
  

Finite Automata
Part Two



  

DFAs

● A DFA is a
● Deterministic
● Finite
● Automaton

● A DFA is defined relative to some alphabet Σ.
● For each state in the DFA, there must be 

exactly one transition defined for each symbol 
in the alphabet.

● There is a unique start state.
● There are zero or more accepting states.



  

Recognizing Languages with DFAs

L = { w ∈ {0, 1}* | w contains 00 as a substring }
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Recognizing Languages with DFAs

L = { w ∈ {0, 1}*| every other character of w, starting
                     with the first character, is 0 }
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More Elaborate DFAs
L = { w | w is a C-style comment  }

Suppose the alphabet is

Σ = { a, *, / }

Try designing a DFA for comments!

Some test cases: 

    ACCEPTED        REJECTED  
 /*a*/          /**
  /**/         /**/a

    /***/         aaa/**/ 
/*aaa*aaa*/        /*/  



  

More Elaborate DFAs
L = { w | w is a C-style comment  }
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Tabular DFAs
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The star indicates 
that this is an 
accepting state.
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Code‽  In a Theory Course‽
int kTransitionTable[kNumStates][kNumSymbols] = { 
     {0, 0, 1, 3, 7, 1, …}, 
      …
};
bool kAcceptTable[kNumStates] = {
    false,
    true,
    true,
    …
};
bool SimulateDFA(string input) {
    int state = 0;
    for (char ch: input)
        state = kTransitionTable[state][ch];
    return kAcceptTable[state];
}



  

A language L is called a regular language 
iff there exists a DFA D such that (ℒ D) = L.



  

The Complement of a Language

● Given a language L ⊆ Σ*, the complement 
of that language (denoted L) is the 
language of all strings in Σ* not in L.

● Formally:

L = Σ* - L

L L



  

Complementing Regular Languages

● Recall: A regular language is a 
language accepted by some DFA.

● Question: If L is a regular language, is L 
a regular language?

● If the answer is “yes,” then there must be 
some way to construct a DFA for L.

● If the answer is “no,” then some 
language L can be accepted by a DFA, 
but L cannot be accepted by any DFA.



  

Complementing Regular Languages

L = { w ∈ {0, 1}* | w contains 00 as a substring }
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L = { w ∈ {0, 1}* | w does not contain 00 as a substring }
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More Elaborate DFAs
L = { w | w is not a C-style comment  }
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Closure Properties

● Theorem: If L is a regular language, then
L is also a regular language.

● If we begin with a regular language and 
complement it, we end up with a regular 
language.

● This is an example of a closure property of 
regular languages.
● The regular languages are closed under 

complementation.
● We'll see more such properties later on.



  

Time-Out For Announcements!



  

Solutions Released

● Solutions released for
● Problem Set 4 checkpoint.
● Practice Midterm 1.
● Practice Midterm 2.

● Please review the solution sets for 
the Problem Set 4 checkpoint. There 
are some common mistakes you probably 
want to review.



  

Midterm Logistics

● Midterm review sessions this weekend.
● Saturday, 2:15PM – 4:15PM: Michael holding 

an on-campus review session.
● Sunday, 8PM – 10PM: Dilli holding a review 

session for SCPD students.
● Neither time works for you? Let us know so we 

can try to schedule something extra!
● We have a Google Moderator page to see what 

questions to answer during the review session; 
link will be posted later today.



  

Your Questions



  

“The only difference between predicates 
and functions is that the first 'returns' 

booleans and the second 'returns' objects. 
Are booleans not objects? If they aren't, 
why aren't they, and if they are, how are 

predicates and functions different?”



  

NFAs



  

NFAs

● An NFA is a
● Nondeterministic
● Finite
● Automaton

● Conceptually similar to a DFA, but 
equipped with the vast power of 
nondeterminism.



  

(Non)determinism

● A model of computation is deterministic if at 
every point in the computation, there is exactly 
one choice that can make.

● The machine accepts if that series of choices 
leads to an accepting state.

● A model of computation is nondeterministic if 
the computing machine may have multiple 
decisions that it can make at one point.

● The machine accepts if any series of choices 
leads to an accepting state.



  

A Simple NFA
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A More Complex NFA

q1 q2

start 1 1 q2

              0, 1

If a NFA needs to make a 
transition when no transition 

exists, the automaton dies and 
that particular path rejects.

If a NFA needs to make a 
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exists, the automaton dies and 
that particular path rejects.



  

Intuiting Nondeterminism

● Nondeterministic machines are a serious 
departure from physical computers.

● How can we build up an intuition for 
them?

● Three approaches:
● Tree computation
● Perfect guessing
● Massive parallelism



  

Tree Computation
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Nondeterminism as a Tree

● At each decision point, the automaton 
clones itself for each possible decision.

● The series of choices forms a directed, 
rooted tree.

● At the end, if any active accepting states 
remain, we accept.



  

Perfect Guessing

● We can view nondeterministic machines 
as having Magic Superpowers that 
enable them to guess the correct choice 
of moves to make.

● Idea: Machine can always guess a path 
that leads to an accepting state if one 
exists.

● No known physical analog for this style 
of computation.



  

Massive Parallelism

● An NFA can be thought of as a DFA that 
can be in many states at once.

● Each symbol read causes a transition on 
every active state into each potential state 
that could be visited.

● Nondeterministic machines can be thought 
of as machines that can try any number of 
options in parallel.
● No fixed limit on processors; makes multicore 

machines look downright wimpy!



  

So What?

● We will turn to these three intuitions for 
nondeterminism more later in the quarter.

● Nondeterministic machines may not be feasible, but 
they give a great basis for interesting questions:
● Can any problem that can be solved by a 

nondeterministic machine be solved by a deterministic 
machine?

● Can any problem that can be solved by a 
nondeterministic machine be solved efficiently by a 
deterministic machine?

● The answers vary from automaton to automaton.



  

q1

ε-Transitions

● NFAs have a special type of transition called 
the ε-transition.

● An NFA may follow any number of ε-transitions 
at any time without consuming any input.
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Designing NFAs

● When designing NFAs, embrace the 
nondeterminism!

● Good model: Guess-and-check:
● Have the machine nondeterministically 

guess what the right choice is.
● Have the machine deterministically check 

that the choice was correct.



  

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }
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Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }
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Next Time

● Equivalence of NFAs and DFAs
● How are DFAs powerful enough to match 

NFAs?

● Additional Closure Properties
● Closure under union, intersection, 

concatenation, and Kleene star!

● Regular Expressions I
● A different formalism for regular languages.
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