

Finite Automata
Part Two

DFAs

● A DFA is a
● Deterministic
● Finite
● Automaton

● A DFA is defined relative to some alphabet Σ.
● For each state in the DFA, there must be

exactly one transition defined for each symbol
in the alphabet.

● There is a unique start state.
● There are zero or more accepting states.

Recognizing Languages with DFAs

L = { w ∈ {0, 1}* | w contains 00 as a substring }

q0

start
q1 q2

0 0

1

1

 Σ

Recognizing Languages with DFAs

L = { w ∈ {0, 1}*| every other character of w, starting
 with the first character, is 0 }

q0

start
q1

q2

0

1
Σ

 Σ

q0 q1

More Elaborate DFAs
L = { w | w is a C-style comment }

Suppose the alphabet is

Σ = { a, *, / }

Try designing a DFA for comments!

Some test cases:

 ACCEPTED REJECTED
 /*a*/ /**
 /**/ /**/a

 /***/ aaa/**/
/*aaa*aaa*/ /*/

More Elaborate DFAs
L = { w | w is a C-style comment }

q1

start
q2

* q3

*
q4

/q0
/

q5

 a, / *
a

a, *

/, a

Σ

Σ

Tabular DFAs

start
q0q0

1

q1 q2 q3

0 1 0

1

0

 Σ

*q0

q1

q2

q3

0 1

q0q1

q2q3

q3 q3

q0q3

The star indicates
that this is an
accepting state.

The star indicates
that this is an
accepting state.

Code‽ In a Theory Course‽
int kTransitionTable[kNumStates][kNumSymbols] = {
 {0, 0, 1, 3, 7, 1, …},
 …
};
bool kAcceptTable[kNumStates] = {
 false,
 true,
 true,
 …
};
bool SimulateDFA(string input) {
 int state = 0;
 for (char ch: input)
 state = kTransitionTable[state][ch];
 return kAcceptTable[state];
}

A language L is called a regular language
iff there exists a DFA D such that (ℒ D) = L.

The Complement of a Language

● Given a language L ⊆ Σ*, the complement
of that language (denoted L) is the
language of all strings in Σ* not in L.

● Formally:

L = Σ* - L

L L

Complementing Regular Languages

● Recall: A regular language is a
language accepted by some DFA.

● Question: If L is a regular language, is L
a regular language?

● If the answer is “yes,” then there must be
some way to construct a DFA for L.

● If the answer is “no,” then some
language L can be accepted by a DFA,
but L cannot be accepted by any DFA.

Complementing Regular Languages

L = { w ∈ {0, 1}* | w contains 00 as a substring }

q0

start
q1 q2

0 0

1

1

 Σ

L = { w ∈ {0, 1}* | w does not contain 00 as a substring }

q0

start
q1 q2

0 0

1

1

 Σ

More Elaborate DFAs
L = { w | w is not a C-style comment }

q1

start
q2

* q3

*
q4

/q0
/

q5

 a, / *
a

a, *

/, a

Σ

Σ

q5

q0 q1 q2 q3

Closure Properties

● Theorem: If L is a regular language, then
L is also a regular language.

● If we begin with a regular language and
complement it, we end up with a regular
language.

● This is an example of a closure property of
regular languages.
● The regular languages are closed under

complementation.
● We'll see more such properties later on.

Time-Out For Announcements!

Solutions Released

● Solutions released for
● Problem Set 4 checkpoint.
● Practice Midterm 1.
● Practice Midterm 2.

● Please review the solution sets for
the Problem Set 4 checkpoint. There
are some common mistakes you probably
want to review.

Midterm Logistics

● Midterm review sessions this weekend.
● Saturday, 2:15PM – 4:15PM: Michael holding

an on-campus review session.
● Sunday, 8PM – 10PM: Dilli holding a review

session for SCPD students.
● Neither time works for you? Let us know so we

can try to schedule something extra!
● We have a Google Moderator page to see what

questions to answer during the review session;
link will be posted later today.

Your Questions

“The only difference between predicates
and functions is that the first 'returns'

booleans and the second 'returns' objects.
Are booleans not objects? If they aren't,
why aren't they, and if they are, how are

predicates and functions different?”

NFAs

NFAs

● An NFA is a
● Nondeterministic
● Finite
● Automaton

● Conceptually similar to a DFA, but
equipped with the vast power of
nondeterminism.

(Non)determinism

● A model of computation is deterministic if at
every point in the computation, there is exactly
one choice that can make.

● The machine accepts if that series of choices
leads to an accepting state.

● A model of computation is nondeterministic if
the computing machine may have multiple
decisions that it can make at one point.

● The machine accepts if any series of choices
leads to an accepting state.

A Simple NFA

q0 q1 q2

start 1 1 q2

 0, 1

q3

0 0, 1

 0, 1

q0 has two transitions
defined on 1!

q0 has two transitions
defined on 1!

q0q0 q1 q2q2

A More Complex NFA

q1 q2

start 1 1 q2

 0, 1

If a NFA needs to make a
transition when no transition

exists, the automaton dies and
that particular path rejects.

If a NFA needs to make a
transition when no transition

exists, the automaton dies and
that particular path rejects.

Intuiting Nondeterminism

● Nondeterministic machines are a serious
departure from physical computers.

● How can we build up an intuition for
them?

● Three approaches:
● Tree computation
● Perfect guessing
● Massive parallelism

Tree Computation

q0

start
q1 q2

q3

0 1

1

q4
0

 1

q5
0

0, 1

q5

q2

0 1 0 1 0

q0

q1

q2q4

q4 q5

q4

q4 q5

Nondeterminism as a Tree

● At each decision point, the automaton
clones itself for each possible decision.

● The series of choices forms a directed,
rooted tree.

● At the end, if any active accepting states
remain, we accept.

Perfect Guessing

● We can view nondeterministic machines
as having Magic Superpowers that
enable them to guess the correct choice
of moves to make.

● Idea: Machine can always guess a path
that leads to an accepting state if one
exists.

● No known physical analog for this style
of computation.

Massive Parallelism

● An NFA can be thought of as a DFA that
can be in many states at once.

● Each symbol read causes a transition on
every active state into each potential state
that could be visited.

● Nondeterministic machines can be thought
of as machines that can try any number of
options in parallel.
● No fixed limit on processors; makes multicore

machines look downright wimpy!

So What?

● We will turn to these three intuitions for
nondeterminism more later in the quarter.

● Nondeterministic machines may not be feasible, but
they give a great basis for interesting questions:
● Can any problem that can be solved by a

nondeterministic machine be solved by a deterministic
machine?

● Can any problem that can be solved by a
nondeterministic machine be solved efficiently by a
deterministic machine?

● The answers vary from automaton to automaton.

q1

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

q0

start
q2

q3

0 1

ε

q4
0 q5

0 q5

q2

0

1

Designing NFAs

● When designing NFAs, embrace the
nondeterminism!

● Good model: Guess-and-check:
● Have the machine nondeterministically

guess what the right choice is.
● Have the machine deterministically check

that the choice was correct.

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0

1 0

1

0 1

start Σ

Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }
a, b

a, c

b, c

start

ε

ε

ε

Next Time

● Equivalence of NFAs and DFAs
● How are DFAs powerful enough to match

NFAs?

● Additional Closure Properties
● Closure under union, intersection,

concatenation, and Kleene star!

● Regular Expressions I
● A different formalism for regular languages.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

