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The pigeonhole principle is the following:

If m objects are placed into n bins,
where m > n, then some bin contains

at least two objects.

(We sketched a proof in Lecture #02)



  

Why This Matters

● The pigeonhole principle can be used to 
show results must be true because they are 
“too big to fail.”

● Given a large enough number of objects 
with a bounded number of properties, 
eventually at least two of them will share a 
property.

● Can be used to prove some surprising 
results.



  

Using the Pigeonhole Principle

● To use the pigeonhole principle:
● Find the m objects to distribute.
● Find the n < m buckets into which to distribute 

them.
● Conclude by the pigeonhole principle that there 

must be two objects in some bucket.

● The details of how to proceeds from there 
are specific to the particular proof you're 
doing.



  

Theorem: Suppose that every point in the real plane
is colored either red or blue. Then for any distance
d > 0, there are two points exactly distance d from
one another that are the same color.

Proof: Consider any equilateral triangle whose side 
lengths are d.  Put this triangle anywhere in the 
plane.  By the pigeonhole principle, because there 
are three vertices, two of the vertices must have the 
same color.  These vertices are at distance d from 
each other, as required. ■

A Surprising Application
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The Hadwiger-Nelson Problem

● No matter how you color the points of the plane, there 
will always be two points at distance 1 that are the 
same color.

● Relation to graph coloring:

● Every point in the real plane is a node.

● There's an edge between two points that are at distance 
exactly one.

● Question: What is the chromatic number of this graph?  
(That is, how many colors do you need to ensure no 
points at distance 1 are the same color?)

● This is the Hadwiger-Nelson problem.  It's known 
that the number is between 4 and 7, but no one knows 
for sure!



  

Theorem: For any nonzero natural number n, there is 
a nonzero multiple of n whose digits are all 0s and 1s.



  

1
11

111
1111

11111
111111

1111111
11111111

111111111
1111111111

Theorem: For any nonzero natural number n, there is 
a nonzero multiple of n whose digits are all 0s and 1s.

There are 10 objects here.
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Theorem: For any nonzero natural number n, there is 
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Proof Idea

● Generate the numbers 1, 11, 111, … until 
n + 1 numbers are generated.

● There are n possible remainders modulo 
n, so two of these numbers have the 
same remainder.

● Their difference is a multiple of n.
● Their difference consists of 1s and 0s.



  

Theorem: Every positive natural number has a nonzero multiple
whose digits are all 0s and 1s.

 

Proof: Let n be an arbitrary positive natural number. For every
natural number k in the range 0 ≤ k ≤ n, define Xₖ as

 

Now, consider the remainders of the Xₖ's modulo n. Since there
are n + 1 Xₖ's and n remainders modulo n, by the pigeonhole
principle there must be at least two Xₖ's that leave the same
remainder modulo n. Let Xₛ and Xₜ be two of these numbers and
let r be that remainder. Without loss of generality, let s > t.

 

Since Xₛ ≡ₙ r, there exists a qₛ ∈ ℤ such that Xₛ = nqₛ + r. Since
Xₜ ≡ₙ r, there exists a qₜ ∈ ℤ such that Xₜ = nqₜ + r.  Therefore,

 

Xₛ – Xₜ = (nqₛ + r) – (nqₜ + r) = nqₛ – nqₜ = n(qₛ – qₜ).
 

Therefore, Xₛ – Xₜ is a multiple of n.  

 

So Xₛ – Xₜ is a sum of distinct powers of ten, so its digits are
0s and 1s. Therefore Xₛ – Xₜ is a nonzero multiple of n whose
digits are all 0s and 1s. ■
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Announcements!



  

Friday Four Square!
Today at 4:15PM, in front of Gates



  

Problem Set Three

● Problem Set Two due at the start of 
today's lecture, or Monday with a 
late period.

● Problem Set Three out.
● Checkpoint due next Monday at the 

start of lecture.
● Rest of the problem set due Friday.
● Play around with graphs, relations, and 

the pigeonhole principle!



  



  

Your Questions



  

“How do you decide whether a statement 
needs to be proved with a lemma or is 

counted as logical reasoning?”



  

“Can we email you or TAs questions we 
have about homework?”

Yes!  Please!Yes!  Please!



  

Functions



  

A function is a means of associating each 
object in one set with an object in some 

other set.



  

Dikdik
Nubian

Ibex
Sloth



  



  

Black and White



  

Terminology

● A function f is a mapping such that every element 
of A is associated with a single element of B.

● For each a ∈ A, there is some b ∈ B with f(a) = b.

● If f(a) = b0 and f(a) = b1, then b0 = b1.

● If f is a function from A to B, we say that f is a 
mapping from A to B.

● We call A the domain of f.
● We call B the codomain of f.

● We denote that f is a function from A to B by 
writing

f : A → B



  

Defining Functions

● Typically, we specify a function by 
describing a rule that maps every element 
of the domain to some element of the 
codomain.

● Examples:
● f(n) = n + 1, where f : ℤ → ℤ
● f(x) = sin x, where f : ℝ → ℝ
● f(x) = ⌈x⌉, where f : ℝ → ℤ

● Notice that we're giving both a rule and 
the domain/codomain.
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Is this a function from A to B?

A B
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Each object in the domain 
has to be associated with 
exactly one object in the 

codomain!
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Is this a function from A to B?

California

New York

Delaware

Washington 
DC

Sacramento

Dover

Albany

A B

Each object in the domain 
has to be associated with 
exactly one object in the 

codomain!

Each object in the domain 
has to be associated with 
exactly one object in the 

codomain!



  

Is this a function from A to B?

Love-a-Lot

Tenderheart

Wish

Funshine

Friend

It's fine that nothing is 
associated with Friend; 
functions do not need 

to use the entire 
codomain.

It's fine that nothing is 
associated with Friend; 
functions do not need 

to use the entire 
codomain.

A B



  

Piecewise Functions

● Functions may be specified piecewise, 
with different rules applying to different 
elements.

● Example:

● When defining a function piecewise, it's 
up to you to confirm that it defines a legal 
function!

f (n)={ −n/2 if n  is even
(n+1)/2 otherwise
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Earth
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Injective Functions

● A function f : A → B is called injective (or 
one-to-one) if each element of the codomain 
has at most one element of the domain that 
maps to it.
● A function with this property is called an 

injection.
● Formally, f : A → B is an injection iff

For any x0, x1 ∈ A:   
if f(x0) = f(x1), then x0 = x1  

● An intuition: injective functions label the 
objects from A using names from B.



  



  



  

Front Door

Balcony
Window

Bedroom
Window



  

Front Door

Balcony
Window

Bedroom
Window



  

Surjective Functions

● A function f : A → B is called surjective (or 
onto) if each element of the codomain has at 
least one element of the domain that maps to 
it.
● A function with this property is called a 

surjection.
● Formally, f : A → B is a surjection iff

For every b ∈ B, there exists at
least one a ∈ A such that f(a) = b.

● Intuition: surjective functions cover every 
element of B with at least one element of A.



  

Injections and Surjections

● An injective function associates at most 
one element of the domain with each 
element of the codomain.

● A surjective function associates at least 
one element of the domain with each 
element of the codomain.

● What about functions that associate 
exactly one element of the domain with 
each element of the codomain?



  

Katniss 
Everdeen

Merida

Hermione 
Granger
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Bijections

● A function that associates each element of 
the codomain with a unique element of the 
domain is called bijective.
● Such a function is a bijection.

● Formally, a bijection is a function that is 
both injective and surjective.

● Bijections are sometimes called one-to-one 
correspondences.
● Not to be confused with “one-to-one functions.”



  

Compositions
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Function Composition

● Let f : A → B and g : B → C.
● The composition of f and g (denoted 

g ∘ f) is the function g ∘ f : A → C defined as

(g ∘ f)(x) = g(f(x))
● Note that f is applied first, but f is on the 

right side!
● Function composition is associative:

h ∘ (g ∘ f) = (h ∘ g) ∘ f



  

Function Composition

● Suppose f : A → A and g : A → A.
● Then both g ∘ f and f ∘ g are defined.
● Does g ∘ f always equal f ∘ g?
● In general, no:

● Let f(x) = 2x
● Let g(x) = x + 1
● (g ∘ f)(x) = g(f(x)) = g(2x) = 2x + 1
● (f ∘ g)(x) = f(g(x)) = f(x + 1) = 2x + 2



  

Next Time

● Cardinality
● Formalizing infinite cardinalities

● Diagonalization
● |ℕ|  |ℝ|≟
● Formalizing Cantor's Theorem
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