Finite Automata

Part One

Problem Set Four checkpoint
due in the box up front,
Late Problem Set Three's

also due up front,

Last Thoughts on First-Order Logic

An Extremely Important Table

When is this true? When is this false?

VX. P(X) For anylga(;ice of x, EX. _'P(X)
HX. P(X) For som(}%l?)oice of x, VX. _'P(X)
Vx. = P(x) | TS | Ix. P(x)

HX. _'P(X) For som(_allg(l;(;ice of x, VX. P(X)

Negating First-Order Statements

« Use the equivalences
VX, @ = AXx. 7@
—dx. @ = VX, 7@
to negate quantifiers.
 Mechanically:

 Push the negation across the quantifier.
 Change the quantifier from V to d or vice-versa.

« Use techniques from propositional logic to
negate connectives.

Analyzing Relations

“R is a binary relation over set A that is not
reflexive”

-Va € A. aRa
da € A. ~aRa

“Some a € A is not related to itself by R.”

Analyzing Relations

“R is a binary relation over A that is not
antisymmetric”

—Vx € A.Vy € A. xRy AN yRx - x =y)
Ix € A. =Vy € A. (XRy A yRx » X = y)
Ix € A.dy € A. = (xRy A yRx =» x = y)
Ix € A.dy € A. xRy A yRx A =(x = V))
Ix € A.dy € A. xRy A yRX AN X #)

“Some x € A and y € A are related to one
another by R, but are not equal”

A Usetul Equivalence

« The following equivalences are useful when
negating statements in first-order logic:

-(pAQ) =p- q
(P~ q) =p A q

 These identities are useful when negating
statements involving quantifiers.

* A is used in existentially-quantified statements.
e — is used in universally-quantified statements.

Negating Quantifiers

 What is the negation of the following
statement?

dx. (Puppy(x) A Cute(x))
 We can obtain it as follows:

—3x. (Puppy(x) A Cute(x))

Vx. = (Puppy(x) A Cute(x))

Vx. (Puppy(x) = —Cute(x))
« “All puppies are not cute.”

Uniqueness

Uniqueness

« Often, statements have the form “there is a
unique x such that ...”

e Some sources use a uniqueness quantifier to
express this:

3'n. P(n)

« However, it's possible to encode uniqueness
using just the two quantifiers we've seen.

d'n. P(n) = dn. (P(n) A VM. (P(m) - m = n))

/‘

And whenever P is
frue, it must be tor n.

There 1s some n
where P(n) is True

Uniqueness

Often, statements have the form “there is a
unique x such that ...”

Some sources use a uniqueness quantifier to
express this:

3'n. P(n)

However, it's possible to encode uniqueness
using just the two quantifiers we've seen.

A'n. P(n) = dn. (P(n) A VM. (P(m) - m = n))

In CS103, do not use the 3! quantifier. Just use
3 and V.

Summary of First-Order Logic

* Predicates allow us to reason about
different properties of the same object.

 Functions allow us to transform objects
into one another.

 Quantifiers allow us to reason about
properties of some or all objects.

 There are many useful identities for
negating first-order ftormulae.

An Important
Milestone

Recap: Discrete Mathematics

 The past four weeks have focused exclusively on
discrete mathematics:

Induction Functions

Graphs The Pigeonhole Principle
Relations Logic

Set Theory Cardinality

 These are the building blocks we will use
throughout the rest of the quarter.

 These are the building blocks you will use
throughout the rest of your CS career.

Next Up: Computability Theory

 It's time to switch gears and address the limits of
what can be computed.

 We'll explore

What is the formal definition of a computer?

What might computers look like with various resource
constraints?

What problems can be solved by computers?

What problems can't be solved by computers?

 Get ready to explore the boundaries of what
computers could ever be made to do.

Computability Theory

What problems can we solve with a computer?

/

What kind of
computer?

An automaton (plural: automata) is a
mathematical model of a computing device.

Why Build Models?

 The models of computation we will explore in
this class correspond to different conceptions of
what a computer could do.

 Finite automata (this week) are an abstraction
of computers with finite resource constraints.

» Provide upper bounds for the computing machines
that we can actually build.

 Turing machines (later) are an abstraction of
computers with unbounded resources.

« Provide upper bounds for what we could ever hope
to accomplish.

What problems can we solve with a computer?

|

What is a
‘oroblem?”

Strings

An alphabet is a finite set of characters.

« Typically, we use the symbol X to refer to an
alphabet.

A string is a finite sequence of characters drawn
from some alphabet.

Example: If X = {a, b}, some valid strings include
e a
e aabaaabbabaaabaaaabbb

e« abbababba

The empty string contains no characters and is
denoted e.

Languages

« A formal language is a set of strings.

 We say that L is a language over X if it is a
set of strings formed from characters in .

 Example: The language of palindromes over
2 ={a, b, c} is the set

{€, a, b, ¢, aa, bb, cc, aaa, aba, aca, bab, ... }

« The set of all strings composed from letters in
2 is denoted X*,

 Formally: L is a language over X iff . C >*,

The Model

* Goal: Given an alphabet X and a
language L over X, can we build an
automaton that can determine which
strings are in L?

« Actually a very expressive and powerful
framework; we'll see this over the next
few weeks.

To Summarize

« An automaton is an idealized
mathematical computing machine.

A language is a set of strings.

 The automata we will study will accept as
input a string and (attempt to) output
whether that string is contained in a
particular language.

What problems can we solve with a computer?

Finite Automata

A finite automaton is a mathematical
machine for determining whether a string
1s contained within some language.

Each finite automaton consists of a set
of states connected by transitions.

A Simple Finite Automaton
0

start @ m
0 1
0 \1/
1 1 1 1
(&)
0
Each circle

represents a stafe
ot the aufomaton.

A Simple Finite Automaton
0

start @ m
0 1
0 \1/
1 1 1 1

ORE0

One special state is
designated as the
start state.

A Simple Finite Automaton
0

start
® . ®
0 \1/
1 1 1 1
The automaton is
run on an input /!\ 0
string and answers d,
‘yes” or “no.’ 0

0101180

A Simple Finite Automaton
0

start @ O @

The auTomaton can
be in one stafe at a
Time, IT begins in
The start state.

0101180

A Simple Finite Automaton
0

start @ O @

The automaton now
beqins processing
characters in the
order in which they

appear.,

A Simple Finite Automaton

1
Each arrow in this
/!\ diagram represents a
0 "
QI_B/Z .@ Transition, The
auTomaton always
follows fhe fransition
corresponding To the

current symbol being
read,

A Simple Finite Automaton

0
start»QI?)< m
0
Atter transitioning,
1 1 1 The aufomaton
considers the next
symbol in The

input,

A Simple Finite Automaton
0

Now That the
automaton has
looked at all this
input, it can decide
whether To say ‘yes”

The double circle
indicates fThat This
1 1 1 state is an

accepling state,

so The automaton
O [\ vy
outputs ‘yes,

0

0101180

or ‘no.”’

A Simple Finite Automaton
0

This state is not
an accepling state,
so the automaton

says “no,”

A Simple Finite Automaton

1

0

1 1

ORE0

Try it yourself:
Does the
automaton accept

(say yes) or
reject (say no)?

11011100

The Story So Far

A finite automaton is a collection of states
joined by transitions.

Some state is designated as the start state.
Some states are designated as accepting states.

The automaton processes a string by beginning in
the start state and following the indicated
transitions.

If the automaton ends in an accepting state, it
accepts the input.

Otherwise, the automaton rejects the input.

Time-Out For Announcements

Midterm Exam

e Midterm is October 29 from 7PM - 10PM.

 [Location information TBA.

e Need to take the exam at an alternate time? Fill
out the alternate time form ASAP.

» Covers material up through and including DFAs.
« Two practice exams available online.

« Handout: Exam Strategies and Policies
available online.

« Review session later this week; more details
on Wednesday.

Your Questions

“Keith, why did you choose to go into
academia as opposed to industry? Do you
have any advice for students deciding
between the two?”

“What do you think is the coolest
real-world application of CS103-related
material?”

“Why are you taking away the Checkpoint
problems... don't?”

Back to CS103!

A finite automaton does not accept as soon
as the input enters an accepting state.

A finite automaton accepts if it ends in an
accepting state.

What Does This Accept?

No matfer where we
start in the automaton,
atter seeing two 1's, we

end up in accepling
state 4.

What Does This Accept?

No matter where we
start in The auTomaton,
atter seeing fwo 0's,
we end up in accepting
statle 4..

What Does This Accept?

This automaton
accepls a string itf
T ends in 00 or 1.

The language of an automaton is the
set of strings that it accepts.

If D is an automaton, we denote the
language of D as #(D).

YD) ={weX*|Daccepts w }

A Small Problem

@_
i
- ! = _—

-

Another Small Problem

P B o . ¥

-

The Need for Formalism

e In order to reason about the limits of
what finite automata can and cannot do,

we need to formally specify their behavior
in all cases.

« All of the following need to be defined or
disallowed:

« What happens if there is no transition out of
a state on some input?

« What happens if there are multiple
transitions out of a state on some input?

DFAs

« ADFAis a

e Deterministic
 Finite
e Automaton

« DFAs are the simplest type of automaton
that we will see in this course.

DFAs, Informally

« A DFA is defined relative to some
alphabet .

* For each state in the DFA, there must be
exactly one transition defined for each
symbol in the alphabet.

e This is the “deterministic” part of DFA.
 There is a unique start state.

 There are zero or more accepting states.

Is this a DFA?

Is this a DFA?

Is this a DFA?

Is this a DFA?

start @ 0, 1 @

0,1 0,1

Is this a DFA?

Designing DFAS

« At each point in its execution, the DFA
can only remember what state it is in.

 DFA Design Tip: Build each state to
correspond to some piece of information
you need to remember.

« Each state acts as a “memento” of what
you're supposed to do next.

e Only finitely many different states = only
finitely many different things the machine
can remember.

Recognizing Languages with DFAs

L ={we{0,1}*| wcontains 00 as a substring }

1

0
start_@o,(q-\ 0
d Ay

1

, 1

Recognizing Languages with DFAs

L ={we{0,1}*| wcontains 00 as a substring }

1

)3
start _@ 0 ,CI-\ 0
A Y

1

Recognizing Languages with DFAs

L ={we {0, 1}* every other character of w, starting
with the first character, is 0 }

start 0
>
1
2N

Next Time

 Regular Languages

« What is the expressive power of DFAS?
* NFAsS

« Automata with magic superpowers!
 Nondeterminism

« Nondeterminisic computation.
e Intuitions for nondeterminism.
 Programming with nondeterminism.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

