinguishable 
relative to L.

Since S is an infinite set of strings distinguishable 
relative to L, by the Myhill-Nerode Theorem L is not 
regular. ■



  

Theorem: L = { an | n is a power of two } is not regular.
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 ∉ L, so a2ⁿ
 and a2ᵐ

 are distinguishable 
relative to L.

Since S is an infinite set of strings distinguishable 
relative to L, by the Myhill-Nerode Theorem L is not 
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What Comes Next

● What does it mean to compute with 
infinite memory?

● What classes of languages lie beyond the 
regular languages?

● And how will we reason about them?
● We shall see!



  

Next Time

● Context-Free Languages
● Context-Free Grammars
● Generating Languages
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