Mathematical Logic Part Two

First-Order Logic

The Universe of First-Order Logic

Venus

The Morning
Star

The Evening star
The Moon

First-Order Logic

- In first-order logic, each variable refers to some object in a set called the domain of discourse.
- Some objects may have multiple names.
- Some objects may have no name at all.

The Morning star

The Evening
star

Propositional vs. First-Order Logic

- Because propositional variables are either true or false, we can directly apply connectives to them.

$$
p \rightarrow q \quad \neg p \leftrightarrow q \wedge r
$$

- Because first-order variables refer to arbitrary objects, it does not make sense to apply connectives to them.

$$
\text { Venus } \rightarrow \text { Sun } \quad 137 \leftrightarrow \neg 42
$$

- This is not C!

Reasoning about Objects

- To reason about objects, first-order logic uses predicates.
- Examples:
- NowOpen(USGovernment)
- FinallyTalking(House, Senate)
- Predicates can take any number of arguments, but each predicate has a fixed number of arguments (called its arity)
- Applying a predicate to arguments produces a proposition, which is either true or false.

First-Order Sentences

- Sentences in first-order logic can be constructed from predicates applied to objects: $\operatorname{LikesToEat}(V, M) \wedge \operatorname{Near}(V, M) \rightarrow \operatorname{WillEat}(V, M)$

$$
\operatorname{Cute}(t) \rightarrow \operatorname{Dikdik}(t) \vee \operatorname{Kitty}(t) \vee \operatorname{Puppy}(t)
$$

$$
x<8 \rightarrow x<137
$$

The notation $\boldsymbol{x}<\mathbf{8}$ is just a shorthand for something like LessThan $(\boldsymbol{x}, 8)$. Binary predicates in math are often written like this, but symbols like < are not a part of first-order logic.

Equality

- First-order logic is equipped with a special predicate $=$ that says whether two objects are equal to one another.
- Equality is a part of first-order logic, just as \rightarrow and \neg are.
- Examples:

$$
\begin{gathered}
\text { MorningStar }=\text { EveningStar } \\
\text { Voldemort = TomMarvoloRiddle }
\end{gathered}
$$

- Equality can only be applied to objects; to see if propositions are equal, use \leftrightarrow.

For notational simplicity, define \neq as

$$
x \neq y \equiv \neg(x=y)
$$

Expanding First-Order Logic

$$
x<8 \wedge y<8 \rightarrow x+y<16
$$

Expanding First-Order Logic

$$
x<8 \wedge y<8 \rightarrow x+y<16
$$

Why is this allowed?

Functions

- First-order logic allows functions that return objects associated with other objects.
- Examples:

$$
\begin{gathered}
x+y \\
\text { LengthOf(path) } \\
\text { MedianOf(x,y,z) }
\end{gathered}
$$

- As with predicates, functions can take in any number of arguments, but each function has a fixed arity.
- Functions evaluate to objects, not propositions.
- There is no syntactic way to distinguish functions and predicates; you'll have to look at how they're used.

How would we translate the statement

"For any natural number n, n is even iff n^{2} is even"

into first-order logic?

Quantifiers

- The biggest change from propositional logic to first-order logic is the use of quantifiers.
- A quantifier is a statement that expresses that some property is true for some or all choices that could be made.
- Useful for statements like "for every action, there is an equal and opposite reaction."

"For any natural number n, n is even iff n^{2} is even"

"For any natural number n, n is even iff n^{2} is even"

$\forall n .\left(n \in \mathbb{N} \rightarrow\left(\operatorname{Even}(n) \leftrightarrow \operatorname{Even}\left(n^{2}\right)\right)\right)$

"For any natural number n, n is even of n^{2} is even"

$\forall n .\left(n \in \mathbb{N} \rightarrow\left(\operatorname{Even}(n) \leftrightarrow \operatorname{Even}\left(n^{2}\right)\right)\right)$

\forall is the universal quantifier
and says "for any choice of n, the following is true."

The Universal Quantifier

- A statement of the form $\forall \boldsymbol{x}, \boldsymbol{\Psi}$ asserts that for every choice of x in our domain, ψ is true.
- Examples:
$\forall v .(\operatorname{Puppy}(v) \rightarrow$ Cute $(v))$
$\forall n .(n \in \mathbb{N} \rightarrow(E v e n(n) \leftrightarrow \neg \operatorname{Odd}(n)))$
Tallest $(x) \rightarrow \forall y .(x \neq y \rightarrow$ IsShorterThan $(y, x))$

Some muggles are intelligent.

Some muggles are intelligent.

$\exists m$. (Muggle(m) ^ Intelligent(m))

Some muggles are intelligent.

$\exists m .(M u g g l e(m) \wedge \operatorname{Intelligent(m))}$

\exists is the existential quantifier and says "for some choice of m, the following is true."

The Existential Quantifier

- A statement of the form $\exists \boldsymbol{x} . \boldsymbol{\Psi}$ asserts that for some choice of x in our domain, ψ is true.
- Examples:
$\exists x .(E v e n(x) \wedge \operatorname{Prime}(x))$
$\exists x$. (TallerThan(x, me) ^LighterThan(x, me))
$(\exists x$. Appreciates $(\chi$, me $)) \rightarrow$ Happy (me)

Operator Precedence (Again)

- When writing out a formula in first-order logic, the quantifiers \forall and \exists have precedence just below \neg.
- Thus

$$
\forall x . P(x) \vee R(x) \rightarrow Q(x)
$$

is interpreted as

$$
((\forall x . P(x)) \vee R(x)) \rightarrow Q(x)
$$

rather than

$$
\forall x .((P(x) \vee R(x)) \rightarrow Q(x))
$$

Translating into First-Order Logic

A Bad Translation

All puppies are cute!
$\forall x .(\operatorname{Puppy}(x) \wedge$ Cute $(x))$

A Bad Translation

All puppies are cute!

$\forall x .(\operatorname{Puppy}(x) \wedge$ Cute $(x))$

This should work
for any choice of
x, including things
that aren't puppies.

A Bad Translation

All puppies are cute!

$\forall x .($ Рирру (x) \wedge Cute $(x))$

This should work
for any choice of
x, including things
that aren't puppies.

A Bad Translation

All puppies are cute!

$\forall x$. (Рuрру (x) ^Cute (x))

This should work
for any choice of
x, including things
that aren't puppies.

A Bad Translation

All puppies are cute!

$\forall x .(P u p p y(x)$ ^ Cute $(x))$

This should work
for any choice of
x, including things
that aren't puppies.

A Better Translation

All puppies are cute!
$\forall x .(\operatorname{Puppy}(x) \rightarrow$ Cute $(x))$

A Better Translation

All puppies are cute!
$\forall x .(\operatorname{Puppy}(x) \rightarrow$ Cute $(x))$

This should work
for any choice of
x, including things
that aren't puppies.

A Better Translation

All puppies are cute!

$\forall x .($ Puppy $(x) \rightarrow$ Cute $(x))$

This should work
for any choice of
x, including things
that aren't puppies.

A Better Translation

All puppies are cute!
$\forall x .(\operatorname{Puppy}(x) \rightarrow$ Cute $(x))$

This should work
for any choice of
x, including things
that aren't puppies.

"Whenever $P(x)$, then $Q(x)$ "

translates as

$$
\forall x .(P(x) \rightarrow Q(x))
$$

Another Bad Translation

Some blobfish is cute.

$\exists x .($ Blobfish $(x) \rightarrow$ Cute $(x))$

Another Bad Translation

Some blobfish is cute.

$\exists x .($ Blobfish $(x) \rightarrow$ Cute $(x))$

Another Bad Translation

Some blobfish is cute.

$\exists x .($ Blobfish $(x) \rightarrow$ Cute $(x))$

Another Bad Translation

Some blobfish is cute.

$\exists x .($ Blowfish $(x) \rightarrow$ Cute $(x))$

What happens if
1. The above statement is false, but
2. x refers to a cute puppy?

Another Bad Translation

Some blobfish is cute.

$\exists x$ (Blobfish $(x) \rightarrow$ Cute (x))

What happens if
1. The above statement is false, but
$2 . x$ refers to a cute puppy?

Another Bad Translation

Some blobfish is cute.

$\exists x .($ Blowfish $(x) \rightarrow$ Cute $(x))$

What happens if
1. The above statement is false, but
2. x refers to a cute puppy?

Another Bad Translation

Some blobfish is cute.

$\exists x .(B l o b f i s h(x) \rightarrow$ Cute $(x))$

What happens if
1. The above statement is false, but
2. x refers to a cute puppy?

A Better Translation

Some blobfish is cute.

$\exists x .(B l o b f i s h(x) \wedge$ Cute(x))

A Better Translation

Some blobfish is cute.

$\exists x .(B l o b f i s h(x) \wedge$ Cute $(x))$

What happens if
1. The above statement is false, but
$2 . \times$ refers to a cute puppy?

A Better Translation

Some blobfish is cute.

$\exists x$. (Blowfish $(x) \wedge$ Cute (x))

What happens if
1. The above statement is false, but
2. x refers to a cute puppy?

A Better Translation

Some blobfish is cute.

$\exists x$. (Blobfish (x) ^Cute (x))

What happens if
1. The above statement is false, but
2 2. x refers to a cute puppy?

"There is some $P(x)$ where Q(x)"

translates as

$\exists \mathrm{x} .(P(x) \wedge Q(x))$

The Takeaway Point

- Be careful when translating statements into first-order logic!
- \forall is usually paired with \rightarrow.
- Sometimes paired with \leftrightarrow.
- \exists is usually paired with \wedge.

Time-Out For Announcements

Friday Four Square! Today at 4:15PM at Gates

Problem Set Four

- Problem Set Four released today.
- Checkpoint due on Monday.
- Rest of the assignment due Friday.
- Explore functions, cardinality, diagonalization, and logic!

Your Questions

What material is covered on the midterm?
Is it open-notes?

Hey Keith, how did you first get interested in math/computer science? Your enthusiasm is infectious but also somewhat curious.

Back to Logic!

Combining Quantifiers

- Most interesting statements in first-order logic require a combination of quantifiers.
- Example: "Everyone loves someone else."

Combining Quantifiers

- Most interesting statements in first-order logic require a combination of quantifiers.
- Example: "Everyone loves someone else."
$\forall p .(\operatorname{Person}(p) \rightarrow \exists q .(\operatorname{Person}(q) \wedge p \neq q \wedge \operatorname{Loves}(p, q)))$

Combining Quantifiers

- Most interesting statements in first-order logic require a combination of quantifiers.
- Example: "Everyone loves someone else."
$\forall p .(\operatorname{Person}(p) \rightarrow \exists q .(\operatorname{Person}(q) \wedge p \neq q \wedge \operatorname{Loves}(p, q)))$
For every person,

Combining Quantifiers

- Most interesting statements in first-order logic require a combination of quantifiers.
- Example: "Everyone loves someone else."
$\forall p .(\operatorname{Person}(p) \rightarrow \exists q .(\operatorname{Person}(q) \wedge p \neq q \wedge \operatorname{Loves}(p, q)))$
For every person,
there is some person

Combining Quantifiers

- Most interesting statements in first-order logic require a combination of quantifiers.
- Example: "Everyone loves someone else."
$\forall p .(\operatorname{Person}(p) \rightarrow \exists q .(\operatorname{Person}(q) \wedge p \neq q \wedge \operatorname{Loves}(p, q)))$ who isn't them

Combining Quantifiers

- Most interesting statements in first-order logic require a combination of quantifiers.
- Example: "Everyone loves someone else."
$\forall p .(\operatorname{Person}(p) \rightarrow \exists q .(\operatorname{Person}(q) \wedge p \neq q \wedge \operatorname{Loves}(p, q)))$
For every person,
there is some person
who isn't them
that they love.

Combining Quantifiers

- Most interesting statements in first-order logic require a combination of quantifiers.
- Example: "There is someone everyone else loves."

Combining Quantifiers

- Most interesting statements in first-order logic require a combination of quantifiers.
- Example: "There is someone everyone else loves."
$\exists p .(\operatorname{Person}(p) \wedge \forall q .(\operatorname{Person}(q) \wedge p \neq q \rightarrow \operatorname{Loves}(q, p)))$

Combining Quantifiers

- Most interesting statements in first-order logic require a combination of quantifiers.
- Example: "There is someone everyone else loves."
$\exists p .(\operatorname{Person}(p) \wedge \forall q .(\operatorname{Person}(q) \wedge p \neq q \rightarrow \operatorname{Loves}(q, p)))$

Combining Quantifiers

- Most interesting statements in first-order logic require a combination of quantifiers.
- Example: "There is someone everyone else loves."
$\exists p .(\operatorname{Person}(p) \wedge \forall q .(\operatorname{Person}(q) \wedge p \neq q \rightarrow \operatorname{Loves}(q, p)))$

There is some person
who everyone

Combining Quantifiers

- Most interesting statements in first-order logic require a combination of quantifiers.
- Example: "There is someone everyone else loves."
$\exists p .(\operatorname{Person}(p) \wedge \forall q .(\operatorname{Person}(q) \wedge p \neq q \rightarrow \operatorname{Loves}(q, p)))$

There is some person
who everyone
who isn 't them

Combining Quantifiers

- Most interesting statements in first-order logic require a combination of quantifiers.
- Example: "There is someone everyone else loves."
$\exists p .(\operatorname{Person}(p) \wedge \forall q .(\operatorname{Person}(q) \wedge p \neq q \rightarrow \operatorname{Loves}(q, p)))$

There is some person
who everyone
who isn 't them

For Comparison

$\forall p .(\operatorname{Person}(p) \rightarrow \exists q \cdot(\operatorname{Person}(q) \wedge p \neq q \wedge \operatorname{Loves}(p, q)))$ For every person,
there is some person
who isn't them
that they love.

```
\(\exists p \cdot(\operatorname{Person}(p) \wedge \forall q \cdot(\operatorname{Person}(q) \wedge p \underset{\Delta}{\neq q \rightarrow \operatorname{Loves}(q, p)))}\)
```

There is some person
who everyone
who is "t them

Everyone Loves Someone Else

There is Someone Everyone Else Loves

There is Someone Everyone Else Loves

Everyone Loves Someone Else

Everyone Loves Someone Else

Everyone Loves Someone Else and There is Someone Everyone Else Loves
$\forall p .(\operatorname{Person}(p) \rightarrow \exists q .(\operatorname{Person}(q) \wedge p \neq q \wedge \operatorname{Loves}(p, q)))$
For every person,
who is "t them
that they love.
^
$\exists p .(\operatorname{Person}(p) \wedge \forall q .(\operatorname{Person}(q) \wedge p \neq q \rightarrow \operatorname{Loves}(q, p)))$
There is some person
who everyone
who is 't them
loves.

The statement

$\forall x . \exists y . P(x, y)$

means "For any choice of x, there is some choice of y (possibly dependent on x) where $P(x, y)$ holds."

The statement

$\boldsymbol{\exists} \mathbf{y} . \forall \mathbf{x} . \mathbf{P}(\mathbf{x}, \boldsymbol{y})$

means "There is some choice of y where for any choice of $x, P(x, y)$ holds."

Order matters when mixing existential and universal quantifiers!

Quantifying Over Sets

- The notation

$$
\forall x \in S . P(x)
$$

means "for any element x of set $S, P(x)$ holds."

- This is not technically a part of first-order logic; it is a shorthand for

$$
\forall x .(x \in S \rightarrow P(x))
$$

- How might we encode this concept?

$$
\exists x \in S . P(x)
$$

Answer: $\exists x .(x \in S \wedge P(x))$.

Quantifying Over Sets

- The syntax

$$
\begin{aligned}
& \forall x \in S . \varphi \\
& \exists x \in S . \varphi
\end{aligned}
$$

is allowed for quantifying over sets.

- In CS103, please do not use variants of this syntax.
- Please don't do things like this: $\forall x$ with $P(x) . Q(x)$
$\forall y$ such that $P(y) \wedge Q(y) . R(y)$.

Translating into First-Order Logic

- First-order logic has great expressive power and is often used to formally encode mathematical definitions.
- Let's go provide rigorous definitions for the terms we've been using so far.

Set Theory

"Two sets are equal iff they contain the same elements."

$$
S=T \leftrightarrow \forall x .(x \in S \leftrightarrow x \in T)
$$

Set Theory

"Two sets are equal iff they contain the same elements."

$\forall S .(\operatorname{Set}(S) \rightarrow$
$\forall T$. $(\operatorname{Set}(T) \rightarrow$

$$
(S=T \leftrightarrow \forall x .(x \in S \leftrightarrow x \in T))
$$

Many statements asserting a
general claim is true are implicitly universally quantified.

Set Theory

"The union of two sets is the set containing all elements of both sets."
$\forall S .(\operatorname{Set}(S) \rightarrow$
$\forall T$. $(\operatorname{Set}(T) \rightarrow$
$\forall x .(x \in S \cup T \leftrightarrow x \in S \vee x \in T)$
)
)

Set Theory

Relations

" R is a reflexive relation over $A . "$

Relations

" R is a reflexive relation over $A . "$
$\forall a \in A . a \mathrm{R} a$

Relations

" R is a symmetric relation over A."

$$
\forall a \in A . \forall b \in A .(a R b \rightarrow b R a)
$$

Relations

" R is an antisymmetric relation over A."
$\forall a \in A . \forall b \in A .(a R b \wedge b R a \rightarrow a=b)$

Relations

" R is a transitive relation over A."
$\forall a \in A . \forall b \in A . \forall c \in A .(a R b \wedge b R c \rightarrow a R c)$

Negating Quantifiers

- We spent much of Wednesday's lecture discussing how to negate propositional constructs.
- How do we negate quantifiers?

An Extremely Important Table

	When is this true?	When is this false?
$\forall x . P(x)$	For any choice of x, $P(x)$	For some choice of x, $\neg P(x)$
$\exists \chi . P(\chi)$	For some choice of x, $P(x)$	For any choice of x, $\neg P(x)$
. $\neg P(x)$	For any choice of x, $\neg P(x)$	For some choice of x, $P(x)$
$\exists x . \neg P(x)$	For some choice of x, $\neg P(x)$	For any choice of x, $P(x)$

An Extremely Important Table

	When is this true?	When is this false?
x. $P(x)$	For any choice of x, $P(x)$	For some choice of x, $\neg P(x)$
$\exists \chi . P(\chi)$	For some choice of x, $P(x)$	For any choice of x, $\neg P(x)$
. $\neg P(x)$	For any choice of x, $\neg P(x)$	For some choice of x, $P(x)$
$\exists x . \neg P(x)$	For some choice of x, $\neg P(x)$	For any choice of x, $P(x)$

An Extremely Important Table

	When is this true?	When is this false?
$\forall \chi . P(x)$	For any choice of x, $P(x)$	$\exists x \cdot \neg \boldsymbol{P}(\boldsymbol{x})$
$\exists \chi . P(x)$	For some choice of x, $P(x)$	For any choice of x, $\neg P(x)$
$\forall x . \neg P(x)$	For any choice of x, $\neg P(x)$	For some choice of x, $P(x)$
$\exists x . \neg P(x)$	For some choice of x, $\neg P(x)$	For any choice of x, $P(x)$

An Extremely Important Table

	When is this true?	When is this false?
$\forall \chi . P(x)$	For any choice of x, $P(x)$	ヨx. $\neg \mathbf{P}(\boldsymbol{x})$
$\exists \chi . P(\chi)$	For some choice of x, $P(x)$	For any choice of x, $\neg P(x)$
$\forall x . \neg P(x)$	For any choice of x, $\neg P(x)$	For some choice of x, $P(x)$
$\exists x . \neg P(x)$	For some choice of x, $\neg P(x)$	For any choice of x, $P(x)$

An Extremely Important Table

	When is this true?	When is this false?
$\forall \chi . P(\chi)$	For any choice of x, $P(x)$	$\exists x . \neg$
$\exists \chi . P(X)$	For some choice of x, $P(x)$	For any choice of x, $\neg P(x)$
$\forall x . \neg P(x)$	For any choice of x, $\neg P(x)$	For some choice of x, $P(x)$
$\exists x . \neg P(x)$	For some choice of x, $\neg P(x)$	For any choice of x, $P(x)$

An Extremely Important Table

An Extremely Important Table

	When is this true?	When is this false?
$\forall \chi . P(\chi)$	For any choice of x, $P(x)$	$\exists x \cdot \neg \mathbf{P}(\boldsymbol{x})$
$\exists \chi . P(\chi)$	For some choice of x, $P(x)$	$\forall x \cdot \neg P(x)$
$\forall x . \neg P(x)$	For any choice of x, $\neg P(x)$	For some choice of x, $P(x)$
$\exists x . \neg P(x)$	For some choice of x, $\neg P(x)$	For any choice of x, $P(x)$

An Extremely Important Table

An Extremely Important Table

\[

\]

An Extremely Important Table

\[

\]

An Extremely Important Table

$$
\begin{aligned}
& \text { When is this true? When is this false? } \\
& \forall x . \neg P(x) \\
& \exists x . \neg P(x)
\end{aligned}
$$

An Extremely Important Table

$$
\begin{aligned}
& \text { When is this true? When is this false? } \\
& \exists x . P(x)
\end{aligned}
$$

An Extremely Important Table

	When is this true?	When is this fa
$\forall \chi . P(x)$	For any choice of x, $P(x)$	$\exists x . \neg \boldsymbol{P}(x)$
$\exists x . P(x)$	For some choice of x $P(x)$	$\forall x . \neg P(x)$
$\forall x . \neg P(x)$	For any choice of x, $\neg P(x)$	$\exists x . P(x)$
$\exists x . \neg P(x)$	For some choice of x $\neg P(x)$	$\forall x . P(x)$

Negating First-Order Statements

- Use the equivalences

$$
\begin{aligned}
& \neg \forall x . \varphi \equiv \exists x . \neg \varphi \\
& \neg \exists x . \varphi \equiv \forall x . \neg \varphi
\end{aligned}
$$

to negate quantifiers.

- Mechanically:
- Push the negation across the quantifier.
- Change the quantifier from \forall to \exists or vice-versa.
- Use techniques from propositional logic to negate connectives.

Analyzing Relations

" R is a binary relation over set A that is not reflexive"

$$
\begin{aligned}
& \neg \forall a \in A . a R a \\
& \exists a \in A . \neg a R a
\end{aligned}
$$

"Some $a \in A$ is not related to itself by R. .

Analyzing Relations

" R is a binary relation over A that is not antisymmetric"

$$
\begin{aligned}
& \neg \forall x \in A . \forall y \in A .(x R y \wedge y R x \rightarrow x=y) \\
& \exists x \in A . \neg \forall y \in A .(x R y \wedge y R x \rightarrow x=y) \\
& \exists x \in A . \exists y \in A . \neg(x R y \wedge y R x \rightarrow x=y) \\
& \exists x \in A . \exists y \in A .(x R y \wedge y R x \wedge \neg(x=y)) \\
& \exists x \in A . \exists y \in A .(x R y \wedge y R x \wedge x \neq y)
\end{aligned}
$$

"Some $x \in A$ and $y \in A$ are related to one another by R, but are not equal"

Next Time

- Formal Languages
- What is the mathematical definition of a problem?
- Finite Automata
- What does a mathematical model of a computer look like?

