
  

Binary Relations

Problem Set Two 
checkpoint due in the box 
up front if you're using 

a late period.

Problem Set Two 
checkpoint due in the box 
up front if you're using 

a late period.



  

Studying Relationships

● We have just explored the graph as a way 
of studying relationships between 
objects.

● However, graphs are not the only 
formalism we can use to do this.



  

Relationships

● We've seen different types of relationships
● between sets:

– A ⊆ B    A ⊂ B
● between numbers:

– x < y    x ≡ₖ y
● between nodes in a graph:

– u ↔ v

● Goal: Focus on these types of relationships 
and study their properties.



  

Binary Relations

● Intuitively speaking: a binary relation over a 
set A is some relation R where, for every
x, y ∈ A, the statement xRy is either true or 
false.

● Examples:
● < can be a binary relation over ℕ, ℤ, ℝ, etc.
● ↔ can be a binary relation over V for any 

undirected graph G = (V, E).
● ≡ₖ is a binary relation over ℤ for any integer k.

● We'll give a formal definition later today.



  

Binary Relations and Graphs

● We can visualize a binary relation R over a set A as 
a graph:

● The nodes are the elements of A.
● There is an edge from x to y iff xRy.

● Example: the relation a | b (meaning “a divides b”) 
over the set {1, 2, 3, 4} looks like this:
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Binary Relations and Graphs

● We can visualize a binary relation R over a set A as 
a graph:

● The nodes are the elements of A.
● There is an edge from x to y iff xRy.

● Example: the relation a ≠ b over {1, 2, 3, 4} looks 
like this:
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Binary Relations and Graphs

● We can visualize a binary relation R over a set A as 
a graph:

● The nodes are the elements of A.
● There is an edge from x to y iff xRy.

● Example: the relation a = b over {1, 2, 3, 4} looks 
like this:
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Categorizing Relations

● Collectively, there are few properties shared by all 
relations.

● We often categorize relations into different types 
to study relations with particular properties.

● General outline for today:
● Find certain properties that hold of the relations we've 

seen so far.
● Categorize relations based on those properties.
● See what those properties entail.



  

Reflexivity

● Some relations always hold for any element and 
itself.

● Examples:
● x = x for any x.
● A ⊆ A for any set A.
● x ≡ₖ x for any x.
● u ↔ u for any u.

● Relations of this sort are called reflexive.

● Formally: a binary relation R over a set A is 
reflexive iff for all x ∈ A, the relation xRx holds.



  

An Intuition for Reflexivity

For every x ∈ A, the relation xRx holds.



  

Symmetry

● In some relations, the relative order of the 
objects doesn't matter.

● Examples:
● If x = y, then y = x.
● If u ↔ v, then v ↔ u.
● If x ≡ₖ y, then y ≡ₖ x.

● These relations are called symmetric.
● Formally: A binary relation R over a set A is 

called symmetric iff for all x, y ∈ A, if xRy, 
then yRx.



  

An Intuition for Symmetry

For any x ∈ A and y ∈ A,
if xRy, then yRx.



  

Transitivity

● Many relations can be chained together.
● Examples:

● If x = y and y = z, then x = z.
● If u ↔ v and v ↔ w, then u ↔ w.
● If x ≡ₖ y and y ≡ₖ z, then x ≡ₖ z.

● These relations are called transitive.
● Formally: A binary relation R over a set A 

is called transitive iff for all x, y, z ∈ A, if 
xRy and yRz, then xRz.



  

An Intuition for Transitivity

For any x, y, z ∈ A, 
if xRy and yRz,

then xRz.



  

Equivalence Relations

● Some relations are reflexive, symmetric, 
and transitive:
● x = y
● u ↔ v
● x ≡ₖ y

● Definition: An equivalence relation is a 
relation that is reflexive, symmetric and 
transitive.



  xRy ≡ x and y have the same shape.



  xRy ≡ x and y have the same shape.



  xRy ≡ x and y have the same shape.



  

What property says this 
edge must be here?

What property says this 
edge must be here?

xRy ≡ x and y have the same shape.



  xRy ≡ x and y have the same shape.



  xRy ≡ x and y have the same shape.



  xRy ≡ x and y have the same shape.



  xRy ≡ x and y have the same shape.



  

What property says this 
edge must be here?

What property says this 
edge must be here?

xRy ≡ x and y have the same shape.



  xRy ≡ x and y have the same shape.



  xRy ≡ x and y have the same shape.



  xRy ≡ x and y have the same shape.



  xRy ≡ x and y have the same shape.



  xRy ≡ x and y have the same shape.



  

What property says these 
edges must be here?

What property says these 
edges must be here?

xRy ≡ x and y have the same shape.



  xRy ≡ x and y have the same shape.



  xRy ≡ x and y have the same shape.



  xRy ≡ x and y have the same shape.



  xRy ≡ x and y have the same color.



  xRy ≡ x and y have the same color.



  

Equivalence Classes

● Given an equivalence relation R over a 
set A, for any x ∈ A, the equivalence 
class of x is the set

[x]R = { y ∈ A | xRy }

● [x]R is the set of all elements of A that are 
related to x.

● Theorem: If R is an equivalence relation 
over A, then every a ∈ A belongs to 
exactly one equivalence class.



  

Closing the Loop

● In any graph G = (V, E), we saw that the 
connected component containing a node 
v ∈ V is given by

{ x ∈ V | v ↔ x }  
● What is the equivalence class for some 

node v ∈ V under the relation ↔?

[v]↔ = { x ∈ V | v ↔ x }

● Connected components are just 
equivalence classes of ↔!



  

Why This Matters

● Developing the right definition for a 
connected component was challenging.

● Proving every node belonged to exactly one 
equivalence class was challenging.

● Now that we know about equivalence 
relations, we get both of these for free!

● If you arrive at the same concept in two 
or more ways, it is probably significant!



  

Your Questions



  

“What are practical applications of planar 
graphs (besides the four-color theorem)?”



  

“How is complete induction any better
than normal induction? If you show
P(0) as your base case, don't both
types of induction prove that P(n)
is true for any natural number n?”



  

Back to Relations!



  

Partial Orders



  

Partial Orders

● Many relations are equivalence relations:

x = y          x ≡ₖ y           u ↔ v
● What about these sorts of relations?

x ≤ y        x ⊆ y  
● These relations are called partial 

orders, and we'll explore their 
properties next.
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Antisymmetry

A binary relation R over a set A is called 
antisymmetric iff

For any x ∈ A and y ∈ A,
If xRy and x ≠ y, then yRx.

Equivalently:

For any x ∈ A and y ∈ A,
if xRy and yRx, then x = y.



  

An Intuition for Antisymmetry

Self-loops 
allowed

Self-loops 
allowed

Only one edge 
between nodes
Only one edge 
between nodes

For any x ∈ A and y ∈ A,
If xRy and y ≠ x, then yRx.



  

Partial Orders

● A binary relation R is a partial order 
over a set A iff it is

● reflexive,
● antisymmetric, and
● transitive.



  

Partial Orders

Why “partial”?Why “partial”?

● A binary relation R is a partial order 
over a set A iff it is

● reflexive,
● antisymmetric, and
● transitive.



  

Gold Silver Bronze

46 29 29

38 27 23

29 17 19

24 26 32

14 15 17

Total

104

88

65

82

4613 8 7 28

2012 Summer Olympics

Inspired by http://tartarus.org/simon/2008-olympics-hasse/
Data from http://www.london2012.com/medals/medal-count/

14 15 17 4611 19 14 44

14 15 17 4611 11 12 34

http://tartarus.org/simon/2008-olympics-hasse/
http://www.london2012.com/medals/medal-count/
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Define the relationship 

(gold0, total0)R(gold1, total1) 

to be true when

 gold0 ≤ gold1 and total0 ≤ total1
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Partial and Total Orders

● A binary relation R over a set A is called 
total iff for any x ∈ A and y ∈ A, at least 
one of xRy or yRx is true.

● A binary relation R over a set A is called 
a total order iff it is a partial order and 
it is total.

● Examples:
● Integers ordered by ≤.
● Strings ordered alphabetically.
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Hasse Diagrams

● A Hasse diagram is a graphical 
representation of a partial order.

● No self-loops: by reflexivity, we can 
always add them back in.

● Higher elements are bigger than lower 
elements: by antisymmetry, the edges 
can only go in one direction.

● No redundant edges: by transitivity, we 
can infer the missing edges.



  

Indian Mediterranean

Mexican

Chinese Italian

American

Tasty

Not 
Tasty
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Hasse Artichokes



  

Hasse Artichokes



  

For More on the Olympics:

http://www.nytimes.com/interactive/2012/08/07/sports/olympics/the-best-and-worst-countries-in-the-medal-count.h
tml

http://www.nytimes.com/interactive/2012/08/07/sports/olympics/the-best-and-worst-countries-in-the-medal-count.html
http://www.nytimes.com/interactive/2012/08/07/sports/olympics/the-best-and-worst-countries-in-the-medal-count.html


  

Formalizing Relations



  

What is a Relation?

● Up to now, we have been using an 
informal definition of a binary relation 
over a set A.

● To wrap up our treatment of relations, 
we'll give a formal definition.



  

The Cartesian Product

● The Cartesian Product of A × B of two sets is 
defined as

A × B ≡ { (a, b) | a ∈ A and b ∈ B }
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The Cartesian Product

● The Cartesian Product of A × B of two sets is 
defined as

A × B ≡ { (a, b) | a ∈ A and b ∈ B }

=0, 1, 2 a, b, c

A B

×
0
1
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a b c



  

The Cartesian Product

● The Cartesian Product of A × B of two sets is 
defined as

A × B ≡ { (a, b) | a ∈ A and b ∈ B }

0
1
2

a b c
 (0, a), (0, b), (0, c),

 (1, a), (1, b), (1, c),

 (2, a), (2, b), (2, c),
=0, 1, 2 a, b, c

A B

×



  

The Cartesian Product

● The Cartesian Product of A × B of two sets is 
defined as

A × B ≡ { (a, b) | a ∈ A and b ∈ B }

=0, 1, 2 a, b, c

A B

×
(0, a),(0, b),(0, c),

(1, a),(1, b),(1, c),

(2, a),(2, b),(2, c) 



  

The Cartesian Product

● The Cartesian Product of A × B of two sets is 
defined as

A × B ≡ { (a, b) | a ∈ A and b ∈ B }

● We denote A2 ≡ A × A

0, 1, 2 a, b, c

A B

× =
(0, a),(0, b),(0, c),

(1, a),(1, b),(1, c),

(2, a),(2, b),(2, c) 



  

The Cartesian Product

0, 1, 2 0, 1, 2

A A

× =
(0, 0),(0, 1),(0, 2),

(1, 0),(1, 1),(1, 2),

(2, 0),(2, 1),(2, 2) 

● The Cartesian Product of A × B of two sets is 
defined as

A × B ≡ { (a, b) | a ∈ A and b ∈ B }
● We denote A2 ≡ A × A



  

The Cartesian Product

2

=
(0, 0),(0, 1),(0, 2),

(1, 0),(1, 1),(1, 2),

(2, 0),(2, 1),(2, 2) 

0, 1, 2
A2

● The Cartesian Product of A × B of two sets is 
defined as

A × B ≡ { (a, b) | a ∈ A and b ∈ B }
● We denote A2 ≡ A × A



  

Relations, Formally

● A binary relation R over a set A is a subset of A2.

● xRy is shorthand for (x, y) ∈ R.

● A relation doesn't have to be meaningful; any 
subset of A2 is a relation.

● Interesting fact:
● Number of English sentences is equal to the number 

of natural numbers. (More on that later.)
● Each binary relation over ℕ is a subset of ℕ2.
● Number of binary relations over ℕ: | (ℕ℘ 2)|
● Some binary relations over ℕ are indescribable!



  

Next Time

● The Pigeonhole Principle
● Poignant pigeon-powered proofs!

● Functions
● How do we transform objects into one 

another?
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