Finite Automata Part One

Problem Set Four checkpoint due in the box up front.

Late Problem Set Three's also due up front.

Last Thoughts on First-Order Logic

An Extremely Important Table

$\forall x$.	(χ)
$\nabla \mathbf{V}$	V
V / .	

 $\exists x. P(x)$

 $\forall x. \ \neg P(x)$

 $\exists x. \neg P(x)$

For any choice of x , $P(x)$	$\exists x. \neg P(x)$
For some choice of x , $P(x)$	$\forall x. \ \neg P(x)$
For any choice of x , $\neg P(x)$	$\exists x. P(x)$
For some choice of x , $\neg P(x)$	$\forall x. P(x)$

Negating First-Order Statements

Use the equivalences

$$\neg \forall x. \ \boldsymbol{\varphi} \equiv \exists x. \ \neg \boldsymbol{\varphi}$$
$$\neg \exists x. \ \boldsymbol{\varphi} \equiv \forall x. \ \neg \boldsymbol{\varphi}$$

to negate quantifiers.

- Mechanically:
 - Push the negation across the quantifier.
 - Change the quantifier from \forall to \exists or vice-versa.
- Use techniques from propositional logic to negate connectives.

Analyzing Relations

"R is a binary relation over set A that is not reflexive"

 $\neg \forall a \in A$. aRa $\exists a \in A$. $\neg aRa$

"Some $a \in A$ is not related to itself by R."

Analyzing Relations

"R is a binary relation over A that is not antisymmetric"

$$\neg \forall x \in A. \ \forall y \in A. \ (xRy \land yRx \rightarrow x = y)$$
$$\exists x \in A. \ \neg \forall y \in A. \ (xRy \land yRx \rightarrow x = y)$$
$$\exists x \in A. \ \exists y \in A. \ \neg (xRy \land yRx \rightarrow x = y)$$
$$\exists x \in A. \ \exists y \in A. \ (xRy \land yRx \land \neg (x = y))$$
$$\exists x \in A. \ \exists y \in A. \ (xRy \land yRx \land x \neq y)$$

"Some $x \in A$ and $y \in A$ are related to one another by R, but are not equal"

A Useful Equivalence

• The following equivalences are useful when negating statements in first-order logic:

$$\neg (p \land q) \equiv p \rightarrow \neg q$$
$$\neg (p \rightarrow q) \equiv p \land \neg q$$

- These identities are useful when negating statements involving quantifiers.
 - A is used in existentially-quantified statements.
 - \rightarrow is used in universally-quantified statements.

Negating Quantifiers

 What is the negation of the following statement?

$$\exists x. (Puppy(x) \land Cute(x))$$

We can obtain it as follows:

```
\neg \exists x. (Puppy(x) \land Cute(x))
```

$$\forall x. \neg (Puppy(x) \land Cute(x))$$

$$\forall x. (Puppy(x) \rightarrow \neg Cute(x))$$

"All puppies are not cute."

Uniqueness

Uniqueness

- Often, statements have the form "there is a *unique x* such that ..."
- Some sources use a **uniqueness quantifier** to express this:

$$\exists ! n. P(n)$$

• However, it's possible to encode uniqueness using just the two quantifiers we've seen.

$$\exists ! n. \ P(n) \equiv \exists n. \ (P(n) \land \forall m. \ (P(m) \rightarrow m = n))$$

There is some n where P(n) is true

And whenever P is true, it must be for n.

Uniqueness

- Often, statements have the form "there is a *unique x* such that ..."
- Some sources use a **uniqueness quantifier** to express this:

$\exists ! n. P(n)$

• However, it's possible to encode uniqueness using just the two quantifiers we've seen.

$$\exists ! n. P(n) \equiv \exists n. (P(n) \land \forall m. (P(m) \rightarrow m = n))$$

• In CS103, do not use the ∃! quantifier. Just use ∃ and ∀.

Summary of First-Order Logic

- Predicates allow us to reason about different properties of the same object.
- Functions allow us to transform objects into one another.
- Quantifiers allow us to reason about properties of some or all objects.
- There are many useful identities for negating first-order formulae.

An Important Milestone

Recap: Discrete Mathematics

• The past four weeks have focused exclusively on discrete mathematics:

Induction Functions

Graphs The Pigeonhole Principle

Relations Logic

Set Theory Cardinality

- These are the building blocks we will use throughout the rest of the quarter.
- These are the building blocks you will use throughout the rest of your CS career.

Next Up: Computability Theory

- It's time to switch gears and address the limits of what can be computed.
- We'll explore
 - What is the formal definition of a computer?
 - What might computers look like with various resource constraints?
 - What problems can be solved by computers?
 - What problems can't be solved by computers?
- Get ready to explore the boundaries of what computers could ever be made to do.

Computability Theory

What problems can we solve with a computer?

What kind of computer?

An **automaton** (plural: **automata**) is a mathematical model of a computing device.

Why Build Models?

- The models of computation we will explore in this class correspond to different conceptions of what a computer could do.
- **Finite automata** (this week) are an abstraction of computers with finite resource constraints.
 - Provide upper bounds for the computing machines that we can actually build.
- Turing machines (later) are an abstraction of computers with unbounded resources.
 - Provide upper bounds for what we could ever hope to accomplish.

What problems can we solve with a computer?

What is a "problem?"

Strings

- An alphabet is a finite set of characters.
 - Typically, we use the symbol ∑ to refer to an alphabet.
- A string is a finite sequence of characters drawn from some alphabet.
- Example: If $\Sigma = \{a, b\}$, some valid strings include
 - a
 - aabaaabbabaaabaaabbb
 - abbababa
- The empty string contains no characters and is denoted ε.

Languages

- A formal language is a set of strings.
- We say that L is a language over Σ if it is a set of strings formed from characters in Σ .
- Example: The language of palindromes over $\Sigma = \{a, b, c\}$ is the set

```
\{\varepsilon, a, b, c, aa, bb, cc, aaa, aba, aca, bab, ... \}
```

- The set of all strings composed from letters in Σ is denoted Σ^* .
- Formally: L is a language over Σ iff $L \subseteq \Sigma^*$.

The Model

- Goal: Given an alphabet Σ and a language L over Σ , can we build an automaton that can determine which strings are in L?
- Actually a very expressive and powerful framework; we'll see this over the next few weeks.

To Summarize

- An automaton is an idealized mathematical computing machine.
- A language is a set of strings.
- The automata we will study will accept as input a string and (attempt to) output whether that string is contained in a particular language.

Finite Automata

A finite automaton is a mathematical machine for determining whether a string is contained within some language.

Each finite automaton consists of a set of states connected by transitions.

represents a state of the automaton.

0 1 0 1 1 0

A Simple Finite Automaton

A Simple Finite Automaton

The Story So Far

- A finite automaton is a collection of states joined by transitions.
- Some state is designated as the start state.
- Some states are designated as accepting states.
- The automaton processes a string by beginning in the start state and following the indicated transitions.
- If the automaton ends in an accepting state, it accepts the input.
- Otherwise, the automaton rejects the input.

Time-Out For Announcements

Midterm Exam

- Midterm is October 29 from 7PM 10PM.
 - Location information TBA.
 - Need to take the exam at an alternate time? Fill out the alternate time form ASAP.
 - Covers material up through and including DFAs.
- Two practice exams available online.
- Handout: Exam Strategies and Policies available online.
- Review session later this week; more details on Wednesday.

Your Questions

"Keith, why did you choose to go into academia as opposed to industry? Do you have any advice for students deciding between the two?"

"What do you think is the coolest real-world application of CS103-related material?"

"Why are you taking away the Checkpoint problems... don't?"

Back to CS103!

A finite automaton does **not** accept as soon as the input enters an accepting state.

A finite automaton accepts if it **ends** in an accepting state.

What Does This Accept?

No matter where we start in the automaton, after seeing two 1's, we end up in accepting state q₃.

What Does This Accept?

No matter where we start in the automaton, after seeing two o's, we end up in accepting state q_5 .

What Does This Accept?

This automaton accepts a string iff it ends in oo or 11.

The language of an automaton is the set of strings that it accepts.

If D is an automaton, we denote the language of D as $\mathcal{L}(D)$.

 $\mathcal{L}(D) = \{ w \in \Sigma^* \mid D \text{ accepts } w \}$

A Small Problem

Another Small Problem

The Need for Formalism

- In order to reason about the limits of what finite automata can and cannot do, we need to formally specify their behavior in *all* cases.
- All of the following need to be defined or disallowed:
 - What happens if there is no transition out of a state on some input?
 - What happens if there are *multiple* transitions out of a state on some input?

DFAs

- A **DFA** is a
 - Deterministic
 - Finite
 - Automaton
- DFAs are the simplest type of automaton that we will see in this course.

DFAs, Informally

- A DFA is defined relative to some alphabet Σ .
- For each state in the DFA, there must be **exactly one** transition defined for each symbol in the alphabet.
 - This is the "deterministic" part of DFA.
- There is a **unique** start state.
- There are zero or more accepting states.

Designing DFAs

- At each point in its execution, the DFA can only remember what state it is in.
- **DFA Design Tip:** Build each state to correspond to some piece of information you need to remember.
 - Each state acts as a "memento" of what you're supposed to do next.
 - Only finitely many different states ≈ only finitely many different things the machine can remember.

Recognizing Languages with DFAs

 $L = \{ w \in \{0, 1\}^* \mid w \text{ contains } 00 \text{ as a substring } \}$

Recognizing Languages with DFAs

 $L = \{ w \in \{0, 1\}^* \mid w \text{ contains } 00 \text{ as a substring } \}$

Recognizing Languages with DFAs

 $L = \{ w \in \{0, 1\}^* | \text{ every other character of } w, \text{ starting with the first character, is } 0 \}$

Next Time

Regular Languages

What is the expressive power of DFAs?

NFAs

Automata with magic superpowers!

Nondeterminism

- Nondeterminisic computation.
- Intuitions for nondeterminism.
- Programming with nondeterminism.