
  

Finite Automata
Part One

Problem Set Four checkpoint 
due in the box up front. 
Late Problem Set Three's 

also due up front.

Problem Set Four checkpoint 
due in the box up front. 
Late Problem Set Three's 

also due up front.



  

Last Thoughts on First-Order Logic



  

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x) ∀x. ¬P(x)

For any choice of x,
¬P(x) ∃x. P(x)

For some choice of x,
¬P(x) ∀x. P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)



  

Negating First-Order Statements

● Use the equivalences

¬∀x. φ ≡ ∃x. ¬φ

¬∃x. φ ≡ ∀x. ¬φ

to negate quantifiers.
● Mechanically:

● Push the negation across the quantifier.
● Change the quantifier from ∀ to ∃ or vice-versa.

● Use techniques from propositional logic to 
negate connectives.



  

Analyzing Relations

“R is a binary relation over set A that is not 
reflexive”

¬∀a ∈ A. aRa
∃a ∈ A. ¬aRa

“Some a ∈ A is not related to itself by R.”



  

Analyzing Relations

“R is a binary relation over A that is not 
antisymmetric”

¬∀x ∈ A. ∀y ∈ A. (xRy ∧ yRx → x = y)
∃x ∈ A. ¬∀y ∈ A. (xRy ∧ yRx → x = y)
∃x ∈ A. ∃y ∈ A. ¬(xRy ∧ yRx → x = y)

∃x ∈ A. ∃y ∈ A. (xRy ∧ yRx ∧ ¬(x = y))
∃x ∈ A. ∃y ∈ A. (xRy ∧ yRx ∧ x ≠ y)

“Some x ∈ A and y ∈ A are related to one 
another by R, but are not equal”



  

A Useful Equivalence

● The following equivalences are useful when 
negating statements in first-order logic:

¬(p ∧ q) ≡ p → ¬q

¬(p → q) ≡ p ∧ ¬q
● These identities are useful when negating 

statements involving quantifiers.
● ∧ is used in existentially-quantified statements.
● → is used in universally-quantified statements.



  

Negating Quantifiers

● What is the negation of the following 
statement?

∃x. (Puppy(x) ∧ Cute(x))
● We can obtain it as follows:

¬∃x. (Puppy(x) ∧ Cute(x))

∀x. ¬(Puppy(x) ∧ Cute(x))

∀x. (Puppy(x) → ¬Cute(x))
● “All puppies are not cute.”



  

Uniqueness



  

Uniqueness

● Often, statements have the form “there is a 
unique x such that …”

● Some sources use a uniqueness quantifier to 
express this:

∃!n. P(n)
● However, it's possible to encode uniqueness 

using just the two quantifiers we've seen.

∃!n. P(n) ≡ ∃n. (P(n) ∧ ∀m. (P(m) → m = n))

In CS103, do not use the ∃! quantifier.  Just use 
∃ and ∀. And whenever P is 

true, it must be for n.

And whenever P is 
true, it must be for n.

There is some n 
where P(n) is true

There is some n 
where P(n) is true



  

Uniqueness

● Often, statements have the form “there is a 
unique x such that …”

● Some sources use a uniqueness quantifier to 
express this:

∃!n. P(n)
● However, it's possible to encode uniqueness 

using just the two quantifiers we've seen.

∃!n. P(n) ≡ ∃n. (P(n) ∧ ∀m. (P(m) → m = n))
● In CS103, do not use the ∃! quantifier.  Just use 

∃ and ∀.



  

Summary of First-Order Logic

● Predicates allow us to reason about 
different properties of the same object.

● Functions allow us to transform objects 
into one another.

● Quantifiers allow us to reason about 
properties of some or all objects.

● There are many useful identities for 
negating first-order formulae.



  

An Important 
Milestone



  

Recap: Discrete Mathematics

● The past four weeks have focused exclusively on 
discrete mathematics:

 Induction       Functions

 Graphs        The Pigeonhole Principle

 Relations       Logic

 Set Theory      Cardinality

● These are the building blocks we will use 
throughout the rest of the quarter.

● These are the building blocks you will use 
throughout the rest of your CS career.



  

Next Up: Computability Theory

● It's time to switch gears and address the limits of 
what can be computed.

● We'll explore
● What is the formal definition of a computer?
● What might computers look like with various resource 

constraints?
● What problems can be solved by computers?
● What problems can't be solved by computers?

● Get ready to explore the boundaries of what 
computers could ever be made to do.



  

Computability Theory



  

What problems can we solve with a computer?

What kind of 
computer?



  

An automaton (plural: automata) is a 
mathematical model of a computing device.



  

Why Build Models?

● The models of computation we will explore in 
this class correspond to different conceptions of 
what a computer could do.

● Finite automata (this week) are an abstraction 
of computers with finite resource constraints.
● Provide upper bounds for the computing machines 

that we can actually build.

● Turing machines (later) are an abstraction of 
computers with unbounded resources.
● Provide upper bounds for what we could ever hope 

to accomplish.



  

What problems can we solve with a computer?

What is a 
“problem?”



  

Strings

● An alphabet is a finite set of characters.
● Typically, we use the symbol Σ to refer to an 

alphabet.

● A string is a finite sequence of characters drawn 
from some alphabet.

● Example: If Σ = {a, b}, some valid strings include

● a

● aabaaabbabaaabaaaabbb

● abbababba

● The empty string contains no characters and is 
denoted ε.



  

Languages

● A formal language is a set of strings.
● We say that L is a language over Σ if it is a 

set of strings formed from characters in Σ.
● Example: The language of palindromes over 

Σ = {a, b, c} is the set

{ε, a, b, c, aa, bb, cc, aaa, aba, aca, bab, … }

● The set of all strings composed from letters in 
Σ is denoted Σ*.

● Formally: L is a language over Σ iff L ⊆ Σ*.

 



  

The Model

● Goal: Given an alphabet Σ and a 
language L over Σ, can we build an 
automaton that can determine which 
strings are in L?

● Actually a very expressive and powerful 
framework; we'll see this over the next 
few weeks.



  

To Summarize

● An automaton is an idealized 
mathematical computing machine.

● A language is a set of strings.
● The automata we will study will accept as 

input a string and (attempt to) output 
whether that string is contained in a 
particular language.



  

What problems can we solve with a computer?



  

Finite Automata



  

A finite automaton is a mathematical 
machine for determining whether a string

is contained within some language.



  

Each finite automaton consists of a set
of states connected by transitions.



  

A Simple Finite Automaton

q0 q1

q2q3

0

      1

0

1      

0

1            1

0

start

Each circle 
represents a state 
of the automaton.

Each circle 
represents a state 
of the automaton.



  

A Simple Finite Automaton

q0 q1

q2q3

0

      1

0

1      

0

1            1

0

start

q2

One special state is 
designated as the 

start state.

One special state is 
designated as the 

start state.



  

A Simple Finite Automaton

q0 q1

q2q3

0

      1

0

1      

0

1            1

0

start

q2

0 1 0 1 1 0

The automaton is 
run on an input 
string and answers 

“yes” or “no.”

The automaton is 
run on an input 
string and answers 

“yes” or “no.”

0 1 0 1 1 0



  

A Simple Finite Automaton

q0 q1

q2q3

0

      1

0

1      

0

1            1

0

start

q2

0 1 0 1 1 0

The automaton can 
be in one state at a 
time.  It begins in 
the start state.

The automaton can 
be in one state at a 
time.  It begins in 
the start state.

0 1 0 1 1 0



  

A Simple Finite Automaton

q0 q1

q2q3

0

      1

0

1      

0

1            1

0

start

q2

0 1 0 1 1 00 1 0 1 1 0

The automaton now 
begins processing 
characters in the 

order in which they 
appear.

The automaton now 
begins processing 
characters in the 

order in which they 
appear.



  

A Simple Finite Automaton

q0 q1

q2q3

0

      1

0

1      

0

1            1

0

start

q2

0 1 0 1 1 00 1 0 1 1 0

Each arrow in this 
diagram represents a 
transition.  The 
automaton always 

follows the transition 
corresponding to the 
current symbol being 

read.

Each arrow in this 
diagram represents a 
transition.  The 
automaton always 

follows the transition 
corresponding to the 
current symbol being 

read.



  

A Simple Finite Automaton

q0 q1

q2q3

0

      1

0

1      

0

1            1

0

start

q2

0 1 0 1 1 0

After transitioning, 
the automaton 

considers the next 
symbol in the 

input.

After transitioning, 
the automaton 

considers the next 
symbol in the 

input.

0 1 0 1 1 0



  

A Simple Finite Automaton

q0 q1

q2q3

0

      1

0

1      

0

1            1

0

start

q2

0 1 0 1 1 0

Now that the 
automaton has 

looked at all this 
input, it can decide 
whether to say “yes” 

or “no.”

Now that the 
automaton has 

looked at all this 
input, it can decide 
whether to say “yes” 

or “no.”

The double circle 
indicates that this 

state is an 
accepting state, 
so the automaton 
outputs “yes.”

The double circle 
indicates that this 

state is an 
accepting state, 
so the automaton 
outputs “yes.”



  

A Simple Finite Automaton

q0 q1

q2q3

0

      1

0

1      

0

1            1

0

start

q2

1 0 1 0 0 0

This state is not 
an accepting state, 
so the automaton 

says “no.”

This state is not 
an accepting state, 
so the automaton 

says “no.”



  

A Simple Finite Automaton

q0 q1

q2q3

0

      1

0

1      

0

1            1

0

start

q2

1 1 0 1 1 1 0 0

Try it yourself!  
Does the 

automaton accept 
(say yes) or 

reject (say no)?

Try it yourself!  
Does the 

automaton accept 
(say yes) or 

reject (say no)?



  

The Story So Far

● A finite automaton is a collection of states 
joined by transitions.

● Some state is designated as the start state.

● Some states are designated as accepting states.

● The automaton processes a string by beginning in 
the start state and following the indicated 
transitions.

● If the automaton ends in an accepting state, it 
accepts the input.

● Otherwise, the automaton rejects the input.



  

Time-Out For Announcements



  

Midterm Exam

● Midterm is October 29 from 7PM – 10PM.
● Location information TBA.
● Need to take the exam at an alternate time? Fill 

out the alternate time form ASAP.
● Covers material up through and including DFAs.

● Two practice exams available online.
● Handout: Exam Strategies and Policies 

available online.
● Review session later this week; more details 

on Wednesday.



  

Your Questions



  

“Keith, why did you choose to go into 
academia as opposed to industry? Do you 

have any advice for students deciding 
between the two?”



  

“What do you think is the coolest 
real-world application of CS103-related 

material?”



  

“Why are you taking away the Checkpoint 
problems... don't?”



  

Back to CS103!



  

A finite automaton does not accept as soon 
as the input enters an accepting state.

A finite automaton accepts if it ends in an 
accepting state.



  

What Does This Accept?

q0

q2

0

start

q5

    0

0

q1

q3

1

1    

1

0

1

   0                    1  

No matter where we 
start in the automaton, 
after seeing two 1's, we 
end up in accepting 

state q3.

No matter where we 
start in the automaton, 
after seeing two 1's, we 
end up in accepting 

state q3.



  

What Does This Accept?

q0

q2

0

start

q5

    0

0

q1

q3

1

1    

1

0

1

   0                    1  

No matter where we 
start in the automaton, 
after seeing two 0's, 
we end up in accepting 

state q5.

No matter where we 
start in the automaton, 
after seeing two 0's, 
we end up in accepting 

state q5.



  

What Does This Accept?

q0

q2

0

start

q5

    0

0

q1

q3

1

1    

1

0

1

   0                    1  

This automaton 
accepts a string iff 
it ends in 00 or 11.

This automaton 
accepts a string iff 
it ends in 00 or 11.



  

The language of an automaton is the 
set of strings that it accepts.

If D is an automaton, we denote the 
language of D as ℒ(D).

ℒ(D) = { w ∈ Σ* | D accepts w }



  

A Small Problem

q0

q1

    0

start

q2 1

0    0 1 1 0



  

Another Small Problem

q0

q2

0, 1start

0 0 0

q1

    0

     0, 1

0, 1



  

The Need for Formalism

● In order to reason about the limits of 
what finite automata can and cannot do, 
we need to formally specify their behavior 
in all cases.

● All of the following need to be defined or 
disallowed:
● What happens if there is no transition out of 

a state on some input?
● What happens if there are multiple 

transitions out of a state on some input?



  

DFAs

● A DFA is a
● Deterministic
● Finite
● Automaton

● DFAs are the simplest type of automaton 
that we will see in this course.



  

DFAs, Informally

● A DFA is defined relative to some 
alphabet Σ.

● For each state in the DFA, there must be 
exactly one transition defined for each 
symbol in the alphabet.
● This is the “deterministic” part of DFA.

● There is a unique start state.
● There are zero or more accepting states.



  

Is this a DFA?

q0 q1

q2q3

0

      1

0

1      

0

1            1

0

start

q2



  

Is this a DFA?

q0

q2

0

start

q5

    0

0

q1

q3

1

1    

1

0

1

   0                    1  



  

Is this a DFA?

q0

q1

    0

start

q2 1

0    



  

Is this a DFA?

q0 q1
0, 1start

q3

         0, 10, 1        

q2
0, 1



  

Is this a DFA?

q0

q2

0, 1start
q1

    0

     0, 1

0, 1



  

Designing DFAs

● At each point in its execution, the DFA 
can only remember what state it is in.

● DFA Design Tip: Build each state to 
correspond to some piece of information 
you need to remember.
● Each state acts as a “memento” of what 

you're supposed to do next.
● Only finitely many different states ≈ only 

finitely many different things the machine 
can remember.



  

Recognizing Languages with DFAs

L = { w ∈ {0, 1}* | w contains 00 as a substring }

q0

start
q1 q2

0 0

1

1

            0, 1



  

Recognizing Languages with DFAs

L = { w ∈ {0, 1}* | w contains 00 as a substring }

q0

start
q1 q2

0 0

1

1

            Σ  



  

Recognizing Languages with DFAs

L = { w ∈ {0, 1}*| every other character of w, starting
                     with the first character, is 0 }

q0

start
q1

q2

0

1       
Σ

               

           Σ

q0 q1



  

Next Time

● Regular Languages
● What is the expressive power of DFAs?

● NFAs
● Automata with magic superpowers!

● Nondeterminism
● Nondeterminisic computation.
● Intuitions for nondeterminism.
● Programming with nondeterminism.
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