Binary Relations

Problem set Two
checkpoint due in the box
up front if you're using
a late period.

Studying Relationships

- We have just explored the graph as a way of studying relationships between objects.
- However, graphs are not the only formalism we can use to do this.

Relationships

- We've seen different types of relationships
- between sets:

$$
-A \subseteq B \quad A \subset B
$$

- between numbers:
- $x<y \quad x \equiv$. y
- between nodes in a graph:
$-u \leftrightarrow v$
- Goal: Focus on these types of relationships and study their properties.

Binary Relations

- Intuitively speaking: a binary relation over a set \boldsymbol{A} is some relation R where, for every $x, y \in A$, the statement $x R y$ is either true or false.
- Examples:
- < can be a binary relation over $\mathbb{N}, \mathbb{Z}, \mathbb{R}$, etc.
- \leftrightarrow can be a binary relation over V for any undirected graph $G=(V, E)$.
- \equiv_{k} is a binary relation over \mathbb{Z} for any integer k.
- We'll give a formal definition later today.

Binary Relations and Graphs

- We can visualize a binary relation R over a set A as a graph:
- The nodes are the elements of A.
- There is an edge from x to y iff $x R y$.
- Example: the relation $a \mid b$ (meaning " a divides b ") over the set $\{1,2,3,4\}$ looks like this:

Binary Relations and Graphs

- We can visualize a binary relation R over a set A as a graph:
- The nodes are the elements of A.
- There is an edge from x to y iff $x R y$.
- Example: the relation $a \neq b$ over $\{1,2,3,4\}$ looks like this:

Binary Relations and Graphs

- We can visualize a binary relation R over a set A as a graph:
- The nodes are the elements of A.
- There is an edge from x to y iff $x R y$.
- Example: the relation $a=b$ over $\{1,2,3,4\}$ looks like this:
.2

3.

Categorizing Relations

- Collectively, there are few properties shared by all relations.
- We often categorize relations into different types to study relations with particular properties.
- General outline for today:
- Find certain properties that hold of the relations we've seen so far.
- Categorize relations based on those properties.
- See what those properties entail.

Reflexivity

- Some relations always hold for any element and itself.
- Examples:
- $x=x$ for any x.
- $A \subseteq A$ for any set A.
- $\chi \equiv_{k} \chi$ for any χ.
- $u \leftrightarrow u$ for any u.
- Relations of this sort are called reflexive.
- Formally: a binary relation R over a set A is reflexive iff for all $x \in A$, the relation $x R x$ holds.

An Intuition for Reflexivity

For every $x \in A$, the relation $x R x$ holds.

Symmetry

- In some relations, the relative order of the objects doesn't matter.
- Examples:
- If $x=y$, then $y=x$.
- If $u \leftrightarrow v$, then $v \leftrightarrow u$.
- If $x \equiv_{k} y$, then $y \equiv_{k} x$.
- These relations are called symmetric.
- Formally: A binary relation R over a set A is called symmetric iff for all $x, y \in A$, if $x R y$, then $y R x$.

An Intuition for Symmetry

For any $x \in A$ and $y \in A$, if $x R y$, then $y R x$.

Transitivity

- Many relations can be chained together.
- Examples:
- If $x=y$ and $y=z$, then $x=z$.
- If $u \leftrightarrow v$ and $v \leftrightarrow w$, then $u \leftrightarrow w$.
- If $x \equiv_{k} y$ and $y \equiv_{k} z$, then $x \equiv_{k} z$.
- These relations are called transitive.
- Formally: A binary relation R over a set A is called transitive iff for all $x, y, z \in A$, if $x R y$ and $y R z$, then $x R z$.

An Intuition for Transitivity

For any $x, y, z \in A$, if $x R y$ and $y R z$, then $x R z$.

Equivalence Relations

- Some relations are reflexive, symmetric, and transitive:
- $x=y$
- $u \leftrightarrow v$
- $\chi \equiv_{k} y$
- Definition: An equivalence relation is a relation that is reflexive, symmetric and transitive.

$x R y \equiv x$ and y have the same shape.

$x R y \equiv x$ and y have the same shape.

$x R y \equiv x$ and y have the same shape.

$x R y \equiv x$ and y have the same shape.

$x R y \equiv x$ and y have the same shape.

$x R y \equiv x$ and y have the same shape.

$x R y \equiv x$ and y have the same shape.

$x R y \equiv x$ and y have the same shape.

$x R y \equiv x$ and y have the same shape.

$x R y \equiv x$ and y have the same shape.

$x R y \equiv x$ and y have the same shape.

$x R y \equiv x$ and y have the same shape.

$x R y \equiv x$ and y have the same shape.

$x R y \equiv x$ and y have the same shape.

$x R y \equiv x$ and y have the same shape.

$x R y \equiv x$ and y have the same shape.

$x R y \equiv x$ and y have the same shape.

$x R y \equiv x$ and y have the same color.

$x R y \equiv x$ and y have the same color.

Equivalence Classes

- Given an equivalence relation R over a set A, for any $x \in A$, the equivalence class of \boldsymbol{x} is the set

$$
[x]_{R}=\{y \in A \mid x R y\}
$$

- $[x]_{R}$ is the set of all elements of A that are related to x.
- Theorem: If R is an equivalence relation over A, then every $a \in A$ belongs to exactly one equivalence class.

Closing the Loop

- In any graph $G=(V, E)$, we saw that the connected component containing a node $v \in V$ is given by

$$
\{x \in V \mid v \leftrightarrow x\}
$$

- What is the equivalence class for some node $v \in V$ under the relation \leftrightarrow ?

$$
[v]_{\leftrightarrow}=\{x \in V \mid v \leftrightarrow x\}
$$

- Connected components are just equivalence classes of \leftrightarrow !

Why This Matters

- Developing the right definition for a connected component was challenging.
- Proving every node belonged to exactly one equivalence class was challenging.
- Now that we know about equivalence relations, we get both of these for free!
- If you arrive at the same concept in two or more ways, it is probably significant!

Your Questions

"What are practical applications of planar graphs (besides the four-color theorem)?"
"How is complete induction any better than normal induction? If you show $P(0)$ as your base case, don't both types of induction prove that $P(n)$ is true for any natural number n ?"

Back to Relations!

Partial Orders

Partial Orders

- Many relations are equivalence relations:

$$
x=y \quad x \equiv_{k} y \quad u \leftrightarrow v
$$

- What about these sorts of relations?

$$
x \leq y \quad x \subseteq y
$$

- These relations are called partial orders, and we'll explore their properties next.

Properties of Partial Orders

$$
x \leq y
$$

Properties of Partial Orders

$$
x \leq y
$$

$1 \leq 5$ and $5 \leq 8$

Properties of Partial Orders

$$
x \leq y
$$

$1 \leq 5$ and $5 \leq 8$

$$
1 \leq 8
$$

Properties of Partial Orders

$$
x \leq y
$$

$42 \leq 99$ and $99 \leq 137$

Properties of Partial Orders

$$
x \leq y
$$

$42 \leq 99$ and $99 \leq 137$
$42 \leq 137$

Properties of Partial Orders

$$
\begin{gathered}
x \leq y \\
x \leq y \quad \text { and } \quad y \leq z
\end{gathered}
$$

Properties of Partial Orders

$$
\begin{gathered}
x \leq y \\
x \leq y \quad \text { and } \quad y \leq z \\
x \leq z
\end{gathered}
$$

Properties of Partial Orders

$$
\begin{gathered}
x \leq y \\
x \leq y \quad \text { and } \quad y \leq z \\
x \leq z \\
\text { Transitivity }
\end{gathered}
$$

Properties of Partial Orders

$$
x \leq y
$$

Properties of Partial Orders

$$
\begin{aligned}
& x \leq y \\
& 1 \leq 1
\end{aligned}
$$

Properties of Partial Orders

$$
x \leq y
$$

$42 \leq 42$

Properties of Partial Orders

$$
x \leq y
$$

$$
137 \leq 137
$$

Properties of Partial Orders

$$
\begin{aligned}
& x \leq y \\
& x \leq x
\end{aligned}
$$

Properties of Partial Orders

$$
\begin{aligned}
& x \leq y \\
& x \leq X
\end{aligned}
$$

Reflexivity

Properties of Partial Orders

$$
x \leq y
$$

Properties of Partial Orders

$$
x \leq y
$$

$$
19 \leq 21
$$

Properties of Partial Orders

$$
x \leq y
$$

$$
\begin{gathered}
19 \leq 21 \\
21 \leq 19 ?
\end{gathered}
$$

Properties of Partial Orders

$$
x \leq y
$$

$$
\begin{gathered}
19 \leq 21 \\
21 \leq 19 ?
\end{gathered}
$$

Properties of Partial Orders

$$
x \leq y
$$

$$
42 \leq 137
$$

Properties of Partial Orders

$$
x \leq y
$$

$$
\begin{gathered}
42 \leq 137 \\
137 \leq 42 ?
\end{gathered}
$$

Properties of Partial Orders

$$
x \leq y
$$

$$
\begin{gathered}
42 \leq 137 \\
137 \leq 42 ?
\end{gathered}
$$

Properties of Partial Orders

$$
x \leq y
$$

$$
137 \leq 137
$$

Properties of Partial Orders

$$
x \leq y
$$

$$
\begin{gathered}
137 \leq 137 \\
137 \leq 137 ?
\end{gathered}
$$

Properties of Partial Orders

$$
x \leq y
$$

$137 \leq 137$
$137 \leq 137$

Antisymmetry

A binary relation R over a set A is called antisymmetric iff

For any $x \in A$ and $y \in A$, If $x R y$ and $x \neq y$, then $y \notin x$.

Equivalently:
For any $x \in A$ and $y \in A$, if $x R y$ and $y R x$, then $x=y$.

An Intuition for Antisymmetry

For any $x \in A$ and $y \in A$, If $x R y$ and $y \neq x$, then $y \not R x$.

Partial Orders

- A binary relation R is a partial order over a set A iff it is
- reflexive,
- antisymmetric, and
- transitive.

Partial Orders

- A binary relation R is a partial order over a set A iff it is
- reflexive,
- antisymmetric, and
- transitive.

2012 Summer Olympics

Gold	Silver	Bronze	Total
46	29	29	104
38	27	23	88
29	17	19	65
24	26	32	82
13	8	7	28
11	19	14	44
11	11	12	34

Inspired by http://tartarus.org/simon/2008-olympics-hasse/ Data from http://www.london2012.com/medals/medal-count/

2012 Summer Olympics

Gold	Silver	Bronze	Total
46	29	29	104
38	27	23	88
29	17	19	65
24	26	32	82
13	8	7	28
11	19	14	44
11	11	12	34

Inspired by http://tartarus.org/simon/2008-olympics-hasse/ Data from http://www.london2012.com/medals/medal-count/

Define the relationship $\left(\right.$ gold $_{0}$, total $\left._{\mathbf{0}}\right) R\left(\right.$ gold $_{1}$, total $\left._{1}\right)$
to be true when
$\operatorname{gold}_{\mathbf{0}} \leq \operatorname{gold}_{\mathbf{1}}$ and total $_{\mathbf{0}} \leq$ total $_{\mathbf{1}}$

46	104

$38 \quad 88$

1144

$38 \quad 88$

1144

$11 \quad 44$

$11 \quad 44$

Partial and Total Orders

- A binary relation R over a set A is called total iff for any $x \in A$ and $y \in A$, at least one of $x R y$ or $y R x$ is true.
- A binary relation R over a set A is called a total order iff it is a partial order and it is total.
- Examples:
- Integers ordered by \leq.
- Strings ordered alphabetically.

More
 Medals

Fewer
Medals

Hasse Diagrams

- A Hasse diagram is a graphical representation of a partial order.
- No self-loops: by reflexivity, we can always add them back in.
- Higher elements are bigger than lower elements: by antisymmetry, the edges can only go in one direction.
- No redundant edges: by transitivity, we can infer the missing edges.

Hasse Artichokes

Hasse Artichokes

For More on the Olympics:

http://www.nytimes.com/interactive/2012/08/07/sports/olympics/the-best-and-worst-countries-in-the-medal-count.h tml

Formalizing Relations

What is a Relation?

- Up to now, we have been using an informal definition of a binary relation over a set A.
- To wrap up our treatment of relations, we'll give a formal definition.

The Cartesian Product

- The Cartesian Product of $A \times B$ of two sets is defined as

$$
A \times B \equiv\{(a, b) \mid a \in A \text { and } b \in B\}
$$

The Cartesian Product

- The Cartesian Product of $A \times B$ of two sets is defined as

$$
A \times B \equiv\{(a, b) \mid a \in A \text { and } b \in B\}
$$

$$
\{0,1,2\} \quad \underset{\mathrm{A}}{\{\mathrm{a}, \mathrm{~b}, \mathrm{c}\}} \underset{\mathrm{B}}{\{ }
$$

The Cartesian Product

- The Cartesian Product of $A \times B$ of two sets is defined as

$$
A \times B \equiv\{(a, b) \mid a \in A \text { and } b \in B\}
$$

$$
\{0,1,2\} \times\{\mathrm{a}, \mathrm{~b}, \mathrm{c}\}=
$$

The Cartesian Product

- The Cartesian Product of $A \times B$ of two sets is defined as

$$
A \times B \equiv\{(a, b) \mid a \in A \text { and } b \in B\}
$$

$$
\{0,1,2\} \times\{\mathrm{a}, \mathrm{~b}, \mathrm{c}\}=\frac{\mathrm{B}}{\mathrm{~A}}=\begin{aligned}
& 0 \\
& 1 \\
& 2
\end{aligned}
$$

The Cartesian Product

- The Cartesian Product of $A \times B$ of two sets is defined as

$$
A \times B \equiv\{(a, b) \mid a \in A \text { and } b \in B\}
$$

$$
\{0,1,2\} \times\{\mathrm{a}, \mathrm{~b}, \mathrm{c}\}=\begin{aligned}
& \mathbf{0 (0 , a) (0 , b) (0 , \mathbf { c })} \\
& \mathbf{1}(1, \mathbf{a})(1, \mathbf{b})(1, \mathbf{c}) \\
& \mathbf{2 (2 , a) (2 , b) (2 , c)}
\end{aligned}
$$

The Cartesian Product

- The Cartesian Product of $A \times B$ of two sets is defined as

$$
A \times B \equiv\{(a, b) \mid a \in A \text { and } b \in B\}
$$

$\left\{\begin{array}{c}\{0,1,2\} \times\{\mathrm{a}, \mathrm{b}, \mathrm{C}\} \\ \mathrm{A}\end{array} \underset{\mathrm{B}}{\left\{\begin{array}{l}(0, a),(0, b),(0, c), \\ (1, a),(1, b),(1, c) \\ (2, a),(2, b),(2, c)\end{array}\right\}}\right.$

The Cartesian Product

- The Cartesian Product of $A \times B$ of two sets is defined as

$$
A \times B \equiv\{(a, b) \mid a \in A \text { and } b \in B\}
$$

- We denote $A^{2} \equiv A \times A$

The Cartesian Product

- The Cartesian Product of $A \times B$ of two sets is defined as

$$
A \times B \equiv\{(a, b) \mid a \in A \text { and } b \in B\}
$$

- We denote $A^{2} \equiv A \times A$

$$
\underset{\mathrm{A}}{\{0,1,2\} \times\{0,1,2\}} \underset{\mathrm{A}}{\{0,}=\left\{\begin{array}{l}
(0,0),(0,1),(0,2), \\
(1,0),(1,1),(1,2), \\
(2,0),(2,1),(2), 2)
\end{array}\right\}
$$

The Cartesian Product

- The Cartesian Product of $A \times B$ of two sets is defined as

$$
A \times B \equiv\{(a, b) \mid a \in A \text { and } b \in B\}
$$

- We denote $A^{2} \equiv A \times A$

$$
\left\{\begin{array}{c}
0,1,2\}^{2}=\left\{\begin{array}{l}
(0,0),(0,1),(0,2), \\
(1,0),(1,1),(1,2) \\
(2,0),(2,1),(2,2)
\end{array}\right\}
\end{array}\right.
$$

Relations, Formally

- A binary relation R over a set A is a subset of A^{2}.
- $x R y$ is shorthand for $(x, y) \in R$.
- A relation doesn't have to be meaningful; any subset of A^{2} is a relation.
- Interesting fact:
- Number of English sentences is equal to the number of natural numbers. (More on that later.)
- Each binary relation over \mathbb{N} is a subset of \mathbb{N}^{2}.
- Number of binary relations over $\mathbb{N}:\left|\wp\left(\mathbb{N}^{2}\right)\right|$
- Some binary relations over \mathbb{N} are indescribable!

Next Time

- The Pigeonhole Principle
- Poignant pigeon-powered proofs!
- Functions
- How do we transform objects into one another?

