
  

Mathematical Logic
Part One



  

An Important Question

How do we formalize the logic we've
been using in our proofs?



  

Where We're Going

● Propositional Logic (Today)
● Basic logical connectives.
● Truth tables.
● Logical equivalences.

● First-Order Logic (Today/Friday)
● Reasoning about properties of multiple 

objects.



  

Propositional Logic



  

A proposition is a statement that is,
by itself, either true or false.



  

Some Sample Propositions

● Puppies are cuter than kittens.
● Kittens are cuter than puppies.
● Usain Bolt can outrun everyone in this 

room.
● CS103 is useful for cocktail parties.
● This is the last entry on this list.



  

More Propositions

● I came in like a wrecking ball.
● I am a champion.
● You're going to hear me roar.
● We all just entertainers.



  

Things That Aren't Propositions

Commands 
cannot be true 

or false.

Commands 
cannot be true 

or false.



  

Things That Aren't Propositions

Questions 
cannot be true 

or false.

Questions 
cannot be true 

or false.



  

Things That Aren't Propositions

I am the walrus,
goo goo g'joob

The first half 
is a valid 
proposition.

The first half 
is a valid 
proposition.

Jibberish cannot 
be true or 

false.

Jibberish cannot 
be true or 

false.



  

Propositional Logic

● Propositional logic is a mathematical 
system for reasoning about propositions 
and how they relate to one another.

● Every statement in propositional logic 
consists of propositional variables 
combined via logical connectives.
● Each variable represents some proposition, 

such as “You liked it” or “You should have put a 
ring on it.”

● Connectives encode how propositions are 
related, such as “If you liked it, then you should 
have put a ring on it.”



  

Propositional Variables

● Each proposition will be represented by a 
propositional variable.

● Propositional variables are usually 
represented as lower-case letters, such 
as p, q, r, s, etc.

● Each variable can take one one of two 
values: true or false.



  

Logical Connectives

● Logical NOT: ¬p
● Read “not p”
● ¬p is true if and only if p is false.
● Also called logical negation.

● Logical AND: p ∧ q
● Read “p and q.”
● p ∧ q is true if both p and q are true.
● Also called logical conjunction.

● Logical OR: p ∨ q
● Read “p or q.”
● p ∨ q is true if at least one of p or q are true (inclusive OR)
● Also called logical disjunction.



  

Truth Tables

p q p ∧ q
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T
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F
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F If p is false and q 
is false, then “both p 

and q” is false.

If p is false and q 
is false, then “both p 

and q” is false.
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Truth Tables

p q p ∧ q
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“Both p and q” is 
true only when both 
p and q are true.

“Both p and q” is 
true only when both 
p and q are true.



  

Truth Tables



  

Truth Tables

p q p ∨ q
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Truth Tables

p q p ∨ q
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This “or” is an 
inclusive or.

This “or” is an 
inclusive or.



  

Truth Tables

p ¬p
F
T F
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Truth Table for Implication

p q p → q
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Truth Table for Implication

p q p → q
F
F
T
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F
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T
In both of these cases, 

p is false, so the 
statement “if p, then 
q” is vacuously true.

In both of these cases, 
p is false, so the 

statement “if p, then 
q” is vacuously true.
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Truth Table for Implication

p q p → q
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p  q should mean →

when p is true, q is 
true as well.  But here 

p is true and q is 
false!

p  q should mean →

when p is true, q is 
true as well.  But here 

p is true and q is 
false!
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Truth Table for Implication

p q p → q
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p  q means that if we →

ever find that p is 
true, we'll find that q 

is true as well.

p  q means that if we →

ever find that p is 
true, we'll find that q 

is true as well.
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Truth Table for Implication

p q p → q
F
F
T
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The only way for 
p   q to be false is →

for p to be true and 
q to be false.

The only way for 
p   q to be false is →

for p to be true and 
q to be false.



  

The Biconditional

● The biconditional connective p ↔ q is 
read “p if and only if q.”

● Intuitively, either both p and q are true, 
or neither of them are.

p q p ↔ q
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The Biconditional

● The biconditional connective p ↔ q is 
read “p if and only if q.”

● Intuitively, either both p and q are true, 
or neither of them are.

p q p ↔ q
F
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One of p or q is true 
without the other.

One of p or q is true 
without the other.



  

The Biconditional

● The biconditional connective p ↔ q is 
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● Intuitively, either both p and q are true, 
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The Biconditional

● The biconditional connective p ↔ q is 
read “p if and only if q.”

● Intuitively, either both p and q are true, 
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The Biconditional

● The biconditional connective p ↔ q is 
read “p if and only if q.”

● Intuitively, either both p and q are true, 
or neither of them are.

T
F
F

p q p ↔ q
F
F
T
T
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Both p and q are false 
here, so the statement “p 
if and only if q” is true.

Both p and q are false 
here, so the statement “p 
if and only if q” is true.



  

The Biconditional

● The biconditional connective p ↔ q is 
read “p if and only if q.”

● Intuitively, either both p and q are true, 
or neither of them are.
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if and only if q” is true.

Both p and q are false 
here, so the statement “p 
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The Biconditional

● The biconditional connective p ↔ q is 
read “p if and only if q.”

● Intuitively, either both p and q are true, 
or neither of them are.
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The Biconditional

● The biconditional connective p ↔ q is 
read “p if and only if q.”

● Intuitively, either both p and q are true, 
or neither of them are.

T
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p q p ↔ q
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One interpretation of  ↔
is to think of it as 
equality: the two 

propositions must have 
equal truth values.

One interpretation of  ↔
is to think of it as 
equality: the two 

propositions must have 
equal truth values.



  

True and False

● There are two more “connectives” to 
speak of: true and false.
● The symbol ⊤ is a value that is always true.
● The symbol ⊥ is value that is always false.

● These are often called connectives, 
though they don't connect anything.
● (Or rather, they connect zero things.)



  

Operator Precedence

● How do we parse this statement?

¬x → y ∨ z → x ∨ y ∧ z
● Operator precedence for propositional logic:

¬   

∧   

∨   

→   

↔   
● All operators are right-associative.
● We can use parentheses to disambiguate.
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Operator Precedence

● How do we parse this statement?

(¬x) → y ∨ z → x ∨ (y ∧ z)
● Operator precedence for propositional logic:

¬   

∧   

∨   

→   

↔   
● All operators are right-associative.
● We can use parentheses to disambiguate.



  

Operator Precedence

● How do we parse this statement?

(¬x) → y ∨ z → x ∨ (y ∧ z)
● Operator precedence for propositional logic:

¬   

∧   

∨   

→   

↔   
● All operators are right-associative.
● We can use parentheses to disambiguate.



  

Operator Precedence

● How do we parse this statement?

(¬x) → (y ∨ z) → (x ∨ (y ∧ z))
● Operator precedence for propositional logic:

¬   

∧   

∨   

→   

↔   
● All operators are right-associative.
● We can use parentheses to disambiguate.



  

Operator Precedence

● How do we parse this statement?

(¬x) → (y ∨ z) → (x ∨ (y ∧ z))
● Operator precedence for propositional logic:

¬   

∧   

∨   

→   

↔   
● All operators are right-associative.
● We can use parentheses to disambiguate.



  

Operator Precedence

● How do we parse this statement?

(¬x) → ((y ∨ z) → (x ∨ (y ∧ z)))
● Operator precedence for propositional logic:

¬   

∧   

∨   

→   

↔   
● All operators are right-associative.
● We can use parentheses to disambiguate.



  

Operator Precedence

● How do we parse this statement?

(¬x) → ((y ∨ z) → (x ∨ (y ∧ z)))
● Operator precedence for propositional logic:

¬   

∧   

∨   

→   

↔   
● All operators are right-associative.
● We can use parentheses to disambiguate.



  

Recap So Far

● A propositional variable is a variable that is 
either true or false.

● The logical connectives are
● Negation: ¬p
● Conjunction: p ∧ q
● Disjunction: p ∨ q
● Implication: p → q
● Biconditional: p ↔ q
● True: ⊤
● False: ⊥



  

Translating into Propositional Logic



  

Some Sample Propositions

“I won't be eaten by a velociraptor if there 
isn't a velociraptor outside my apartment.”

¬a → ¬e

a: There is a velociraptor outside my 
apartment.

b: Velociraptors can open windows.

c: I am in my apartment right now.

d: My apartment has windows.

e: I am going to be eaten by a velociraptor



  

“p if q”

translates to

q → p

It does not translate to

p → q



  

Some Sample Propositions

a: There is a velociraptor outside my 
apartment.

b: Velociraptors can open windows.

c: I am in my apartment right now.

d: My apartment has windows.

e: I am going to be eaten by a velociraptor

“If there is a velociraptor outside my apartment, 
but velociraptors can't open windows, I am not 

going to be eaten by a velociraptor.”

a ∧ ¬b → ¬e



  

“p, but q”

translates to

p ∧ q



  

The Takeaway Point

● When translating into or out of 
propositional logic, be very careful not to 
get tripped up by nuances of the English 
language.
● In fact, this is one of the reasons we have a 

symbolic notation in the first place!

● Many prepositional phrases lead to 
counterintuitive translations; make sure 
to double-check yourself!



  

More Elaborate Truth Tables

p q p ∧ (p → q)
F
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More Elaborate Truth Tables

p q p ∧ (p → q)
F
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We can't evaluate this until 
we have a value for p  q.→
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This gives the final 
truth value for the 

expression.



  

Logical Equivalence



  

Negations

● p ∧ q is false if and only if ¬(p ∧ q) is true.
● Intuitively, this is only possible if either p is 

false or q is false (or both!)
● In propositional logic, we can write this as 

¬p ∨ ¬q.
● How would we prove that ¬(p ∧ q) and 

¬p ∨ ¬q are equivalent?
● Idea: Build truth tables for both expressions 

and confirm that they always agree.



  

Negating AND
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These two statements 
are always the same!

These two statements 
are always the same!



  

Logical Equivalence

● If two propositional logic statements φ and ψ 
always have the same truth values as one another, 
they are called logically equivalent.

● We denote this by φ ≡ ψ.  

● ≡ is not a connective.  It is a statement used to 
describe propositional formulas.

● φ ↔ ψ is a propositional statement that can take on 
different truth values based on how φ and ψ 
evaluate. Think of it as a function of φ and ψ.

● φ ≡ ψ is an assertion that the formulas always take 
on the same values. It is either true or it isn't.



  

De Morgan's Laws

● Using truth tables, we concluded that

¬(p ∧ q) ≡ ¬p ∨ ¬q  
● We can also use truth tables to show that

¬(p ∨ q) ≡ ¬p ∧ ¬q  
● These two equivalences are called 

De Morgan's Laws.



  

Another Important Equivalence

● When is p → q false?
● Answer: p must be true and q must be 

false.
● In propositional logic:

p ∧ ¬q  
● Is the following true?

¬(p → q) ≡ p ∧ ¬q  



  

Negating Implications
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An Important Observation

● We have just proven that

¬(p → q) ≡ p ∧ ¬q
● If we negate both sides, we get that

p → q ≡ ¬(p ∧ ¬q)
● By De Morgan's laws:

p → q ≡ ¬(p ∧ ¬q)

p → q ≡ ¬p ∨ ¬¬q

p → q ≡ ¬p ∨ q

● Thus p → q ≡ ¬p ∨ q



  

An Important Observation

● We have just proven that

¬(p → q) ≡ p ∧ ¬q
● If we negate both sides, we get that

p → q ≡ ¬(p ∧ ¬q)
● By De Morgan's laws:

p → q ≡ ¬(p ∧ ¬q)

p → q ≡ ¬p ∨ ¬¬q

p → q ≡ ¬p ∨ q

● Thus p → q ≡ ¬p ∨ q

If p is false, the whole 
thing is true and we gain 
no information.  If p is 
true, then q has to be 
true for the whole 

expression to be true.

If p is false, the whole 
thing is true and we gain 
no information.  If p is 
true, then q has to be 
true for the whole 

expression to be true.



  

Why This Matters

● Understanding these equivalences helps 
justify how proofs work and what to 
prove.

● Unsure what to prove? Try translating it 
into logic first and see what happens.



  

Announcements!



  

Problem Set Three Checkpoint

● Problem Set Three checkpoints graded and 
solutions are released.

● Please review the feedback and solution set. 
Parts (ii) and (iv) are trickier than they might 
seem.

● On-time Problem Set Two's should be graded and 
returned by tomorrow at noon in the homework 
return bin.
● Please keep everything sorted!
● Please don't leave papers sitting out!



  

A Note on Induction

● In an inductive proof, P(n) must be a 
statement that is either true or false for a 
particular choice of n.

● Examples:
● P(n) = “aₙ = 2n.”
● P(n) = “any tournament with n players has a 

winner.”

● Non-examples:
● P(n) = “a game of Nim with n stones in each pile”
● P(n) = “for any n ∈ ℕ, aₙ = 2n.”



  

Your Questions



  

What are some practical applications of 
cardinality? Why is it useful?



  

First-Order Logic



  

What is First-Order Logic?

● First-order logic is a logical system for 
reasoning about properties of objects.

● Augments the logical connectives from 
propositional logic with
● predicates that describe properties of 

objects, and
● functions that map objects to one another,
● quantifiers that allow us to reason about 

multiple objects simultaneously.



  

The Universe of Propositional Logic



  

The Universe of Propositional Logic

p ∧ q → ¬r ∨ ¬s



  

The Universe of Propositional Logic

TRUE FALSE

p ∧ q → ¬r ∨ ¬s



  

The Universe of Propositional Logic

TRUE FALSE

p ∧ q → ¬r ∨ ¬s

p
r

q
s



  

The Universe of Propositional Logic

TRUE FALSE

p ∧ q → ¬r ∨ ¬s

pr qs



  

Propositional Logic

● In propositional logic, each variable represents a 
proposition, which is either true or false.

● We can directly apply connectives to propositions:
● p → q
● ¬p ∧ q

● The truth of a statement can be determined by 
plugging in the truth values for the input 
propositions and computing the result.

● We can see all possible truth values for a 
statement by checking all possible truth 
assignments to its variables.



  

The Universe of First-Order Logic

Venus

The Morning 
Star

The Evening 
Star

The Sun

The Moon



  

First-Order Logic

● In first-order logic, each variable refers 
to some object in a set called the domain 
of discourse.

● Some objects may have multiple names.
● Some objects may have no name at all.

Venus
The Morning 

Star

The Evening 
Star
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Propositional vs. First-Order Logic

● Because propositional variables are 
either true or false, we can directly apply 
connectives to them.

p → q                 ¬p ↔ q ∧ r    
● Because first-order variables refer to 

arbitrary objects, it does not make sense 
to apply connectives to them.

Venus → Sun                137 ↔ ¬42
● This is not C!



  

Reasoning about Objects

● To reason about objects, first-order logic uses 
predicates.

● Examples:
● ExtremelyCute(Quokka)
● DeadlockEachOther(House, Senate)

● Predicates can take any number of 
arguments, but each predicate has a fixed 
number of arguments (called its arity)

● Applying a predicate to arguments produces 
a proposition, which is either true or false.



  

First-Order Sentences

● Sentences in first-order logic can be 
constructed from predicates applied to objects:

LikesToEat(V, M) ∧ Near(V, M) → WillEat(V, M)

Cute(t) → Dikdik(t) ∨ Kitty(t) ∨ Puppy(t)

x < 8 → x < 137

The notation x < 8 is just a shorthand 
for something like LessThan(x, 8).  
Binary predicates in math are often 

written like this, but symbols like < are 
not a part of first-order logic.

The notation x < 8 is just a shorthand 
for something like LessThan(x, 8).  
Binary predicates in math are often 

written like this, but symbols like < are 
not a part of first-order logic.



  

Equality

● First-order logic is equipped with a special 
predicate = that says whether two objects are 
equal to one another.

● Equality is a part of first-order logic, just as → 
and ¬ are.

● Examples:

MorningStar = EveningStar

Glinda = GoodWitchOfTheNorth
● Equality can only be applied to objects; to see 

if propositions are equal, use ↔.



  

For notational simplicity, define ≠ as

    x ≠ y   ≡   ¬(x = y)



  

Next Time

● First-Order Logic II
● Functions and quantifiers.
● How do we translate statements into 

first-order logic?
● Why does any of this matter?
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