
  

Mathematical Logic
Part Two

Problem Set 
Three due in the 
box up front.
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First-Order Logic



  

The Universe of First-Order Logic
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The Morning 
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The Evening 
Star
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First-Order Logic

● In first-order logic, each variable refers 
to some object in a set called the domain 
of discourse.

● Some objects may have multiple names.
● Some objects may have no name at all.

Venus
The Morning 

Star

The Evening 
Star



  

Propositional vs. First-Order Logic

● Because propositional variables are 
either true or false, we can directly apply 
connectives to them.

p → q                 ¬p ↔ q ∧ r    
● Because first-order variables refer to 

arbitrary objects, it does not make sense 
to apply connectives to them.

Venus → Sun                137 ↔ ¬42
● This is not C!



  

Reasoning about Objects

● To reason about objects, first-order logic uses 
predicates.

● Examples:
● NowOpen(USGovernment)
● FinallyTalking(House, Senate)

● Predicates can take any number of 
arguments, but each predicate has a fixed 
number of arguments (called its arity)

● Applying a predicate to arguments produces 
a proposition, which is either true or false.



  

First-Order Sentences

● Sentences in first-order logic can be 
constructed from predicates applied to objects:

LikesToEat(V, M) ∧ Near(V, M) → WillEat(V, M)

Cute(t) → Dikdik(t) ∨ Kitty(t) ∨ Puppy(t)

x < 8 → x < 137

The notation x < 8 is just a shorthand 
for something like LessThan(x, 8).  
Binary predicates in math are often 

written like this, but symbols like < are 
not a part of first-order logic.

The notation x < 8 is just a shorthand 
for something like LessThan(x, 8).  
Binary predicates in math are often 

written like this, but symbols like < are 
not a part of first-order logic.



  

Equality

● First-order logic is equipped with a special 
predicate = that says whether two objects are 
equal to one another.

● Equality is a part of first-order logic, just as → 
and ¬ are.

● Examples:

MorningStar = EveningStar

Voldemort = TomMarvoloRiddle
● Equality can only be applied to objects; to see 

if propositions are equal, use ↔.



  

For notational simplicity, define ≠ as

    x ≠ y   ≡   ¬(x = y)



  

Expanding First-Order Logic

x < 8 ∧ y < 8 → x + y < 16



  

Expanding First-Order Logic

x < 8 ∧ y < 8 → x + y < 16

Why is this allowed?



  

Functions

● First-order logic allows functions that return objects 
associated with other objects.

● Examples:

x + y

LengthOf(path)

MedianOf(x, y, z)
● As with predicates, functions can take in any number of 

arguments, but each function has a fixed arity.
● Functions evaluate to objects, not propositions.
● There is no syntactic way to distinguish functions and 

predicates; you'll have to look at how they're used.



  

How would we translate the 
statement

“For any natural number n,
n is even iff n2 is even”

into first-order logic?



  

Quantifiers

● The biggest change from propositional 
logic to first-order logic is the use of 
quantifiers.

● A quantifier is a statement that 
expresses that some property is true for 
some or all choices that could be made.

● Useful for statements like “for every 
action, there is an equal and opposite 
reaction.”



  

“For any natural number n,
n is even iff n2 is even”

  



  

“For any natural number n,
n is even iff n2 is even”

∀n. (n ∈ ℕ → (Even(n) ↔ Even(n2))) 



  

“For any natural number n,
n is even iff n2 is even”

∀n. (n ∈ ℕ → (Even(n) ↔ Even(n2))) 

 ∀ is the universal quantifier 
and says “for any choice of n, 

the following is true.”

 ∀ is the universal quantifier 
and says “for any choice of n, 

the following is true.”



  

The Universal Quantifier

● A statement of the form ∀x. ψ asserts 
that for every choice of x in our domain, 
ψ is true.

● Examples:

∀v. (Puppy(v) → Cute(v))

∀n. (n ∈ ℕ → (Even(n) ↔ ¬Odd(n)))

Tallest(x) → ∀y. (x ≠ y → IsShorterThan(y, x))



  

Some muggles are intelligent.



  

Some muggles are intelligent.

∃m. (Muggle(m) ∧ Intelligent(m))



  

∃ is the existential quantifier 
and says “for some choice of 

m, the following is true.”

∃ is the existential quantifier 
and says “for some choice of 

m, the following is true.”

Some muggles are intelligent.

∃m. (Muggle(m) ∧ Intelligent(m))



  

The Existential Quantifier

● A statement of the form ∃x. ψ asserts 
that for some choice of x in our domain, 
ψ is true.

● Examples:

∃x. (Even(x) ∧ Prime(x))

∃x. (TallerThan(x, me) ∧ LighterThan(x, me))

(∃x. Appreciates(x, me)) → Happy(me)



  

Operator Precedence (Again)

● When writing out a formula in first-order 
logic, the quantifiers ∀ and ∃ have 
precedence just below ¬.

● Thus

∀x. P(x) ∨ R(x) → Q(x)

is interpreted as

((∀x. P(x)) ∨ R(x)) → Q(x)

rather than

∀x. ((P(x) ∨ R(x)) → Q(x))



  

Translating into First-Order Logic



  

A Bad Translation

All puppies are cute!

∀x. (Puppy(x) ∧ Cute(x))
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x, including things 
that aren't puppies.
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x, including things 
that aren't puppies.
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A Better Translation

All puppies are cute!

∀x. (Puppy(x) → Cute(x))

This should work 
for any choice of 
x, including things 
that aren't puppies.

This should work 
for any choice of 
x, including things 
that aren't puppies.



  

“Whenever P(x), then Q(x)”

translates as

∀x. (P(x) → Q(x))



  

Another Bad Translation

Some blobfish is cute.

∃x. (Blobfish(x) → Cute(x))
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What happens if

1. The above statement is false, but
2. x refers to a cute puppy?
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2. x refers to a cute puppy?
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A Better Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))

What happens if

1. The above statement is false, but
2. x refers to a cute puppy?

What happens if

1. The above statement is false, but
2. x refers to a cute puppy?



  

“There is some P(x) where 
Q(x)”

translates as

∃x. (P(x) ∧ Q(x))



  

The Takeaway Point

● Be careful when translating statements 
into first-order logic!

● ∀ is usually paired with →.
● Sometimes paired with ↔.

● ∃ is usually paired with ∧.



  

Time-Out For Announcements



  

Friday Four Square!
Today at 4:15PM at Gates



  

Problem Set Four

● Problem Set Four released today.
● Checkpoint due on Monday.
● Rest of the assignment due Friday.
● Explore functions, cardinality, 

diagonalization, and logic!



  

Your Questions



  

What material is covered on the midterm?
Is it open-notes?



  

Hey Keith, how did you first get
interested in math/computer science?
Your enthusiasm is infectious but also 

somewhat curious.



  

Back to Logic!



  

Combining Quantifiers

● Most interesting statements in first-order 
logic require a combination of 
quantifiers.

● Example: “Everyone loves someone else.”
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Combining Quantifiers

● Most interesting statements in first-order 
logic require a combination of 
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Combining Quantifiers

● Most interesting statements in first-order 
logic require a combination of 
quantifiers.

● Example: “There is someone everyone 
else loves.”

∃p. (Person(p) ∧ ∀q. (Person(q) ∧ p ≠ q → Loves(q, p)))

There is some person
who everyone



  

Combining Quantifiers

● Most interesting statements in first-order 
logic require a combination of 
quantifiers.

● Example: “There is someone everyone 
else loves.”

∃p. (Person(p) ∧ ∀q. (Person(q) ∧ p ≠ q → Loves(q, p)))

There is some person
who everyone

who isn't them



  

Combining Quantifiers

● Most interesting statements in first-order 
logic require a combination of 
quantifiers.

● Example: “There is someone everyone 
else loves.”

∃p. (Person(p) ∧ ∀q. (Person(q) ∧ p ≠ q → Loves(q, p)))

There is some person
who everyone

who isn't them
loves.



  

For Comparison

∃p. (Person(p) ∧ ∀q. (Person(q) ∧ p ≠ q → Loves(q, p)))

There is some person
who everyone

who isn't them
loves.

∀p. (Person(p) → ∃q. (Person(q) ∧ p ≠ q ∧ Loves(p, q)))

For every person,
there is some person

who isn't them
that they love.



  

Everyone Loves Someone Else



  

There is Someone Everyone Else Loves



  

There is Someone Everyone Else Loves

This person 
does not 

love anyone 
else.

This person 
does not 

love anyone 
else.



  

Everyone Loves Someone Else



  

Everyone Loves Someone Else

No one here 
is universally 

loved.

No one here 
is universally 

loved.



  

Everyone Loves Someone Else and
There is Someone Everyone Else Loves



  

∃p. (Person(p) ∧ ∀q. (Person(q) ∧ p ≠ q → Loves(q, p)))

There is some person
who everyone

who isn't them
loves.

∀p. (Person(p) → ∃q. (Person(q) ∧ p ≠ q ∧ Loves(p, q)))

For every person,
there is some person

who isn't them
that they love.

∧



  

The statement

∀x. ∃y. P(x, y)

means “For any choice of x, there is
 some choice of y (possibly dependent on 

x) where P(x, y) holds.”



  

The statement

∃y. ∀x. P(x, y)

means “There is some choice of y where
for any choice of x, P(x, y) holds.”



  

Order matters when mixing existential 
and universal quantifiers!



  

Quantifying Over Sets

● The notation

∀x ∈ S. P(x)

means “for any element x of set S, P(x) holds.”
● This is not technically a part of first-order 

logic; it is a shorthand for

∀x. (x ∈ S → P(x))
● How might we encode this concept?

∃x ∈ S. P(x)

Answer: ∃x. (x ∈ S ∧ P(x)).
Note the use of 
 instead of  ∧ →

here.

Note the use of 
 instead of  ∧ →

here.



  

Quantifying Over Sets

● The syntax

∀x ∈ S. φ

∃x ∈ S. φ

is allowed for quantifying over sets.
● In CS103, please do not use variants of this 

syntax.
● Please don't do things like this:

∀x with P(x). Q(x)   

∀y such that P(y) ∧ Q(y). R(y).   



  

Translating into First-Order Logic

● First-order logic has great expressive 
power and is often used to formally 
encode mathematical definitions.

● Let's go provide rigorous definitions for 
the terms we've been using so far.



  

Set Theory

“Two sets are equal iff they contain the 
same elements.”

∀S. (Set(S) → 
∀T. (Set(T) → 

(S = T ↔ ∀x. (x ∈ S ↔ x ∈ T))

Is something 
missing?

Is something 
missing?



  

Set Theory

“Two sets are equal iff they contain the 
same elements.”

∀S. (Set(S) → 
∀T. (Set(T) → 

(S = T ↔ ∀x. (x ∈ S ↔ x ∈ T))

Many statements asserting a 
general claim is true are implicitly 

universally quantified.

Many statements asserting a 
general claim is true are implicitly 

universally quantified.



  

Set Theory

“The union of two sets is the set 
containing all elements of both sets.”

∀S. (Set(S) →
∀T. (Set(T) → 

∀x. (x ∈ S ∪ T ↔ x ∈ S ∨ x ∈ T)
)

)



  

Set Theory

“The union of two sets is the set 
containing all elements of both sets.”

∀S. (Set(S) →
∀T. (Set(T) → 

∀x. (x ∈ S ∪ T ↔ x ∈ S ∨ x ∈ T)
)

)



  

Relations

“R is a reflexive relation over A.”



  

Relations

“R is a reflexive relation over A.”

∀a ∈ A. aRa



  

Relations

“R is a symmetric relation over A.”

∀a ∈ A. ∀b ∈ A. (aRb → bRa)



  

Relations

“R is an antisymmetric relation over A.”

∀a ∈ A. ∀b ∈ A. (aRb ∧ bRa → a = b)



  

Relations

“R is a transitive relation over A.”

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)



  

Negating Quantifiers

● We spent much of Wednesday's lecture 
discussing how to negate propositional 
constructs.

● How do we negate quantifiers?



  

An Extremely Important Table

For any choice of x,
P(x)

For some choice of x,
¬P(x)

When is this true? When is this false?
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For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)
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∃x. ¬P(x)
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An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x) ∀x. ¬P(x)
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Negating First-Order Statements

● Use the equivalences

¬∀x. φ ≡ ∃x. ¬φ

¬∃x. φ ≡ ∀x. ¬φ

to negate quantifiers.
● Mechanically:

● Push the negation across the quantifier.
● Change the quantifier from ∀ to ∃ or vice-versa.

● Use techniques from propositional logic to 
negate connectives.



  

Analyzing Relations

“R is a binary relation over set A that is not 
reflexive”

¬∀a ∈ A. aRa
∃a ∈ A. ¬aRa

“Some a ∈ A is not related to itself by R.”



  

Analyzing Relations

“R is a binary relation over A that is not 
antisymmetric”

¬∀x ∈ A. ∀y ∈ A. (xRy ∧ yRx → x = y)
∃x ∈ A. ¬∀y ∈ A. (xRy ∧ yRx → x = y)
∃x ∈ A. ∃y ∈ A. ¬(xRy ∧ yRx → x = y)

∃x ∈ A. ∃y ∈ A. (xRy ∧ yRx ∧ ¬(x = y))
∃x ∈ A. ∃y ∈ A. (xRy ∧ yRx ∧ x ≠ y)

“Some x ∈ A and y ∈ A are related to one 
another by R, but are not equal”



  

Next Time

● Formal Languages
● What is the mathematical definition of a 

problem?

● Finite Automata
● What does a mathematical model of a 

computer look like?
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