Regular Expressions

Problem Set Four is due using a late period in the box up front.

Concatenation

• The concatenation of two languages L_1 and L_2 over the alphabet Σ is the language

$$L_1L_2 = \{ wx \in \Sigma^* \mid w \in L_1 \land x \in L_2 \}$$

- Intuitively, the set of all strings formed by concatenating some string from L_1 and some string from L_2 .
- Conceptually similar to the Cartesian product of two sets, only with strings.

Language Exponentiation

- We can define what it means to "exponentiate" a language as follows:
- $L^0 = \{ \epsilon \}$
 - The set containing just the empty string.
 - Idea: Any string formed by concatenating zero strings together is the empty string.
- $L^{n+1} = LL^n$
 - Idea: Concatenating (n+1) strings together works by concatenating n strings, then concatenating one more.

The Kleene Closure

 An important operation on languages is the Kleene Closure, which is defined as

$$L^* = \bigcup_{i=0}^{\infty} L^i$$

Mathematically:

$$w \in L^*$$
 iff $\exists n \in \mathbb{N}. \ w \in L^n$

• Intuitively, all possible ways of concatenating any number of copies of strings in *L* together.

Closure Properties

- The regular languages are closed under the following operations:
 - Complementation
 - Union
 - Intersection
 - Concatenation
 - Kleene closure

Another View of Regular Languages

Rethinking Regular Languages

- We currently have several tools for showing a language is regular.
 - Construct a DFA for it.
 - Construct an NFA for it.
 - Apply closure properties to existing languages.
- We have not spoken much of this last idea.

Constructing Regular Languages

- Idea: Build up all regular languages as follows:
 - Start with a small set of simple languages we already know to be regular.
 - Using closure properties, combine these simple languages together to form more elaborate languages.
- A bottom-up approach to the regular languages.

Regular Expressions

- Regular expressions are a family of descriptions that can be used to capture the regular languages.
- Often provide a compact and human-readable description of the language.
- Used as the basis for numerous software systems (Perl, flex, grep, etc.)

Atomic Regular Expressions

- The regular expressions begin with three simple building blocks.
- The symbol \emptyset is a regular expression that represents the empty language \emptyset .
- The symbol ϵ is a regular expression that represents the language $\{\epsilon\}$
 - This is not the same as Ø!
- For any $\mathbf{a} \in \Sigma$, the symbol \mathbf{a} is a regular expression for the language $\{\mathbf{a}\}$

Compound Regular Expressions

- We can combine together existing regular expressions in four ways.
- If R_1 and R_2 are regular expressions, R_1R_2 is a regular expression for the **concatenation** of the languages of R_1 and R_2 .
- If R_1 and R_2 are regular expressions, $R_1 \mid R_2$ is a regular expression for the **union** of the languages of R_1 and R_2 .
- If R is a regular expression, R^* is a regular expression for the **Kleene closure** of the language of R.
- If R is a regular expression, (R) is a regular expression with the same meaning as R.

Operator Precedence

Regular expression operator precedence:

$$(R)$$
 R^*
 R_1R_2
 $R_1 \mid R_2$

• So ab*c|d is parsed as ((a(b*))c)|d

Regular Expression Examples

- The regular expression trick|treat represents the regular language { trick, treat }
- The regular expression booo* represents the regular language { boo, booo, booo, ... }
- The regular expression candy! (candy!) *
 represents the regular language { candy!,
 candy!candy!, candy!candy!candy!, }

Regular Expressions, Formally

- The language of a regular expression is the language described by that regular expression.
- Formally:
 - $\mathcal{L}(\varepsilon) = \{\varepsilon\}$
 - $\mathcal{L}(\emptyset) = \emptyset$
 - $\mathscr{L}(\mathbf{a}) = \{\mathbf{a}\}$
 - $\mathcal{L}(R_1R_2) = \mathcal{L}(R_1) \mathcal{L}(R_2)$
 - $\mathscr{L}(R_1 \mid R_2) = \mathscr{L}(R_1) \cup \mathscr{L}(R_2)$
 - $\mathcal{L}(R^*) = \mathcal{L}(R)^*$
 - $\mathscr{L}((R)) = \mathscr{L}(R)$

Worthwhile activity: Apply this recursive definition to

a(b|c)((d))

and see what you get.

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains } 00 \text{ as a substring } \}$

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains } 00 \text{ as a substring } \}$

$$(0 | 1)*00(0 | 1)*$$

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains } 00 \text{ as a substring } \}$

```
(0 | 1)*00(0 | 1)*
```

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains } 00 \text{ as a substring } \}$

(0 | 1)*00(0 | 1)*

 $11011100101\\0000\\11111011110011111$

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains } 00 \text{ as a substring } \}$

```
(0 | 1)*00(0 | 1)*
```

 $\begin{matrix} 11011100101 \\ 0000 \\ 11111011110011111 \end{matrix}$

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains } 00 \text{ as a substring } \}$

 $\Sigma * 00\Sigma *$

 $\begin{matrix} 11011100101 \\ 0000 \\ 11111011110011111 \end{matrix}$

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid |w| = 4 \}$

```
Let \Sigma = \{0, 1\}
Let L = \{ w \in \Sigma^* \mid |w| = 4 \}
```

```
Let \Sigma = \{0, 1\}
Let L = \{ w \in \Sigma^* \mid |w| = 4 \}
```

The length of a string w is denoted | w|

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid |w| = 4 \}$

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid |w| = 4 \}$

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid |w| = 4 \}$


```
• Let \Sigma = \{0, 1\}
```

• Let
$$L = \{ w \in \Sigma^* \mid |w| = 4 \}$$


```
• Let \Sigma = \{0, 1\}
```

• Let
$$L = \{ w \in \Sigma^* \mid |w| = 4 \}$$

ΣΣΣΣ

```
0000
1010
1111
1000
```

```
• Let \Sigma = \{0, 1\}
```

• Let
$$L = \{ w \in \Sigma^* \mid |w| = 4 \}$$

 Σ^4

```
• Let \Sigma = \{0, 1\}
```

• Let
$$L = \{ w \in \Sigma^* \mid |w| = 4 \}$$

 Σ^4

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains at most one } 0 \}$

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains at most one } 0 \}$

$$1*(0 | \epsilon)1*$$

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains at most one } 0 \}$

$$1*(0 | \epsilon)1*$$

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains at most one } 0 \}$

$$1*(0 | \epsilon)1*$$

```
11110111
111111
0111
0
```

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains at most one } 0 \}$

$$1*(0 | \epsilon)1*$$

```
11110111
111111
0111
0
```

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains at most one } 0 \}$

```
1*0?1*
```

```
11110111
111111
0111
0
```

- Let $\Sigma = \{ a, .., \emptyset \}$, where a represents "some letter."
- Regular expression for email addresses:

- Let $\Sigma = \{ a, .., \emptyset \}$, where a represents "some letter."
- Regular expression for email addresses:

aa*(.aa*)*@aa*.aa*(.aa*)*

- Let $\Sigma = \{ a, .., e \}$, where a represents "some letter."
- Regular expression for email addresses:

aa*(.aa*)*@aa*.aa*(.aa*)*

- Let $\Sigma = \{ a, .., e \}$, where a represents "some letter."
- Regular expression for email addresses:

- Let $\Sigma = \{ a, .., e \}$, where a represents "some letter."
- Regular expression for email addresses:

```
aa*(.aa*)*@aa*.aa*(.aa*)*
```

- Let $\Sigma = \{ a, .., e \}$, where a represents "some letter."
- Regular expression for email addresses:

- Let $\Sigma = \{ a, .., e \}$, where a represents "some letter."
- Regular expression for email addresses:

```
a+ (.aa*)*@aa*.aa*(.aa*)*
```

- Let $\Sigma = \{ a, .., e \}$, where a represents "some letter."
- Regular expression for email addresses:

$$a^+$$
 (. a^+)* @ $a^+.a^+$ (. a^+)*

- Let $\Sigma = \{ a, .., \emptyset \}$, where a represents "some letter."
- Regular expression for email addresses:

$$a^+$$
 (. a^+)* @ $a^+.a^+$ (. a^+)*

- Let $\Sigma = \{ a, .., e \}$, where a represents "some letter."
- Regular expression for email addresses:

$$a^+$$
 (. a^+)* @ a^+ (. a^+)+

- Let $\Sigma = \{ a, .., \emptyset \}$, where a represents "some letter."
- Regular expression for email addresses:

$$a^{+}(.a^{+})*@a^{+}(.a^{+})^{+}$$

Shorthand Summary

- R^n is shorthand for $RR \dots R$ (n times).
- Σ is shorthand for "any character in Σ ."
- R? is shorthand for $(R \mid \varepsilon)$, meaning "zero or one copies of R."
- R^+ is shorthand for RR^* , meaning "one or more copies of R."

Break for Announcements!

Midterm Logistics

- Midterm is tomorrow, October 29, from 7PM - 10PM
- Room determined by last name:
 - A G: Go to **Gates B01**
 - H K: Go to Gates B03
 - L P: Go to **200-002**
 - Q V: Go to **420-041**
 - W Z: Go to **Herrin T175**

Your Questions

If you find that the function $f: A \to B$ is not surjective, have you proven that |A| < |B|? Or do you still need to do additional proof steps?

Problem Set 4 is due at 2:15PM with a late period.
Please submit it ASAP!

When writing a logic statement, do you have to include the universal or existential quantifier for every variable that you state? I thought you had to, but this one from lecture doesn't:

 $Tallest(x) \rightarrow \forall y. \ (x \neq y \rightarrow IsShorterThan(y, x))$

This example is a "sentence fragment" in first—order logic; without a definition of x, this isn't a valid statement. All variables need to be quantified.

"When writing first-order logic statements with quantifiers, which one out of the following would be correct?

$$\forall x \ P(x). \ \exists y. \ R(y)$$

or

$$\forall x. (P(x) \rightarrow \exists y. R(y))$$

If you find that the function $f: A \to B$ is not surjective, have you proven that |A| < |B|? Or do you still need to do additional proof steps?

$$f: \mathbb{N} \to \mathbb{N}$$

$$f(n) = 137$$

"What is the best thing to do to prepare for the exam between now and 7PM tomorrow?"

"Is there some mathematical automaton that can determine whether or not two first-order logical statements are equivalent?"

More on that later in the quarter...

Back to Regular Expressions!

The Power of Regular Expressions

Theorem: If R is a regular expression, then $\mathcal{L}(R)$ is regular.

Proof idea: Show how to convert a regular expression into an NFA.

A Marvelous Construction

- The following theorem proves the language of any regular expression is regular:
- *Theorem:* For any regular expression *R*, there is an NFA *N* such that

$$\mathscr{L}(R) = \mathscr{L}(N)$$

- *N* has exactly one accepting state.
- *N* has no transitions into its start state.
- N has no transitions out of its accepting state.

A Marvelous Construction

The following theorem proves the language of any regular expression is regular:

Theorem: For any regular expression R, there is an NFA N such that

$$\mathscr{L}(R) = \mathscr{L}(N)$$

- *N* has exactly one accepting state.
- N has no transitions into its start state.
- N has no transitions out of its accepting state.

A Marvelous Construction

The following theorem any regular expression

Theorem: For any reguis an NFA N such that

$$\mathscr{L}(R) = \mathscr{L}(N)$$

These are stronger requirements than are necessary for a normal NFA. We enforce these rules to simplify the construction.

- N has exactly one accepting state.
- N has no transitions into its start state.
- N has no transitions out of its accepting state.

Base Cases

Automaton for ε

Automaton for Ø

Automaton for single character a

Construction for $R_1 \mid R_2$

Construction for $R_1 \mid R_2$

Construction for $R_1 \mid R_2$

Why This Matters

- Many software tools work by matching regular expressions against text.
- One possible algorithm for doing so:
 - Convert the regular expression to an NFA.
 - (Optionally) Convert the NFA to a DFA using the subset construction.
 - Run the text through the finite automaton and look for matches.
- Runs extremely quickly!

The Power of Regular Expressions

Theorem: If L is a regular language, then there is a regular expression for L.

This is not obvious!

Proof idea: Show how to convert an arbitrary NFA into a regular expression.

Key idea: Label transitions with arbitrary regular expressions.

Key idea: If we can convert any NFA into something that looks like this, we can easily read off the regular expression.

Could we eliminate this state from the NFA?

Note: We're using concatenation and Kleene closure in order to skip this state.

Note: We're using union to combine these transitions together.

 $R_{11}^* R_{12} (R_{22} | R_{21}^* R_{11}^* R_{12}^*)^* \epsilon$

$$R_{11}^* R_{12} (R_{22} | R_{21}^* R_{11}^* R_{12}^*)$$
* ϵ

$$R_{11}^* R_{12} (R_{22} | R_{21}^* R_{11}^* R_{12}^*)^*$$

The Construction at a Glance

- Start with an NFA for the language *L*.
- Add a new start state $q_{\rm s}$ and accept state $q_{\rm f}$ to the NFA.
 - Add ϵ -transitions from each original accepting state to q_{ϵ} , then mark them as not accepting.
- Repeatedly remove states other than $q_{\rm s}$ and $q_{\rm f}$ from the NFA by "shortcutting" them until only two states remain: $q_{\rm s}$ and $q_{\rm f}$.
- The transition from $q_{\rm s}$ to $q_{\rm f}$ is then a regular expression for the NFA.

Our Transformations

Theorem: The following are all equivalent:

- \cdot L is a regular language.
- · There is a DFA D such that $\mathcal{L}(D) = L$.
- · There is an NFA N such that $\mathcal{L}(N) = L$.
- · There is a regular expression R such that $\mathcal{L}(R) = L$.

Next Time

- Applications of Regular Languages
 - Answering "so what?"
- Intuiting Regular Languages
 - What makes a language regular?
- The Pumping Lemma
 - Proving languages aren't regular.