

Finite Automata
Part One

Problem Set Four checkpoint
due in the box up front.
Late Problem Set Three's

also due up front.

Problem Set Four checkpoint
due in the box up front.
Late Problem Set Three's

also due up front.

Last Thoughts on First-Order Logic

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x) ∀x. ¬P(x)

For any choice of x,
¬P(x) ∃x. P(x)

For some choice of x,
¬P(x) ∀x. P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

Negating First-Order Statements

● Use the equivalences

¬∀x. φ ≡ ∃x. ¬φ

¬∃x. φ ≡ ∀x. ¬φ

to negate quantifiers.
● Mechanically:

● Push the negation across the quantifier.
● Change the quantifier from ∀ to ∃ or vice-versa.

● Use techniques from propositional logic to
negate connectives.

Analyzing Relations

“R is a binary relation over set A that is not
reflexive”

¬∀a ∈ A. aRa
∃a ∈ A. ¬aRa

“Some a ∈ A is not related to itself by R.”

Analyzing Relations

“R is a binary relation over A that is not
antisymmetric”

¬∀x ∈ A. ∀y ∈ A. (xRy ∧ yRx → x = y)
∃x ∈ A. ¬∀y ∈ A. (xRy ∧ yRx → x = y)
∃x ∈ A. ∃y ∈ A. ¬(xRy ∧ yRx → x = y)

∃x ∈ A. ∃y ∈ A. (xRy ∧ yRx ∧ ¬(x = y))
∃x ∈ A. ∃y ∈ A. (xRy ∧ yRx ∧ x ≠ y)

“Some x ∈ A and y ∈ A are related to one
another by R, but are not equal”

A Useful Equivalence

● The following equivalences are useful when
negating statements in first-order logic:

¬(p ∧ q) ≡ p → ¬q

¬(p → q) ≡ p ∧ ¬q
● These identities are useful when negating

statements involving quantifiers.
● ∧ is used in existentially-quantified statements.
● → is used in universally-quantified statements.

Negating Quantifiers

● What is the negation of the following
statement?

∃x. (Puppy(x) ∧ Cute(x))
● We can obtain it as follows:

¬∃x. (Puppy(x) ∧ Cute(x))

∀x. ¬(Puppy(x) ∧ Cute(x))

∀x. (Puppy(x) → ¬Cute(x))
● “All puppies are not cute.”

Uniqueness

Uniqueness

● Often, statements have the form “there is a
unique x such that …”

● Some sources use a uniqueness quantifier to
express this:

∃!n. P(n)
● However, it's possible to encode uniqueness

using just the two quantifiers we've seen.

∃!n. P(n) ≡ ∃n. (P(n) ∧ ∀m. (P(m) → m = n))

In CS103, do not use the ∃! quantifier. Just use
∃ and ∀. And whenever P is

true, it must be for n.

And whenever P is
true, it must be for n.

There is some n
where P(n) is true

There is some n
where P(n) is true

Uniqueness

● Often, statements have the form “there is a
unique x such that …”

● Some sources use a uniqueness quantifier to
express this:

∃!n. P(n)
● However, it's possible to encode uniqueness

using just the two quantifiers we've seen.

∃!n. P(n) ≡ ∃n. (P(n) ∧ ∀m. (P(m) → m = n))
● In CS103, do not use the ∃! quantifier. Just use

∃ and ∀.

Summary of First-Order Logic

● Predicates allow us to reason about
different properties of the same object.

● Functions allow us to transform objects
into one another.

● Quantifiers allow us to reason about
properties of some or all objects.

● There are many useful identities for
negating first-order formulae.

An Important
Milestone

Recap: Discrete Mathematics

● The past four weeks have focused exclusively on
discrete mathematics:

 Induction Functions

 Graphs The Pigeonhole Principle

 Relations Logic

 Set Theory Cardinality

● These are the building blocks we will use
throughout the rest of the quarter.

● These are the building blocks you will use
throughout the rest of your CS career.

Next Up: Computability Theory

● It's time to switch gears and address the limits of
what can be computed.

● We'll explore
● What is the formal definition of a computer?
● What might computers look like with various resource

constraints?
● What problems can be solved by computers?
● What problems can't be solved by computers?

● Get ready to explore the boundaries of what
computers could ever be made to do.

Computability Theory

What problems can we solve with a computer?

What kind of
computer?

An automaton (plural: automata) is a
mathematical model of a computing device.

Why Build Models?

● The models of computation we will explore in
this class correspond to different conceptions of
what a computer could do.

● Finite automata (this week) are an abstraction
of computers with finite resource constraints.
● Provide upper bounds for the computing machines

that we can actually build.

● Turing machines (later) are an abstraction of
computers with unbounded resources.
● Provide upper bounds for what we could ever hope

to accomplish.

What problems can we solve with a computer?

What is a
“problem?”

Strings

● An alphabet is a finite set of characters.
● Typically, we use the symbol Σ to refer to an

alphabet.

● A string is a finite sequence of characters drawn
from some alphabet.

● Example: If Σ = {a, b}, some valid strings include

● a

● aabaaabbabaaabaaaabbb

● abbababba

● The empty string contains no characters and is
denoted ε.

Languages

● A formal language is a set of strings.
● We say that L is a language over Σ if it is a

set of strings formed from characters in Σ.
● Example: The language of palindromes over

Σ = {a, b, c} is the set

{ε, a, b, c, aa, bb, cc, aaa, aba, aca, bab, … }

● The set of all strings composed from letters in
Σ is denoted Σ*.

● Formally: L is a language over Σ iff L ⊆ Σ*.

The Model

● Goal: Given an alphabet Σ and a
language L over Σ, can we build an
automaton that can determine which
strings are in L?

● Actually a very expressive and powerful
framework; we'll see this over the next
few weeks.

To Summarize

● An automaton is an idealized
mathematical computing machine.

● A language is a set of strings.
● The automata we will study will accept as

input a string and (attempt to) output
whether that string is contained in a
particular language.

What problems can we solve with a computer?

Finite Automata

A finite automaton is a mathematical
machine for determining whether a string

is contained within some language.

Each finite automaton consists of a set
of states connected by transitions.

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

Each circle
represents a state
of the automaton.

Each circle
represents a state
of the automaton.

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

One special state is
designated as the

start state.

One special state is
designated as the

start state.

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

0 1 0 1 1 0

The automaton is
run on an input
string and answers

“yes” or “no.”

The automaton is
run on an input
string and answers

“yes” or “no.”

0 1 0 1 1 0

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

0 1 0 1 1 0

The automaton can
be in one state at a
time. It begins in
the start state.

The automaton can
be in one state at a
time. It begins in
the start state.

0 1 0 1 1 0

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

0 1 0 1 1 00 1 0 1 1 0

The automaton now
begins processing
characters in the

order in which they
appear.

The automaton now
begins processing
characters in the

order in which they
appear.

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

0 1 0 1 1 00 1 0 1 1 0

Each arrow in this
diagram represents a
transition. The
automaton always

follows the transition
corresponding to the
current symbol being

read.

Each arrow in this
diagram represents a
transition. The
automaton always

follows the transition
corresponding to the
current symbol being

read.

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

0 1 0 1 1 0

After transitioning,
the automaton

considers the next
symbol in the

input.

After transitioning,
the automaton

considers the next
symbol in the

input.

0 1 0 1 1 0

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

0 1 0 1 1 0

Now that the
automaton has

looked at all this
input, it can decide
whether to say “yes”

or “no.”

Now that the
automaton has

looked at all this
input, it can decide
whether to say “yes”

or “no.”

The double circle
indicates that this

state is an
accepting state,
so the automaton
outputs “yes.”

The double circle
indicates that this

state is an
accepting state,
so the automaton
outputs “yes.”

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

1 0 1 0 0 0

This state is not
an accepting state,
so the automaton

says “no.”

This state is not
an accepting state,
so the automaton

says “no.”

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

1 1 0 1 1 1 0 0

Try it yourself!
Does the

automaton accept
(say yes) or

reject (say no)?

Try it yourself!
Does the

automaton accept
(say yes) or

reject (say no)?

The Story So Far

● A finite automaton is a collection of states
joined by transitions.

● Some state is designated as the start state.

● Some states are designated as accepting states.

● The automaton processes a string by beginning in
the start state and following the indicated
transitions.

● If the automaton ends in an accepting state, it
accepts the input.

● Otherwise, the automaton rejects the input.

Time-Out For Announcements

Midterm Exam

● Midterm is October 29 from 7PM – 10PM.
● Location information TBA.
● Need to take the exam at an alternate time? Fill

out the alternate time form ASAP.
● Covers material up through and including DFAs.

● Two practice exams available online.
● Handout: Exam Strategies and Policies

available online.
● Review session later this week; more details

on Wednesday.

Your Questions

“Keith, why did you choose to go into
academia as opposed to industry? Do you

have any advice for students deciding
between the two?”

“What do you think is the coolest
real-world application of CS103-related

material?”

“Why are you taking away the Checkpoint
problems... don't?”

Back to CS103!

A finite automaton does not accept as soon
as the input enters an accepting state.

A finite automaton accepts if it ends in an
accepting state.

What Does This Accept?

q0

q2

0

start

q5

 0

0

q1

q3

1

1

1

0

1

 0 1

No matter where we
start in the automaton,
after seeing two 1's, we
end up in accepting

state q3.

No matter where we
start in the automaton,
after seeing two 1's, we
end up in accepting

state q3.

What Does This Accept?

q0

q2

0

start

q5

 0

0

q1

q3

1

1

1

0

1

 0 1

No matter where we
start in the automaton,
after seeing two 0's,
we end up in accepting

state q5.

No matter where we
start in the automaton,
after seeing two 0's,
we end up in accepting

state q5.

What Does This Accept?

q0

q2

0

start

q5

 0

0

q1

q3

1

1

1

0

1

 0 1

This automaton
accepts a string iff
it ends in 00 or 11.

This automaton
accepts a string iff
it ends in 00 or 11.

The language of an automaton is the
set of strings that it accepts.

If D is an automaton, we denote the
language of D as ℒ(D).

ℒ(D) = { w ∈ Σ* | D accepts w }

A Small Problem

q0

q1

 0

start

q2 1

0 0 1 1 0

Another Small Problem

q0

q2

0, 1start

0 0 0

q1

 0

 0, 1

0, 1

The Need for Formalism

● In order to reason about the limits of
what finite automata can and cannot do,
we need to formally specify their behavior
in all cases.

● All of the following need to be defined or
disallowed:
● What happens if there is no transition out of

a state on some input?
● What happens if there are multiple

transitions out of a state on some input?

DFAs

● A DFA is a
● Deterministic
● Finite
● Automaton

● DFAs are the simplest type of automaton
that we will see in this course.

DFAs, Informally

● A DFA is defined relative to some
alphabet Σ.

● For each state in the DFA, there must be
exactly one transition defined for each
symbol in the alphabet.
● This is the “deterministic” part of DFA.

● There is a unique start state.
● There are zero or more accepting states.

Is this a DFA?

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

Is this a DFA?

q0

q2

0

start

q5

 0

0

q1

q3

1

1

1

0

1

 0 1

Is this a DFA?

q0

q1

 0

start

q2 1

0

Is this a DFA?

q0 q1
0, 1start

q3

 0, 10, 1

q2
0, 1

Is this a DFA?

q0

q2

0, 1start
q1

 0

 0, 1

0, 1

Designing DFAs

● At each point in its execution, the DFA
can only remember what state it is in.

● DFA Design Tip: Build each state to
correspond to some piece of information
you need to remember.
● Each state acts as a “memento” of what

you're supposed to do next.
● Only finitely many different states ≈ only

finitely many different things the machine
can remember.

Recognizing Languages with DFAs

L = { w ∈ {0, 1}* | w contains 00 as a substring }

q0

start
q1 q2

0 0

1

1

 0, 1

Recognizing Languages with DFAs

L = { w ∈ {0, 1}* | w contains 00 as a substring }

q0

start
q1 q2

0 0

1

1

 Σ

Recognizing Languages with DFAs

L = { w ∈ {0, 1}*| every other character of w, starting
 with the first character, is 0 }

q0

start
q1

q2

0

1
Σ

 Σ

q0 q1

Next Time

● Regular Languages
● What is the expressive power of DFAs?

● NFAs
● Automata with magic superpowers!

● Nondeterminism
● Nondeterminisic computation.
● Intuitions for nondeterminism.
● Programming with nondeterminism.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

