

Mathematical Logic
Part Two

Problem Set
Three due in the
box up front.

Problem Set
Three due in the
box up front.

First-Order Logic

The Universe of First-Order Logic

Venus

The Morning
Star

The Evening
Star

The Sun

The Moon

First-Order Logic

● In first-order logic, each variable refers
to some object in a set called the domain
of discourse.

● Some objects may have multiple names.
● Some objects may have no name at all.

Venus
The Morning

Star

The Evening
Star

Propositional vs. First-Order Logic

● Because propositional variables are
either true or false, we can directly apply
connectives to them.

p → q ¬p ↔ q ∧ r
● Because first-order variables refer to

arbitrary objects, it does not make sense
to apply connectives to them.

Venus → Sun 137 ↔ ¬42
● This is not C!

Reasoning about Objects

● To reason about objects, first-order logic uses
predicates.

● Examples:
● NowOpen(USGovernment)
● FinallyTalking(House, Senate)

● Predicates can take any number of
arguments, but each predicate has a fixed
number of arguments (called its arity)

● Applying a predicate to arguments produces
a proposition, which is either true or false.

First-Order Sentences

● Sentences in first-order logic can be
constructed from predicates applied to objects:

LikesToEat(V, M) ∧ Near(V, M) → WillEat(V, M)

Cute(t) → Dikdik(t) ∨ Kitty(t) ∨ Puppy(t)

x < 8 → x < 137

The notation x < 8 is just a shorthand
for something like LessThan(x, 8).
Binary predicates in math are often

written like this, but symbols like < are
not a part of first-order logic.

The notation x < 8 is just a shorthand
for something like LessThan(x, 8).
Binary predicates in math are often

written like this, but symbols like < are
not a part of first-order logic.

Equality

● First-order logic is equipped with a special
predicate = that says whether two objects are
equal to one another.

● Equality is a part of first-order logic, just as →
and ¬ are.

● Examples:

MorningStar = EveningStar

Voldemort = TomMarvoloRiddle
● Equality can only be applied to objects; to see

if propositions are equal, use ↔.

For notational simplicity, define ≠ as

 x ≠ y ≡ ¬(x = y)

Expanding First-Order Logic

x < 8 ∧ y < 8 → x + y < 16

Expanding First-Order Logic

x < 8 ∧ y < 8 → x + y < 16

Why is this allowed?

Functions

● First-order logic allows functions that return objects
associated with other objects.

● Examples:

x + y

LengthOf(path)

MedianOf(x, y, z)
● As with predicates, functions can take in any number of

arguments, but each function has a fixed arity.
● Functions evaluate to objects, not propositions.
● There is no syntactic way to distinguish functions and

predicates; you'll have to look at how they're used.

How would we translate the
statement

“For any natural number n,
n is even iff n2 is even”

into first-order logic?

Quantifiers

● The biggest change from propositional
logic to first-order logic is the use of
quantifiers.

● A quantifier is a statement that
expresses that some property is true for
some or all choices that could be made.

● Useful for statements like “for every
action, there is an equal and opposite
reaction.”

“For any natural number n,
n is even iff n2 is even”

“For any natural number n,
n is even iff n2 is even”

∀n. (n ∈ ℕ → (Even(n) ↔ Even(n2)))

“For any natural number n,
n is even iff n2 is even”

∀n. (n ∈ ℕ → (Even(n) ↔ Even(n2)))

 ∀ is the universal quantifier
and says “for any choice of n,

the following is true.”

 ∀ is the universal quantifier
and says “for any choice of n,

the following is true.”

The Universal Quantifier

● A statement of the form ∀x. ψ asserts
that for every choice of x in our domain,
ψ is true.

● Examples:

∀v. (Puppy(v) → Cute(v))

∀n. (n ∈ ℕ → (Even(n) ↔ ¬Odd(n)))

Tallest(x) → ∀y. (x ≠ y → IsShorterThan(y, x))

Some muggles are intelligent.

Some muggles are intelligent.

∃m. (Muggle(m) ∧ Intelligent(m))

∃ is the existential quantifier
and says “for some choice of

m, the following is true.”

∃ is the existential quantifier
and says “for some choice of

m, the following is true.”

Some muggles are intelligent.

∃m. (Muggle(m) ∧ Intelligent(m))

The Existential Quantifier

● A statement of the form ∃x. ψ asserts
that for some choice of x in our domain,
ψ is true.

● Examples:

∃x. (Even(x) ∧ Prime(x))

∃x. (TallerThan(x, me) ∧ LighterThan(x, me))

(∃x. Appreciates(x, me)) → Happy(me)

Operator Precedence (Again)

● When writing out a formula in first-order
logic, the quantifiers ∀ and ∃ have
precedence just below ¬.

● Thus

∀x. P(x) ∨ R(x) → Q(x)

is interpreted as

((∀x. P(x)) ∨ R(x)) → Q(x)

rather than

∀x. ((P(x) ∨ R(x)) → Q(x))

Translating into First-Order Logic

A Bad Translation

All puppies are cute!

∀x. (Puppy(x) ∧ Cute(x))

A Bad Translation

All puppies are cute!

∀x. (Puppy(x) ∧ Cute(x))

This should work
for any choice of
x, including things
that aren't puppies.

This should work
for any choice of
x, including things
that aren't puppies.

A Bad Translation

All puppies are cute!

∀x. (Puppy(x) ∧ Cute(x))

This should work
for any choice of
x, including things
that aren't puppies.

This should work
for any choice of
x, including things
that aren't puppies.

A Bad Translation

All puppies are cute!

∀x. (Puppy(x) ∧ Cute(x))

This should work
for any choice of
x, including things
that aren't puppies.

This should work
for any choice of
x, including things
that aren't puppies.

A Bad Translation

All puppies are cute!

∀x. (Puppy(x) ∧ Cute(x))

This should work
for any choice of
x, including things
that aren't puppies.

This should work
for any choice of
x, including things
that aren't puppies.

A Better Translation

All puppies are cute!

∀x. (Puppy(x) → Cute(x))

A Better Translation

All puppies are cute!

∀x. (Puppy(x) → Cute(x))

This should work
for any choice of
x, including things
that aren't puppies.

This should work
for any choice of
x, including things
that aren't puppies.

A Better Translation

All puppies are cute!

∀x. (Puppy(x) → Cute(x))

This should work
for any choice of
x, including things
that aren't puppies.

This should work
for any choice of
x, including things
that aren't puppies.

A Better Translation

All puppies are cute!

∀x. (Puppy(x) → Cute(x))

This should work
for any choice of
x, including things
that aren't puppies.

This should work
for any choice of
x, including things
that aren't puppies.

“Whenever P(x), then Q(x)”

translates as

∀x. (P(x) → Q(x))

Another Bad Translation

Some blobfish is cute.

∃x. (Blobfish(x) → Cute(x))

Another Bad Translation

Some blobfish is cute.

∃x. (Blobfish(x) → Cute(x))

Another Bad Translation

Some blobfish is cute.

∃x. (Blobfish(x) → Cute(x))

Another Bad Translation

Some blobfish is cute.

∃x. (Blobfish(x) → Cute(x))

What happens if

1. The above statement is false, but
2. x refers to a cute puppy?

What happens if

1. The above statement is false, but
2. x refers to a cute puppy?

Another Bad Translation

Some blobfish is cute.

∃x. (Blobfish(x) → Cute(x))

What happens if

1. The above statement is false, but
2. x refers to a cute puppy?

What happens if

1. The above statement is false, but
2. x refers to a cute puppy?

Another Bad Translation

Some blobfish is cute.

∃x. (Blobfish(x) → Cute(x))

What happens if

1. The above statement is false, but
2. x refers to a cute puppy?

What happens if

1. The above statement is false, but
2. x refers to a cute puppy?

Another Bad Translation

Some blobfish is cute.

∃x. (Blobfish(x) → Cute(x))

What happens if

1. The above statement is false, but
2. x refers to a cute puppy?

What happens if

1. The above statement is false, but
2. x refers to a cute puppy?

A Better Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))

A Better Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))

What happens if

1. The above statement is false, but
2. x refers to a cute puppy?

What happens if

1. The above statement is false, but
2. x refers to a cute puppy?

A Better Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))

What happens if

1. The above statement is false, but
2. x refers to a cute puppy?

What happens if

1. The above statement is false, but
2. x refers to a cute puppy?

A Better Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))

What happens if

1. The above statement is false, but
2. x refers to a cute puppy?

What happens if

1. The above statement is false, but
2. x refers to a cute puppy?

“There is some P(x) where
Q(x)”

translates as

∃x. (P(x) ∧ Q(x))

The Takeaway Point

● Be careful when translating statements
into first-order logic!

● ∀ is usually paired with →.
● Sometimes paired with ↔.

● ∃ is usually paired with ∧.

Time-Out For Announcements

Friday Four Square!
Today at 4:15PM at Gates

Problem Set Four

● Problem Set Four released today.
● Checkpoint due on Monday.
● Rest of the assignment due Friday.
● Explore functions, cardinality,

diagonalization, and logic!

Your Questions

What material is covered on the midterm?
Is it open-notes?

Hey Keith, how did you first get
interested in math/computer science?
Your enthusiasm is infectious but also

somewhat curious.

Back to Logic!

Combining Quantifiers

● Most interesting statements in first-order
logic require a combination of
quantifiers.

● Example: “Everyone loves someone else.”

Combining Quantifiers

● Most interesting statements in first-order
logic require a combination of
quantifiers.

● Example: “Everyone loves someone else.”

∀p. (Person(p) → ∃q. (Person(q) ∧ p ≠ q ∧ Loves(p, q)))

Combining Quantifiers

● Most interesting statements in first-order
logic require a combination of
quantifiers.

● Example: “Everyone loves someone else.”

∀p. (Person(p) → ∃q. (Person(q) ∧ p ≠ q ∧ Loves(p, q)))

For every person,

Combining Quantifiers

● Most interesting statements in first-order
logic require a combination of
quantifiers.

● Example: “Everyone loves someone else.”

∀p. (Person(p) → ∃q. (Person(q) ∧ p ≠ q ∧ Loves(p, q)))

For every person,
there is some person

Combining Quantifiers

● Most interesting statements in first-order
logic require a combination of
quantifiers.

● Example: “Everyone loves someone else.”

∀p. (Person(p) → ∃q. (Person(q) ∧ p ≠ q ∧ Loves(p, q)))

For every person,
there is some person

who isn't them

Combining Quantifiers

● Most interesting statements in first-order
logic require a combination of
quantifiers.

● Example: “Everyone loves someone else.”

∀p. (Person(p) → ∃q. (Person(q) ∧ p ≠ q ∧ Loves(p, q)))

For every person,
there is some person

who isn't them
that they love.

Combining Quantifiers

● Most interesting statements in first-order
logic require a combination of
quantifiers.

● Example: “There is someone everyone
else loves.”

Combining Quantifiers

● Most interesting statements in first-order
logic require a combination of
quantifiers.

● Example: “There is someone everyone
else loves.”

∃p. (Person(p) ∧ ∀q. (Person(q) ∧ p ≠ q → Loves(q, p)))

Combining Quantifiers

● Most interesting statements in first-order
logic require a combination of
quantifiers.

● Example: “There is someone everyone
else loves.”

∃p. (Person(p) ∧ ∀q. (Person(q) ∧ p ≠ q → Loves(q, p)))

There is some person

Combining Quantifiers

● Most interesting statements in first-order
logic require a combination of
quantifiers.

● Example: “There is someone everyone
else loves.”

∃p. (Person(p) ∧ ∀q. (Person(q) ∧ p ≠ q → Loves(q, p)))

There is some person
who everyone

Combining Quantifiers

● Most interesting statements in first-order
logic require a combination of
quantifiers.

● Example: “There is someone everyone
else loves.”

∃p. (Person(p) ∧ ∀q. (Person(q) ∧ p ≠ q → Loves(q, p)))

There is some person
who everyone

who isn't them

Combining Quantifiers

● Most interesting statements in first-order
logic require a combination of
quantifiers.

● Example: “There is someone everyone
else loves.”

∃p. (Person(p) ∧ ∀q. (Person(q) ∧ p ≠ q → Loves(q, p)))

There is some person
who everyone

who isn't them
loves.

For Comparison

∃p. (Person(p) ∧ ∀q. (Person(q) ∧ p ≠ q → Loves(q, p)))

There is some person
who everyone

who isn't them
loves.

∀p. (Person(p) → ∃q. (Person(q) ∧ p ≠ q ∧ Loves(p, q)))

For every person,
there is some person

who isn't them
that they love.

Everyone Loves Someone Else

There is Someone Everyone Else Loves

There is Someone Everyone Else Loves

This person
does not

love anyone
else.

This person
does not

love anyone
else.

Everyone Loves Someone Else

Everyone Loves Someone Else

No one here
is universally

loved.

No one here
is universally

loved.

Everyone Loves Someone Else and
There is Someone Everyone Else Loves

∃p. (Person(p) ∧ ∀q. (Person(q) ∧ p ≠ q → Loves(q, p)))

There is some person
who everyone

who isn't them
loves.

∀p. (Person(p) → ∃q. (Person(q) ∧ p ≠ q ∧ Loves(p, q)))

For every person,
there is some person

who isn't them
that they love.

∧

The statement

∀x. ∃y. P(x, y)

means “For any choice of x, there is
 some choice of y (possibly dependent on

x) where P(x, y) holds.”

The statement

∃y. ∀x. P(x, y)

means “There is some choice of y where
for any choice of x, P(x, y) holds.”

Order matters when mixing existential
and universal quantifiers!

Quantifying Over Sets

● The notation

∀x ∈ S. P(x)

means “for any element x of set S, P(x) holds.”
● This is not technically a part of first-order

logic; it is a shorthand for

∀x. (x ∈ S → P(x))
● How might we encode this concept?

∃x ∈ S. P(x)

Answer: ∃x. (x ∈ S ∧ P(x)).
Note the use of
 instead of ∧ →

here.

Note the use of
 instead of ∧ →

here.

Quantifying Over Sets

● The syntax

∀x ∈ S. φ

∃x ∈ S. φ

is allowed for quantifying over sets.
● In CS103, please do not use variants of this

syntax.
● Please don't do things like this:

∀x with P(x). Q(x)

∀y such that P(y) ∧ Q(y). R(y).

Translating into First-Order Logic

● First-order logic has great expressive
power and is often used to formally
encode mathematical definitions.

● Let's go provide rigorous definitions for
the terms we've been using so far.

Set Theory

“Two sets are equal iff they contain the
same elements.”

∀S. (Set(S) →
∀T. (Set(T) →

(S = T ↔ ∀x. (x ∈ S ↔ x ∈ T))

Is something
missing?

Is something
missing?

Set Theory

“Two sets are equal iff they contain the
same elements.”

∀S. (Set(S) →
∀T. (Set(T) →

(S = T ↔ ∀x. (x ∈ S ↔ x ∈ T))

Many statements asserting a
general claim is true are implicitly

universally quantified.

Many statements asserting a
general claim is true are implicitly

universally quantified.

Set Theory

“The union of two sets is the set
containing all elements of both sets.”

∀S. (Set(S) →
∀T. (Set(T) →

∀x. (x ∈ S ∪ T ↔ x ∈ S ∨ x ∈ T)
)

)

Set Theory

“The union of two sets is the set
containing all elements of both sets.”

∀S. (Set(S) →
∀T. (Set(T) →

∀x. (x ∈ S ∪ T ↔ x ∈ S ∨ x ∈ T)
)

)

Relations

“R is a reflexive relation over A.”

Relations

“R is a reflexive relation over A.”

∀a ∈ A. aRa

Relations

“R is a symmetric relation over A.”

∀a ∈ A. ∀b ∈ A. (aRb → bRa)

Relations

“R is an antisymmetric relation over A.”

∀a ∈ A. ∀b ∈ A. (aRb ∧ bRa → a = b)

Relations

“R is a transitive relation over A.”

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)

Negating Quantifiers

● We spent much of Wednesday's lecture
discussing how to negate propositional
constructs.

● How do we negate quantifiers?

An Extremely Important Table

For any choice of x,
P(x)

For some choice of x,
¬P(x)

When is this true? When is this false?

For some choice of x,
P(x)

For any choice of x,
¬P(x)

For any choice of x,
¬P(x)

For some choice of x,
P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

An Extremely Important Table

For any choice of x,
P(x)

For some choice of x,
¬P(x)

When is this true? When is this false?

For some choice of x,
P(x)

For any choice of x,
¬P(x)

For any choice of x,
¬P(x)

For some choice of x,
P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x)

For any choice of x,
¬P(x)

For any choice of x,
¬P(x)

For some choice of x,
P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x)

For any choice of x,
¬P(x)

For any choice of x,
¬P(x)

For some choice of x,
P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x)

For any choice of x,
¬P(x)

For any choice of x,
¬P(x)

For some choice of x,
P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x) ∀x. ¬P(x)

For any choice of x,
¬P(x)

For some choice of x,
P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x) ∀x. ¬P(x)

For any choice of x,
¬P(x)

For some choice of x,
P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x) ∀x. ¬P(x)

For any choice of x,
¬P(x)

For some choice of x,
P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x) ∀x. ¬P(x)

For any choice of x,
¬P(x) ∃x. P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x) ∀x. ¬P(x)

For any choice of x,
¬P(x) ∃x. P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x) ∀x. ¬P(x)

For any choice of x,
¬P(x) ∃x. P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x) ∀x. ¬P(x)

For any choice of x,
¬P(x) ∃x. P(x)

For some choice of x,
¬P(x) ∀x. P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x) ∀x. ¬P(x)

For any choice of x,
¬P(x) ∃x. P(x)

For some choice of x,
¬P(x) ∀x. P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

Negating First-Order Statements

● Use the equivalences

¬∀x. φ ≡ ∃x. ¬φ

¬∃x. φ ≡ ∀x. ¬φ

to negate quantifiers.
● Mechanically:

● Push the negation across the quantifier.
● Change the quantifier from ∀ to ∃ or vice-versa.

● Use techniques from propositional logic to
negate connectives.

Analyzing Relations

“R is a binary relation over set A that is not
reflexive”

¬∀a ∈ A. aRa
∃a ∈ A. ¬aRa

“Some a ∈ A is not related to itself by R.”

Analyzing Relations

“R is a binary relation over A that is not
antisymmetric”

¬∀x ∈ A. ∀y ∈ A. (xRy ∧ yRx → x = y)
∃x ∈ A. ¬∀y ∈ A. (xRy ∧ yRx → x = y)
∃x ∈ A. ∃y ∈ A. ¬(xRy ∧ yRx → x = y)

∃x ∈ A. ∃y ∈ A. (xRy ∧ yRx ∧ ¬(x = y))
∃x ∈ A. ∃y ∈ A. (xRy ∧ yRx ∧ x ≠ y)

“Some x ∈ A and y ∈ A are related to one
another by R, but are not equal”

Next Time

● Formal Languages
● What is the mathematical definition of a

problem?

● Finite Automata
● What does a mathematical model of a

computer look like?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107

