
  

Cardinality

Problem Set Three checkpoint 
due in the box up front.  

You can also turn in Problem 
Set Two using a late period.
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You can also turn in Problem 
Set Two using a late period.



  

Recap from Last Time



  

Functions

● A function f is a mapping such that every element 
of A is associated with a single element of B.

● If f is a function from A to B, then
● we call A the domain of f.
● we call B the codomain of f.

● We denote that f is a function from A to B by 
writing

f : A → B



  

Injections and Surjections

● A function f : A → B is an injection iff

for any a₀, a₁ ∈ A:   
if f(a₀) = f(a₁), then a₀ = a₁.   

● At most one element of the domain maps to 
each element of the codomain.

● A function f : A → B is a surjection iff

for any b ∈ B, there exists an a ∈ A
where f(a) = b.   

● At least one element of the domain maps to 
each element of the codomain.



  

Bijections

● A function that is injective and surjective 
is called bijective.

● Exactly one element of the domain maps 
to any particular element of the 
codomain.



  

Cardinality Revisited



  

Cardinality

● Recall (from lecture one!) that the cardinality 
of a set is the number of elements it contains.

● If S is a set, we denote its cardinality by |S|.
● For finite sets, cardinalities are natural 

numbers:
● |{1, 2, 3}| = 3
● |{100, 200, 300}| = 3

● For infinite sets, we introduced infinite 
cardinals to denote the size of sets:

|ℕ| = ℵ₀    



  

Defining Cardinality

● It is difficult to give a rigorous definition of what 
cardinalities actually are.
● What is 4?  What is ₀?ℵ

● Idea: Define cardinality as a relation between two 
sets rather than as an absolute quantity.

● We'll define what these relations between sets mean 
without actually defining what 
“a cardinality” actually is:

|S|=|T|    |S|≠|T|    |S|≤|T|    |S|<|T|
● Cardinality exists between sets!



  

Comparing Cardinalities

● The relationships between set cardinalities are 
defined in terms of functions between those 
sets.

● |S| = |T| is defined using bijections.

|S| = |T| iff there exists a bijection f : S → T 
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Properties of Cardinality

● Equality of cardinality is an equivalence 
relation.

● For any sets R, S, and T:
● |S| = |S|. (reflexivity)
● If |S| = |T|, then |T| = |S|. (symmetry)
● If |R| = |S| and |S| = |T|, then |R| = |T|. 

(transitivity)

● Read the course notes for proofs of 
these results!



  

Infinity is Weird...



  

Home on the Range

0 1

0 2

f : [0, 1] → [0, 2]
f(x) = 2x

|[0, 1]| = |[0, 2]|



  

Home on the Range

0 1

0 k

f : [0, 1] → [0, k]
f(x) = kx

|[0, 1]| = |[0, k]|



  

Put a Ring On It

0

f : (-π/2, π/2) → ℝ
f(x) = tan x

 

|(-π/2, π/2)| = |ℝ|

+π /2-π /2



  

What is |ℕ2|?
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Diagonal 0
f(0, 0) = 0 

 

 Diagonal 1
f(0, 1) = 1 
f(1, 0) = 2 

 

Diagonal 2
f(0, 2) = 3 
f(1, 1) = 4 
f(2, 0) = 5 

 

Diagonal 3
f(0, 3) = 6 
f(1, 2) = 7 
f(2, 1) = 8 
f(3, 0) = 9 

 

Diagonal 4
f(0, 4) = 10
f(1, 3) = 11
f(2, 2) = 12
f(3, 1) = 13
f(4, 0) = 14

…

f(a, b) =

The number of elements on
 all previous diagonals

The index of the current
pair on its diagonal

+



  

f(a, b) =

(a + b)(a + b + 1) / 2

The index of the current
pair on its diagonal

+

Diagonal 0
f(0, 0) = 0 

 

 Diagonal 1
f(0, 1) = 1 
f(1, 0) = 2 
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f(0, 2) = 3 
f(1, 1) = 4 
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f(4, 0) = 14

…



  

f(a, b) =

(a + b)(a + b + 1) / 2

 a

+
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f(a, b) = (a + b)(a + b + 1) / 2 + a

Diagonal 0
f(0, 0) = 0 

 

 Diagonal 1
f(0, 1) = 1 
f(1, 0) = 2 
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Diagonal 4
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f(1, 3) = 11
f(2, 2) = 12
f(3, 1) = 13
f(4, 0) = 14

…

This function is called 
Cantor's Pairing Function.

This function is called 
Cantor's Pairing Function.



  

ℕ and ℕ2

● Theorem: |ℕ| = |ℕ2|.
● To formalize, can show the Cantor 

pairing function is injective and 
surjective.

● Lots of icky tricky math; see appendix at 
the end of the slides for details.



  

Announcements



  

Midterm Rescheduling

● Need to take the midterm at an alternate 
time?  We'll send out an email about that 
later today.

● Tentative alternate times: night before 
the exam and morning of the exam.

● Let us know if neither of these work for 
you.



  

Recitation Sessions

● We've added a few new recitation 
sections to our offerings.

● Check the “Office Hours” link for more 
details!



  

Your Questions



  

How would we check our own proofs for 
“correctness” when syntax is an important 

part of the proof?



  

Could you explain how to use the phrase 
“without loss of generality?”



  

Back to CS103...



  

Differing Infinities



  

Unequal Cardinalities

● Recall: |A| = |B| iff the following 
statement is true:

There exists a bijection f : A → B  
● What does it mean for |A| ≠ |B|?

There are no bijections f : A → B  
● Need to show that no possible function 

from A to B is a bijection.



  

What is the relation between |ℕ| and |ℝ|?



  

Theorem: |ℕ| ≠ |ℝ|



  

Our Goal

● We need to show the following:

 There is no bijection f : ℕ → ℝ   
● This is a different style of proof from what we 

have seen before.
● To prove it, we will do the following:

● Assume for the sake of contradiction that there is 
a bijection f : ℕ → ℝ.

● Derive a contradiction by showing that f cannot be 
surjective.

● Conclude our assumption was wrong and that no 
bijection can possibly exist from ℕ to ℝ.



  

The Intuition

● Suppose we have a function f : ℕ → ℝ.
● We can then list off an infinite sequence 

of real numbers

r0, r1, r2, r3, r4, … 

by setting rₙ = f(n).
● We will show that we can always find a 

real number d such that

For any n ∈ ℕ: rₙ ≠ d.



  

Rewriting Our Constraints

● Our goal is to find some d ∈ ℝ such that

For any n ∈ ℕ: rₙ ≠ d.   
● In other words, we want to pick d such that

r0 ≠ d   

r1 ≠ d   

r2 ≠ d   

r3 ≠ d   

…   



  

The Critical Insight

● Key Proof Idea: Build the real number d out 
of infinitely many “pieces,” with one piece for 
each number rₙ.

● Choose the 0th piece such that r0 ≠ d.

● Choose the 1st piece such that r1 ≠ d.

● Choose the 2nd piece such that r2 ≠ d.

● Choose the 3rd piece such that r3 ≠ d.

● … 
● Building a “frankenreal” out of infinitely many 

pieces of other real numbers.



  

Building our “Frankenreal”

● Goal: build “frankenreal” d out of infinitely many 
pieces, one for each rₖ.

● One idea: Define d via its decimal representation.

● Choose the digits of d as follows:

● The 0th digit of d is not the same as the 0th digit of r0.

● The 1st digit of d is not the same as the 1st digit of r1.

● The 2nd digit of d is not the same as the 2nd digit of r2.

● …
● So d ≠ rₙ for any n ∈ ℕ.



  

Building our “Frankenreal”

● If r is a real number, define r[n] as 
follows:
● r[0] is the integer part of r.
● r[n] is the nth decimal digit of r, if n > 0.

● Examples:
● π[0] = 3 (-e)[0] = -2 5[0] = 5
● π[1] = 1 (-e)[1] = 7 5[1] = 0
● π[2] = 4 (-e)[2] = 1 5[2] = 0
● π[3] = 1 (-e)[3] = 8 5[3] = 0



  

Building our “Frankenreal”

● We can now build our frankenreal d.
● Define d[n] as follows:

 

 
● Now, d ≠ rₙ for any n ∈ ℕ:

● If rₙ[n] = 0, then d[n] = 1, so rₙ ≠ d.
● If rₙ[n] ≠ 0, then d[n] = 0, so rₙ ≠ d.

d [n]={1 if rn [n]=0
0 otherwise
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Theorem: |ℕ| ≠ |ℝ|.
Proof: By contradiction; suppose that |ℕ| = |ℝ|. Then there

exists a bijection f : ℕ → ℝ.
 

We introduce some new notation. For any real number r,
let r[0] be the integer part of r, and for n > 0 let r[n] be
the nth digit in the decimal representation of r.

 

Now, consider the real number d defined by the following
decimal representation:

 
Since d ∈ ℝ and f is a bijection, there must be some n ∈ ℕ
such that f(n) = d. Consider these two cases concerning
the nth digit of f(n):

 

   Case 1: f(n)[n] = 0. By construction d[n] = 1, so f(n) ≠ d.
 

   Case 2: f(n)[n] ≠ 0. By construction d[n] = 0, so f(n) ≠ d.
 

In either case, we see f(n) ≠ d. This contradicts the fact
that f(n) = d. We have reached a contradiction, so our
assumption must have been wrong. Thus |ℕ| ≠ |ℝ|. ■
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Diagonalization

● The proof we just worked through is called a proof by 
diagonalization and is a powerful proof technique.

● Suppose you want to show |A| ≠ |B|:

● Assume for contradiction that f : A → B is surjective.  
We'll find d ∈ B such that f(a) ≠ d for any a ∈ A.

● To do this, construct d out of “pieces,” one piece 
taken from each a ∈ A.

● Construct d such that the ath “piece” of d disagrees 
with the ath “piece” of f(a).

● Conclude that f(a) ≠ d for any a ∈ A.
● Reach a contradiction, so no surjection exists from A 

to B.



  

A Silly Observation...



  

Ranking Cardinalities

● We define |S| ≤ |T| as follows:

|S| ≤ |T| iff there is an injection f : S → T
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Ranking Cardinalities

● We define |S| ≤ |T| as follows:

|S| ≤ |T| iff there is an injection f : S → T
● For any sets R, S, and T:

● |S| ≤ |S|.
● If |R| ≤ |S| and |S| ≤ |T|, then |R| ≤ |T|.
● If |S| ≤ |T| and |T| ≤ |S|, then |S| = |T|. (This is 

called the Cantor-Bernstein-Schroeder 
theorem, though it was originally proven by 
Richard Dedekind.)

● Either |S| ≤ |T| or |T| ≤ |S|.



  

Comparing Cardinalities

● Formally, we define < on cardinalities as

|S| < |T| iff |S| ≤ |T| and |S| ≠ |T| 

● In other words:
● There is an injection from S to T.
● There is no bijection between S and T.



  

Comparing Cardinalities

● Formally, we define < on cardinalities as

|S| < |T| iff |S| ≤ |T| and |S| ≠ |T| 

● In other words:
● There is an injection from S to T.
● There is no bijection between S and T.

● Theorem: For any sets S and T, exactly one of the 
following is true:

|S| < |T|      |S| = |T|      |S| > |T|   



  

Theorem: |ℕ| ≤ |ℝ|.
Proof: We exhibit an injection from ℕ to ℝ.  Let

f(n) = n.  Then f : ℕ → ℝ, since every natural
number is also a real number.

 

We further claim that f is an injection.  To see
this, suppose that for some n₀, n₁ ∈ ℕ that
f(n₀) = f(n₁).  We will prove that n₀ = n₁.  To see
this, note that 

 

n₀ = f(n₀) = f(n₁) = n₁
 

Thus n₀ = n₁, as required, so f is an injection
from ℕ to ℝ.  Thus |ℕ| ≤ |ℝ|. ■



  

Cantor's Theorem Revisited



  

Cantor's Theorem

● Cantor's Theorem is the following:

For every set S: |S| < | (℘ S)|    
● This is how we concluded that there are 

more problems to solve than programs to 
solve them.

● We informally sketched a proof of this in 
the first lecture.

● Let's now formally prove Cantor's 
Theorem.



  

The Key Step

● We need to show that

For any set S: |S| ≠ | (℘ S)|.   
● Prove, for every set S, that

There is no bijection f : S → (℘ S).
● Prove this by contradiction:

● Assume that there is a set S where there is a 
bijection f : S → (℘ S).

● Derive a contradiction by showing that f is 
not a bijection.



  

The Diagonal Argument

● Suppose that we have a function 
f : S →  (℘ S).

● We want to find a “frankenset” D ∈ (℘ S) 
such that for any x ∈ S, we have f(x) ≠ D.

● Idea: Use a diagonalization argument.
● Build D from many “pieces,” one “piece” for 

each x ∈ S.
● Choose those pieces such that the xth “piece” 

of f(x) disagrees with the xth “piece” of D.

● Hard part: What will our “pieces” be?



  

The Key Idea

● Want to construct D such that

The xth “piece” of f(x) is different
from the xth “piece” of D

● Idea: Have the xth “piece” of D be whether or not 
D contains x.

● Define D such that

D contains x     iff    f(x) does not contain x
● More formally, we want

x ∈ D      iff      x ∉ f(x)  
● Most formally:

D = { x ∈ S | x ∉ f(x) }   
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Theorem: For any set S, we have |S| ≠ | (℘ S)|.
 

Proof: By contradiction; assume that there is a set S where
|S| = | (℘ S)|. This means there is a bijection f : S → (℘ S).
Define the set D = { x ∈ S | x ∉ f(x) }. Since every x ∈ D
also satisfies x ∈ S, we see that D ⊆ S. Thus D ∈ (℘ S).

 

Since D ∈ (℘ S) and f is a bijection, there is some y ∈ S
where f(y) = D. Now, either y ∈ f(y) or y ∉ f(y). We consider
these cases separately:

 

   Case 1: y ∉ f(y). By our definition of D, we have y ∈ D.
Since y ∉ f(y) and y ∈ D, we see f(y) ≠ D.

 

   Case 2: y ∈ f(y). By our definition of D, we have y ∉ D.
Since y ∈ f(y) and y ∉ D, we see f(y) ≠ D.

 

In both cases we find f(y) ≠ D, contradicting f(y) = D. We
have reached a contradiction, so our assumption must have
been wrong. Thus for every set S, we have |S| ≠ | (℘ S)|. ■
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Concluding the Proof

● We've just shown that |S| ≠ | (℘ S)| for any set S.

● To prove |S| < | (℘ S)|, we need to show that
|S| ≤ | (℘ S)| by finding an injection from S to 

(℘ S).

● Take f : S → (℘ S) defined as

f(x) = {x} 
● Good exercise: prove this function is injective.



  

Why All This Matters

● Proof by diagonalization is a powerful 
technique for showing two sets cannot 
have the same size.

● Can also be adapted for other purposes:
● Finding specific problems that cannot be 

solved by computers.
● Proving Gödel's Incompleteness Theorem.
● Finding problems requiring some amount of 

computational resource to solve.
● We will return to this later in the quarter.



  

Next Time

● Propositional Logic
● How do we reason about how different 

statements entail one another?

● First-Order Logic
● How do we reason about collections of 

objects?



  

Appendix: Proof that |ℕ2| = |ℕ|



  

Proving Surjectivity

● Given just the definition of our function:

f(a, b) = (a + b)(a + b + 1) / 2 + a

It is not at all clear that every natural 
number can be generated.

● However, given our intuition of how the 
function works (crawling along 
diagonals), we can start to formulate a 
proof of surjectivity.



  

Proving Surjectivity

f(a, b) = (a + b)(a + b + 1) / 2 + a
● What pair of numbers maps to 137?
● We can figure this out by first trying to figure out 

what diagonal this would be in.

Answer: Diagonal 16, since there are 136 pairs that come 
before it.

Now that we know the diagonal, we can figure out 
the index into that diagonal.

137 – 136 = 1.

So we'd expect the first entry of diagonal 16 to map 
to 137.

f(1, 15) = 16 × 17 / 2 + 1 = 136 + 1 = 137
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Generalizing Into a Proof
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Lemma: Let f(a, b) = (a + b)(a + b + 1) / 2 + a be a function from ℕ2 to ℕ.  Then
 f is surjective.

 

Proof: Consider any n ∈ ℕ.  We will show that there exists a pair (a, b) ∈ ℕ2 such
that f(a, b) = n.

 

Consider the largest d ∈ ℕ such that d(d + 1) / 2 ≤ n.  Then, let
k = n – d(d + 1) / 2.  Since d(d + 1) / 2 ≤ n, we have that k ∈ ℕ.  We
further claim that k ≤ d.  To see this, suppose for the sake of
contradiction that k > d.  Consequently, k ≥ d + 1.  This means that
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d + 1 + d(d + 1) / 2 ≤ n
(2(d + 1) + d(d + 1)) / 2 ≤ n
(d + 1)(d + 2) / 2 ≤ n

 

But this means that d is not the largest natural number satisfying the
inequality d(d + 1) / 2 ≤ n, a contradiction.  Thus our assumption must
have been wrong, so k ≤ d.

 

Since k ≤ d, we have that 0 ≤ k – d, so k – d ∈ ℕ.  Now, consider the value
of f(k, d – k).  This is

 

 f(k, d – k) = (k + d – k)(k + d – k + 1) / 2 + k
= d(d + 1) / 2 + k
= d(d + 1) / 2 + n – d(d + 1) / 2
= n

 

Thus there is a pair (a, b) ∈ ℕ2 (namely, (k, d – k)) such that f(a, b) = n.
Consequently, f is surjective. ■
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Proving Injectivity

● Given the function

f(a, b) = (a + b)(a + b + 1) / 2 + a
● It is not at all obvious that f is injective.
● We'll have to use our intuition to figure 

out why this would be.
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Proving Injectivity

f(a, b) = (a + b)(a + b + 1) / 2 + a
● Suppose that f(a, b) = f(c, d).  We need to prove 

(a, b) = (c, d).
● Our proof will proceed in two steps:

● First, we'll prove that (a, b) and (c, d) have to be in the 
same diagonal.

● Next, using the fact that they're in the same diagonal, 
we'll show that they're at the same position within 
that diagonal.

● From this, we can conclude (a, b) = (c, d).



  

Lemma: Suppose f(a, b) = (a + b)(a + b + 1) / 2 + a.  Then the
largest m ∈ ℕ for which m(m + 1) / 2 ≤ f(a, b) is given by
m = a + b.

 

Proof: First, we show that m = a + b satisfies the above inequality.
Note that if m = a + b, we have

 

    f(a, b) = (a + b)(a + b + 1) / 2 + a
≥ (a + b)(a + b + 1) / 2
= m(m + 1) / 2

 

So m satisfies the inequality.
 

Next, we will show that any m' ∈ ℕ with m' > a + b will not
satisfy the inequality.  Take any m' ∈ ℕ where m' > a + b. 
This means that m' ≥ a + b + 1.  Consequently, we have

 

m'(m' + 1) / 2 ≥ (a + b + 1)(a + b + 2) / 2
  = ((a +  b)(a + b + 2) + 2(a + b + 1)) / 2
  = (a + b)(a + b + 1) / 2 + a + b + 1
  > (a + b)(a + b + 1) / 2 + a
  = f(a, b)

 

Thus m' does not satisfy the inequality.  Consequently,
m = a + b is the largest natural number satisfying the
inequality. ■

The point of this lemma is to let 
us “read off” what diagonal we 
are in just by looking at a and 

b.  We will need this in a 
second.
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Theorem: Let f(a, b) = (a + b)(a + b + 1) / 2 + a.  Then f is injective.
 

Proof: Consider any (a, b), (c, d) ∈ ℕ2 such that f(a, b) = f(c, d).  We will
show that (a, b) = (c, d).

 

First, we will show that a + b = c + d.  To do this, assume for the sake
of contradiction that a + b ≠ c + d.  Then either a + b < c + d or
a + b > c + d.  Assume without loss of generality that a + b < c + d.

 

By our lemma, we know that m = a + b is the largest natural number
such that f(a, b) ≤ m(m + 1) / 2.  Since a + b < c + d, this means that

 

f(a, b) = (a + b)(a + b + 1) / 2 + a
< (c + d)(c + d + 1) / 2
≤ (c + d)(c + d + 1) / 2 + c
= f(c, d) 

 

But this means that f(a, b) < f(c, d), contradicting that f(a, b) = f(c, d).
We have reached a contradiction, so our assumption must have been
wrong.  Thus a + b = c + d.  Given this, we have that

 

f(a, b) = f(c, d)
(a + b)(a + b + 1) / 2 + a = (c + d)(c + d + 1) / 2 + c
(a + b)(a + b + 1) / 2 + a = (a + b)(a + b + 1) / 2 + c

a = c
 

Since a = c and a + b = c + d, we have that b = d.  Thus
(a, b) = (c, d), as required. ■
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