
  

Graphs II

Problem Set Two checkpoint 
problem due in the box up 

front.  Problem Set One due in 
the box up front if you're using 

a late period.

Problem Set Two checkpoint 
problem due in the box up 

front.  Problem Set One due in 
the box up front if you're using 

a late period.



  

Quick Announcements

● Sorry about the fire alarm!
● We're going to be offset by about half a 

lecture for a few days.
● No deadlines will be adjusted.  We're still 

on track!



  

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes (or 
vertices) connected by edges (or arcs)
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Formalizing Graphs

● Formally, a graph is an ordered pair
G = (V, E), where
● V is a set of nodes.
● E is a set of edges, which are either ordered 

pairs or unordered pairs of elements from V.



  

Undirected Connectivity
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In an undirected graph, two nodes u and v 
are called connected iff there is a path 

from u to v.

We denote this as u ↔ v.

If u is not connected to v, we write u ↮ v.



  

Properties of Connectivity

● Theorem: The following properties hold 
for the connectivity relation ↔:
● For any node v ∈ V, we have v ↔ v.
● For any nodes u, v ∈ V, if u ↔ v, then v ↔ u.
● For any nodes u, v, w ∈ V, if u ↔ v and v ↔ w, 

then u ↔ w.

● Can prove by thinking about the paths 
that are implied by each.



  

Connected Components



  



  



  



  

An Initial Definition

● Attempted Definition #1: A piece of an 
undirected graph G = (V, E) is a set
C ⊆ V such that for any nodes u, v ∈ C, 
the relation u ↔ v holds.

● Intuition: a piece of a graph is a set of 
nodes that are all connected to one 
another.

This definition has some problems;  
please don't use it as a reference.    



  



  



  



  



  



  



  

An Updated Definition

● Attempted Definition #2: A piece of an 
undirected graph G = (V, E) is a set C ⊆ V where
● For any nodes u, v ∈ C, the relation u ↔ v holds.
● For any nodes u ∈ C and v ∈ V – C, the relation u ↮ v 

holds.

● Intuition: a piece of a graph is a set of nodes that 
are all connected to one another that doesn't 
“miss” any nodes.

This definition still has problems;
   please don't use it as a reference.  



  



  



  



  



  



  



  

A Final Definition

● Definition: A connected component of an 
undirected graph G = (V, E) is a nonempty set 
C ⊆ V where
● For any nodes u, v ∈ C, the relation u ↔ v holds.
● For any nodes u ∈ C and v ∈ V – C, the relation

u ↮ v holds.

● Intuition: a connected component is a nonempty 
set of nodes that are all connected to one 
another that includes as many nodes as possible.



  

Some Announcements



  

Announcements

● Problem Set 1 solutions released at end 
of today's lecture.
● Aiming to return problem sets no later than 

Thursday.

● Problem Set 2 out, due Friday at the 
start of lecture.
● Checkpoints should be returned by 

Wednesday.



  

Announcements

● Two new TAs:
● Je-ok Choi
● Bertrand Decoster

● Welcome!



  

Casual CS Dinner

● Casual dinner for women studying 
computer science tomorrow.
● 5:30PM – 8:00PM in Gates 519 (the newly 

renovated fifth floor!)
● RSVP at http://bit.ly/cscasualdinners.

● Highly recommended!

http://bit.ly/cscasualdinners


  

Your Questions



  

</announcements>



  

Manipulating our Definition



  

Proving the Obvious

● Theorem: If G = (V, E) is a graph, then every 
node v ∈ V belongs to exactly one connected 
component.

● How exactly would we prove a statement like 
this one?

● Use an existence and uniqueness proof:
● Prove there is at least one object of that type.
● Prove there is at most one object of that type.

● These are usually separate proofs.



  

Part 1: Every node belongs to at least 
one connected component.



  

Proving Existence

● Given an arbitrary graph G = (V, E) and an 
arbitrary node v ∈ V, we need to show that 
there exists some connected component C 
where v ∈ C.

● The key part of this is the existential statement

There exists a connected component C
such that v ∈ C. 

● The challenge: how can we find the connected 
component that v belongs to given that v is an 
arbitrary node in an arbitrary graph?
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The Conjecture

● Conjecture: Let G = (V, E) be an 
undirected graph.  Then for any node 
v ∈ V, the set { x ∈ V | v ↔ x } is a 
connected component and it contains v.

● If we can prove this, we have shown 
existence: at least one connected 
component contains v.



  

Lemma 1: Let G = (V, E) be an undirected graph.  For
any node v ∈ V, the set C = { x ∈ V | v ↔ x }
contains v.

Proof: The relation v ↔ v holds for any v ∈ V.
Therefore, by definition of C, we see that v ∈ C. ■ 

■
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The Tricky Part

● We need to show for any v ∈ V that the 
set C = { x ∈ V | v ↔ x } is a connected 
component.

● Therefore, we need to show
● C ≠ Ø;
● for any x, y ∈ C, the relation x ↔ y holds; and
● for any x ∈ C and y ∉ C, the relation x ↮ y 

holds.



  

Lemma 2: Let G = (V, E) be an undirected graph. Choose some node
v ∈ V and let C = { x ∈ V | v ↔ x }.  Then for any nodes x, y ∈ C,
we have x ↔ y.

Proof: By definition, since x ∈ C and y ∈ C, we have v ↔ x and v ↔ y. 
By our earlier theorem, since v ↔ x, we know x ↔ v. By the same
theorem, since x ↔ v and v ↔ y, we know x ↔ y, as required. ■

 

Lemma 3: Let G = (V, E) be an undirected graph. Choose some node
v and let C = { x ∈ V | v ↔ x }. Then for any nodes x ∈ C and
y ∈ V – C, we have x ↮ y.

Proof: By contradiction; assume x ∈ C and y ∈ V – C, but that x ↔ y.
Since x ∈ C, we have v ↔ x. Because v ↔ x and x ↔ y, we know
v ↔ y. Therefore, we see y ∈ C. However, since y ∈ V – C, we know
that y ∉ C. We have reached a contradiction, so our assumption
was wrong. Therefore, if x ∈ C and y ∈ V – C, we know x ↮ y. ■

 

Theorem: Let G = (V, E) be an undirected graph. Then every node
v ∈ V belongs to some connected component of G.

Proof: Let C = { x ∈ V | v ↔ x }. Lemma 1 tells us v ∈ C, so C ≠ Ø. 
Thus, by Lemmas 1 – 3, we know C is a connected component. 
Therefore, v belongs to at least one connected component. ■



  

Lemma 2: Let G = (V, E) be an undirected graph. Choose some node
v ∈ V and let C = { x ∈ V | v ↔ x }.  Then for any nodes x, y ∈ C,
we have x ↔ y.

Proof: By definition, since x ∈ C and y ∈ C, we have v ↔ x and v ↔ y. 
By our earlier theorem, since v ↔ x, we know x ↔ v. By the same
theorem, since x ↔ v and v ↔ y, we know x ↔ y, as required. ■

 

Lemma 3: Let G = (V, E) be an undirected graph. Choose some node
v and let C = { x ∈ V | v ↔ x }. Then for any nodes x ∈ C and
y ∈ V – C, we have x ↮ y.

Proof: By contradiction; assume x ∈ C and y ∈ V – C, but that x ↔ y.
Since x ∈ C, we have v ↔ x. Because v ↔ x and x ↔ y, we know
v ↔ y. Therefore, we see y ∈ C. However, since y ∈ V – C, we know
that y ∉ C. We have reached a contradiction, so our assumption
was wrong. Therefore, if x ∈ C and y ∈ V – C, we know x ↮ y. ■

 

Theorem: Let G = (V, E) be an undirected graph. Then every node
v ∈ V belongs to some connected component of G.

Proof: Let C = { x ∈ V | v ↔ x }. Lemma 1 tells us v ∈ C, so C ≠ Ø. 
Thus, by Lemmas 1 – 3, we know C is a connected component. 
Therefore, v belongs to at least one connected component. ■



  

Lemma 2: Let G = (V, E) be an undirected graph. Choose some node
v ∈ V and let C = { x ∈ V | v ↔ x }.  Then for any nodes x, y ∈ C,
we have x ↔ y.

Proof: By definition, since x ∈ C and y ∈ C, we have v ↔ x and v ↔ y. 
By our earlier theorem, since v ↔ x, we know x ↔ v. By the same
theorem, since x ↔ v and v ↔ y, we know x ↔ y, as required. ■

 

Lemma 3: Let G = (V, E) be an undirected graph. Choose some node
v and let C = { x ∈ V | v ↔ x }. Then for any nodes x ∈ C and
y ∈ V – C, we have x ↮ y.

Proof: By contradiction; assume x ∈ C and y ∈ V – C, but that x ↔ y.
Since x ∈ C, we have v ↔ x. Because v ↔ x and x ↔ y, we know
v ↔ y. Therefore, we see y ∈ C. However, since y ∈ V – C, we know
that y ∉ C. We have reached a contradiction, so our assumption
was wrong. Therefore, if x ∈ C and y ∈ V – C, we know x ↮ y. ■

 

Theorem: Let G = (V, E) be an undirected graph. Then every node
v ∈ V belongs to some connected component of G.

Proof: Let C = { x ∈ V | v ↔ x }. Lemma 1 tells us v ∈ C, so C ≠ Ø. 
Thus, by Lemmas 1 – 3, we know C is a connected component. 
Therefore, v belongs to at least one connected component. ■



  

Lemma 2: Let G = (V, E) be an undirected graph. Choose some node
v ∈ V and let C = { x ∈ V | v ↔ x }.  Then for any nodes x, y ∈ C,
we have x ↔ y.

Proof: By definition, since x ∈ C and y ∈ C, we have v ↔ x and v ↔ y. 
By our earlier theorem, since v ↔ x, we know x ↔ v. By the same
theorem, since x ↔ v and v ↔ y, we know x ↔ y, as required. ■

 

Lemma 3: Let G = (V, E) be an undirected graph. Choose some node
v and let C = { x ∈ V | v ↔ x }. Then for any nodes x ∈ C and
y ∈ V – C, we have x ↮ y.

Proof: By contradiction; assume x ∈ C and y ∈ V – C, but that x ↔ y.
Since x ∈ C, we have v ↔ x. Because v ↔ x and x ↔ y, we know
v ↔ y. Therefore, we see y ∈ C. However, since y ∈ V – C, we know
that y ∉ C. We have reached a contradiction, so our assumption
was wrong. Therefore, if x ∈ C and y ∈ V – C, we know x ↮ y. ■

 

Theorem: Let G = (V, E) be an undirected graph. Then every node
v ∈ V belongs to some connected component of G.

Proof: Let C = { x ∈ V | v ↔ x }. Lemma 1 tells us v ∈ C, so C ≠ Ø. 
Thus, by Lemmas 1 – 3, we know C is a connected component. 
Therefore, v belongs to at least one connected component. ■



  

Lemma 2: Let G = (V, E) be an undirected graph. Choose some node
v ∈ V and let C = { x ∈ V | v ↔ x }.  Then for any nodes x, y ∈ C,
we have x ↔ y.

Proof: By definition, since x ∈ C and y ∈ C, we have v ↔ x and v ↔ y. 
By our earlier theorem, since v ↔ x, we know x ↔ v. By the same
theorem, since x ↔ v and v ↔ y, we know x ↔ y, as required. ■

 

Lemma 3: Let G = (V, E) be an undirected graph. Choose some node
v and let C = { x ∈ V | v ↔ x }. Then for any nodes x ∈ C and
y ∈ V – C, we have x ↮ y.

Proof: By contradiction; assume x ∈ C and y ∈ V – C, but that x ↔ y.
Since x ∈ C, we have v ↔ x. Because v ↔ x and x ↔ y, we know
v ↔ y. Therefore, we see y ∈ C. However, since y ∈ V – C, we know
that y ∉ C. We have reached a contradiction, so our assumption
was wrong. Therefore, if x ∈ C and y ∈ V – C, we know x ↮ y. ■

 

Theorem: Let G = (V, E) be an undirected graph. Then every node
v ∈ V belongs to some connected component of G.

Proof: Let C = { x ∈ V | v ↔ x }. Lemma 1 tells us v ∈ C, so C ≠ Ø. 
Thus, by Lemmas 1 – 3, we know C is a connected component. 
Therefore, v belongs to at least one connected component. ■



  

Lemma 2: Let G = (V, E) be an undirected graph. Choose some node
v ∈ V and let C = { x ∈ V | v ↔ x }.  Then for any nodes x, y ∈ C,
we have x ↔ y.

Proof: By definition, since x ∈ C and y ∈ C, we have v ↔ x and v ↔ y. 
By our earlier theorem, since v ↔ x, we know x ↔ v. By the same
theorem, since x ↔ v and v ↔ y, we know x ↔ y, as required. ■

 

Lemma 3: Let G = (V, E) be an undirected graph. Choose some node
v ∈ V and let C = { x ∈ V | v ↔ x }. Then for any nodes x ∈ C and
y ∈ V – C, we have x ↮ y.

Proof: By contradiction; assume x ∈ C and y ∈ V – C, but that x ↔ y.
Since x ∈ C, we have v ↔ x. Because v ↔ x and x ↔ y, we know
v ↔ y. Therefore, we see y ∈ C. However, since y ∈ V – C, we know
that y ∉ C. We have reached a contradiction, so our assumption
was wrong. Therefore, if x ∈ C and y ∈ V – C, we know x ↮ y. ■

 

Theorem: Let G = (V, E) be an undirected graph. Then every node
v ∈ V belongs to some connected component of G.

Proof: Let C = { x ∈ V | v ↔ x }. Lemma 1 tells us v ∈ C, so C ≠ Ø. 
Thus, by Lemmas 1 – 3, we know C is a connected component. 
Therefore, v belongs to at least one connected component. ■



  

Lemma 2: Let G = (V, E) be an undirected graph. Choose some node
v ∈ V and let C = { x ∈ V | v ↔ x }.  Then for any nodes x, y ∈ C,
we have x ↔ y.

Proof: By definition, since x ∈ C and y ∈ C, we have v ↔ x and v ↔ y. 
By our earlier theorem, since v ↔ x, we know x ↔ v. By the same
theorem, since x ↔ v and v ↔ y, we know x ↔ y, as required. ■

 

Lemma 3: Let G = (V, E) be an undirected graph. Choose some node
v ∈ V and let C = { x ∈ V | v ↔ x }. Then for any nodes x ∈ C and
y ∈ V – C, we have x ↮ y.

Proof: By contradiction; assume x ∈ C and y ∈ V – C, but that x ↔ y.
Since x ∈ C, we have v ↔ x. Because v ↔ x and x ↔ y, we know
v ↔ y. Therefore, we see y ∈ C. However, since y ∈ V – C, we know
that y ∉ C. We have reached a contradiction, so our assumption
was wrong. Therefore, if x ∈ C and y ∈ V – C, we know x ↮ y. ■

 

Theorem: Let G = (V, E) be an undirected graph. Then every node
v ∈ V belongs to some connected component of G.

Proof: Let C = { x ∈ V | v ↔ x }. Lemma 1 tells us v ∈ C, so C ≠ Ø. 
Thus, by Lemmas 1 – 3, we know C is a connected component. 
Therefore, v belongs to at least one connected component. ■



  

Lemma 2: Let G = (V, E) be an undirected graph. Choose some node
v ∈ V and let C = { x ∈ V | v ↔ x }.  Then for any nodes x, y ∈ C,
we have x ↔ y.

Proof: By definition, since x ∈ C and y ∈ C, we have v ↔ x and v ↔ y. 
By our earlier theorem, since v ↔ x, we know x ↔ v. By the same
theorem, since x ↔ v and v ↔ y, we know x ↔ y, as required. ■

 

Lemma 3: Let G = (V, E) be an undirected graph. Choose some node
v ∈ V and let C = { x ∈ V | v ↔ x }. Then for any nodes x ∈ C and
y ∈ V – C, we have x ↮ y.

Proof: By contradiction; assume x ∈ C and y ∈ V – C, but that x ↔ y.
Since x ∈ C, we have v ↔ x. Because v ↔ x and x ↔ y, we know
v ↔ y. Therefore, we see y ∈ C. However, since y ∈ V – C, we know
that y ∉ C. We have reached a contradiction, so our assumption
was wrong. Therefore, if x ∈ C and y ∈ V – C, we know x ↮ y. ■

 

Theorem: Let G = (V, E) be an undirected graph. Then every node
v ∈ V belongs to some connected component of G.

Proof: Let C = { x ∈ V | v ↔ x }. Lemma 1 tells us v ∈ C, so C ≠ Ø. 
Thus, by Lemmas 1 – 3, we know C is a connected component. 
Therefore, v belongs to at least one connected component. ■



  

Lemma 2: Let G = (V, E) be an undirected graph. Choose some node
v ∈ V and let C = { x ∈ V | v ↔ x }.  Then for any nodes x, y ∈ C,
we have x ↔ y.

Proof: By definition, since x ∈ C and y ∈ C, we have v ↔ x and v ↔ y. 
By our earlier theorem, since v ↔ x, we know x ↔ v. By the same
theorem, since x ↔ v and v ↔ y, we know x ↔ y, as required. ■

 

Lemma 3: Let G = (V, E) be an undirected graph. Choose some node
v ∈ V and let C = { x ∈ V | v ↔ x }. Then for any nodes x ∈ C and
y ∈ V – C, we have x ↮ y.

Proof: By contradiction; assume x ∈ C and y ∈ V – C, but that x ↔ y.
Since x ∈ C, we have v ↔ x. Because v ↔ x and x ↔ y, we know
v ↔ y. Therefore, we see y ∈ C. However, since y ∈ V – C, we know
that y ∉ C. We have reached a contradiction, so our assumption
was wrong. Therefore, if x ∈ C and y ∈ V – C, we know x ↮ y. ■

 

Theorem: Let G = (V, E) be an undirected graph. Then every node
v ∈ V belongs to some connected component of G.

Proof: Let C = { x ∈ V | v ↔ x }. Lemma 1 tells us v ∈ C, so C ≠ Ø. 
Thus, by Lemmas 1 – 3, we know C is a connected component. 
Therefore, v belongs to at least one connected component. ■



  

Lemma 2: Let G = (V, E) be an undirected graph. Choose some node
v ∈ V and let C = { x ∈ V | v ↔ x }.  Then for any nodes x, y ∈ C,
we have x ↔ y.

Proof: By definition, since x ∈ C and y ∈ C, we have v ↔ x and v ↔ y. 
By our earlier theorem, since v ↔ x, we know x ↔ v. By the same
theorem, since x ↔ v and v ↔ y, we know x ↔ y, as required. ■

 

Lemma 3: Let G = (V, E) be an undirected graph. Choose some node
v ∈ V and let C = { x ∈ V | v ↔ x }. Then for any nodes x ∈ C and
y ∈ V – C, we have x ↮ y.

Proof: By contradiction; assume x ∈ C and y ∈ V – C, but that x ↔ y.
Since x ∈ C, we have v ↔ x. Because v ↔ x and x ↔ y, we know
v ↔ y. Therefore, we see y ∈ C. However, since y ∈ V – C, we know
that y ∉ C. We have reached a contradiction, so our assumption
was wrong. Therefore, if x ∈ C and y ∈ V – C, we know x ↮ y. ■

 

Theorem: Let G = (V, E) be an undirected graph. Then every node
v ∈ V belongs to some connected component of G.

Proof: Let C = { x ∈ V | v ↔ x }. Lemma 1 tells us v ∈ C, so C ≠ Ø. 
Thus, by Lemmas 1 – 3, we know C is a connected component. 
Therefore, v belongs to at least one connected component. ■



  

Lemma 2: Let G = (V, E) be an undirected graph. Choose some node
v ∈ V and let C = { x ∈ V | v ↔ x }.  Then for any nodes x, y ∈ C,
we have x ↔ y.

Proof: By definition, since x ∈ C and y ∈ C, we have v ↔ x and v ↔ y. 
By our earlier theorem, since v ↔ x, we know x ↔ v. By the same
theorem, since x ↔ v and v ↔ y, we know x ↔ y, as required. ■

 

Lemma 3: Let G = (V, E) be an undirected graph. Choose some node
v ∈ V and let C = { x ∈ V | v ↔ x }. Then for any nodes x ∈ C and
y ∈ V – C, we have x ↮ y.

Proof: By contradiction; assume x ∈ C and y ∈ V – C, but that x ↔ y.
Since x ∈ C, we have v ↔ x. Because v ↔ x and x ↔ y, we know
v ↔ y. Therefore, we see y ∈ C. However, since y ∈ V – C, we know
that y ∉ C. We have reached a contradiction, so our assumption
was wrong. Therefore, if x ∈ C and y ∈ V – C, we know x ↮ y. ■

 

Theorem: Let G = (V, E) be an undirected graph. Then every node
v ∈ V belongs to some connected component of G.

Proof: Let C = { x ∈ V | v ↔ x }. Lemma 1 tells us v ∈ C, so C ≠ Ø. 
Thus, by Lemmas 1 – 3, we know C is a connected component. 
Therefore, v belongs to at least one connected component. ■



  

Lemma 2: Let G = (V, E) be an undirected graph. Choose some node
v ∈ V and let C = { x ∈ V | v ↔ x }.  Then for any nodes x, y ∈ C,
we have x ↔ y.

Proof: By definition, since x ∈ C and y ∈ C, we have v ↔ x and v ↔ y. 
By our earlier theorem, since v ↔ x, we know x ↔ v. By the same
theorem, since x ↔ v and v ↔ y, we know x ↔ y, as required. ■

 

Lemma 3: Let G = (V, E) be an undirected graph. Choose some node
v ∈ V and let C = { x ∈ V | v ↔ x }. Then for any nodes x ∈ C and
y ∈ V – C, we have x ↮ y.

Proof: By contradiction; assume x ∈ C and y ∈ V – C, but that x ↔ y.
Since x ∈ C, we have v ↔ x. Because v ↔ x and x ↔ y, we know
v ↔ y. Therefore, we see y ∈ C. However, since y ∈ V – C, we know
that y ∉ C. We have reached a contradiction, so our assumption
was wrong. Therefore, if x ∈ C and y ∈ V – C, we know x ↮ y. ■

 

Theorem: Let G = (V, E) be an undirected graph. Then every node
v ∈ V belongs to some connected component of G.

Proof: Let C = { x ∈ V | v ↔ x }. Lemma 1 tells us v ∈ C, so C ≠ Ø. 
Thus, by Lemmas 1 – 3, we know C is a connected component. 
Therefore, v belongs to at least one connected component. ■



  

Lemma 2: Let G = (V, E) be an undirected graph. Choose some node
v ∈ V and let C = { x ∈ V | v ↔ x }.  Then for any nodes x, y ∈ C,
we have x ↔ y.

Proof: By definition, since x ∈ C and y ∈ C, we have v ↔ x and v ↔ y. 
By our earlier theorem, since v ↔ x, we know x ↔ v. By the same
theorem, since x ↔ v and v ↔ y, we know x ↔ y, as required. ■

 

Lemma 3: Let G = (V, E) be an undirected graph. Choose some node
v ∈ V and let C = { x ∈ V | v ↔ x }. Then for any nodes x ∈ C and
y ∈ V – C, we have x ↮ y.

Proof: By contradiction; assume x ∈ C and y ∈ V – C, but that x ↔ y.
Since x ∈ C, we have v ↔ x. Because v ↔ x and x ↔ y, we know
v ↔ y. Therefore, we see y ∈ C. However, since y ∈ V – C, we know
that y ∉ C. We have reached a contradiction, so our assumption
was wrong. Therefore, if x ∈ C and y ∈ V – C, we know x ↮ y. ■

 

Theorem: Let G = (V, E) be an undirected graph. Then every node
v ∈ V belongs to some connected component of G.

Proof: Let C = { x ∈ V | v ↔ x }. Lemma 1 tells us v ∈ C, so C ≠ Ø. 
Thus, by Lemmas 1 – 3, we know C is a connected component. 
Therefore, v belongs to at least one connected component. ■



  

Lemma 2: Let G = (V, E) be an undirected graph. Choose some node
v ∈ V and let C = { x ∈ V | v ↔ x }.  Then for any nodes x, y ∈ C,
we have x ↔ y.

Proof: By definition, since x ∈ C and y ∈ C, we have v ↔ x and v ↔ y. 
By our earlier theorem, since v ↔ x, we know x ↔ v. By the same
theorem, since x ↔ v and v ↔ y, we know x ↔ y, as required. ■

 

Lemma 3: Let G = (V, E) be an undirected graph. Choose some node
v ∈ V and let C = { x ∈ V | v ↔ x }. Then for any nodes x ∈ C and
y ∈ V – C, we have x ↮ y.

Proof: By contradiction; assume x ∈ C and y ∈ V – C, but that x ↔ y.
Since x ∈ C, we have v ↔ x. Because v ↔ x and x ↔ y, we know
v ↔ y. Therefore, we see y ∈ C. However, since y ∈ V – C, we know
that y ∉ C. We have reached a contradiction, so our assumption
was wrong. Therefore, if x ∈ C and y ∈ V – C, we know x ↮ y. ■

 

Theorem: Let G = (V, E) be an undirected graph. Then every node
v ∈ V belongs to some connected component of G.

Proof: Let C = { x ∈ V | v ↔ x }. Lemma 1 tells us v ∈ C, so C ≠ Ø. 
Thus, by Lemmas 1 – 3, we know C is a connected component. 
Therefore, v belongs to at least one connected component. ■



  

Lemma 2: Let G = (V, E) be an undirected graph. Choose some node
v ∈ V and let C = { x ∈ V | v ↔ x }.  Then for any nodes x, y ∈ C,
we have x ↔ y.

Proof: By definition, since x ∈ C and y ∈ C, we have v ↔ x and v ↔ y. 
By our earlier theorem, since v ↔ x, we know x ↔ v. By the same
theorem, since x ↔ v and v ↔ y, we know x ↔ y, as required. ■

 

Lemma 3: Let G = (V, E) be an undirected graph. Choose some node
v ∈ V and let C = { x ∈ V | v ↔ x }. Then for any nodes x ∈ C and
y ∈ V – C, we have x ↮ y.

Proof: By contradiction; assume x ∈ C and y ∈ V – C, but that x ↔ y.
Since x ∈ C, we have v ↔ x. Because v ↔ x and x ↔ y, we know
v ↔ y. Therefore, we see y ∈ C. However, since y ∈ V – C, we know
that y ∉ C. We have reached a contradiction, so our assumption
was wrong. Therefore, if x ∈ C and y ∈ V – C, we know x ↮ y. ■

 

Theorem: Let G = (V, E) be an undirected graph. Then every node
v ∈ V belongs to some connected component of G.

Proof: Take any v ∈ V and let C = { x ∈ V | v ↔ x }. Lemma 1 tells us
v ∈ C, so C ≠ Ø. By Lemmas 1 and 2, C is a connected component.
Therefore, v belongs to at least one connected component. ■



  

Lemma 2: Let G = (V, E) be an undirected graph. Choose some node
v ∈ V and let C = { x ∈ V | v ↔ x }.  Then for any nodes x, y ∈ C,
we have x ↔ y.

Proof: By definition, since x ∈ C and y ∈ C, we have v ↔ x and v ↔ y. 
By our earlier theorem, since v ↔ x, we know x ↔ v. By the same
theorem, since x ↔ v and v ↔ y, we know x ↔ y, as required. ■

 

Lemma 3: Let G = (V, E) be an undirected graph. Choose some node
v ∈ V and let C = { x ∈ V | v ↔ x }. Then for any nodes x ∈ C and
y ∈ V – C, we have x ↮ y.

Proof: By contradiction; assume x ∈ C and y ∈ V – C, but that x ↔ y.
Since x ∈ C, we have v ↔ x. Because v ↔ x and x ↔ y, we know
v ↔ y. Therefore, we see y ∈ C. However, since y ∈ V – C, we know
that y ∉ C. We have reached a contradiction, so our assumption
was wrong. Therefore, if x ∈ C and y ∈ V – C, we know x ↮ y. ■

 

Theorem: Let G = (V, E) be an undirected graph. Then every node
v ∈ V belongs to some connected component of G.

Proof: Take any v ∈ V and let C = { x ∈ V | v ↔ x }. Lemma 1 tells us
v ∈ C, so C ≠ Ø. By Lemmas 1 and 2, C is a connected component.
Therefore, v belongs to at least one connected component. ■



  

Lemma 2: Let G = (V, E) be an undirected graph. Choose some node
v ∈ V and let C = { x ∈ V | v ↔ x }.  Then for any nodes x, y ∈ C,
we have x ↔ y.

Proof: By definition, since x ∈ C and y ∈ C, we have v ↔ x and v ↔ y. 
By our earlier theorem, since v ↔ x, we know x ↔ v. By the same
theorem, since x ↔ v and v ↔ y, we know x ↔ y, as required. ■

 

Lemma 3: Let G = (V, E) be an undirected graph. Choose some node
v ∈ V and let C = { x ∈ V | v ↔ x }. Then for any nodes x ∈ C and
y ∈ V – C, we have x ↮ y.

Proof: By contradiction; assume x ∈ C and y ∈ V – C, but that x ↔ y.
Since x ∈ C, we have v ↔ x. Because v ↔ x and x ↔ y, we know
v ↔ y. Therefore, we see y ∈ C. However, since y ∈ V – C, we know
that y ∉ C. We have reached a contradiction, so our assumption
was wrong. Therefore, if x ∈ C and y ∈ V – C, we know x ↮ y. ■

 

Theorem: Let G = (V, E) be an undirected graph. Then every node
v ∈ V belongs to some connected component of G.

Proof: Take any v ∈ V and let C = { x ∈ V | v ↔ x }. Lemma 1 tells us
v ∈ C, so C ≠ Ø. By Lemmas 1 and 2, C is a connected component.
Therefore, v belongs to at least one connected component. ■



  

Lemma 2: Let G = (V, E) be an undirected graph. Choose some node
v ∈ V and let C = { x ∈ V | v ↔ x }.  Then for any nodes x, y ∈ C,
we have x ↔ y.

Proof: By definition, since x ∈ C and y ∈ C, we have v ↔ x and v ↔ y. 
By our earlier theorem, since v ↔ x, we know x ↔ v. By the same
theorem, since x ↔ v and v ↔ y, we know x ↔ y, as required. ■

 

Lemma 3: Let G = (V, E) be an undirected graph. Choose some node
v ∈ V and let C = { x ∈ V | v ↔ x }. Then for any nodes x ∈ C and
y ∈ V – C, we have x ↮ y.

Proof: By contradiction; assume x ∈ C and y ∈ V – C, but that x ↔ y.
Since x ∈ C, we have v ↔ x. Because v ↔ x and x ↔ y, we know
v ↔ y. Therefore, we see y ∈ C. However, since y ∈ V – C, we know
that y ∉ C. We have reached a contradiction, so our assumption
was wrong. Therefore, if x ∈ C and y ∈ V – C, we know x ↮ y. ■

 

Theorem: Let G = (V, E) be an undirected graph. Then every node
v ∈ V belongs to some connected component of G.

Proof: Take any v ∈ V and let C = { x ∈ V | v ↔ x }. Lemma 1 tells us
v ∈ C, so C ≠ Ø. By Lemmas 2 and 3, C is a connected component.
Therefore, v belongs to at least one connected component. ■



  

Lemma 2: Let G = (V, E) be an undirected graph. Choose some node
v ∈ V and let C = { x ∈ V | v ↔ x }.  Then for any nodes x, y ∈ C,
we have x ↔ y.

Proof: By definition, since x ∈ C and y ∈ C, we have v ↔ x and v ↔ y. 
By our earlier theorem, since v ↔ x, we know x ↔ v. By the same
theorem, since x ↔ v and v ↔ y, we know x ↔ y, as required. ■

 

Lemma 3: Let G = (V, E) be an undirected graph. Choose some node
v ∈ V and let C = { x ∈ V | v ↔ x }. Then for any nodes x ∈ C and
y ∈ V – C, we have x ↮ y.

Proof: By contradiction; assume x ∈ C and y ∈ V – C, but that x ↔ y.
Since x ∈ C, we have v ↔ x. Because v ↔ x and x ↔ y, we know
v ↔ y. Therefore, we see y ∈ C. However, since y ∈ V – C, we know
that y ∉ C. We have reached a contradiction, so our assumption
was wrong. Therefore, if x ∈ C and y ∈ V – C, we know x ↮ y. ■

 

Theorem: Let G = (V, E) be an undirected graph. Then every node
v ∈ V belongs to some connected component of G.

Proof: Take any v ∈ V and let C = { x ∈ V | v ↔ x }. Lemma 1 tells us
v ∈ C, so C ≠ Ø. By Lemmas 2 and 3, C is a connected component.
Therefore, v belongs to at least one connected component. ■



  

Lemma 2: Let G = (V, E) be an undirected graph. Choose some node
v ∈ V and let C = { x ∈ V | v ↔ x }.  Then for any nodes x, y ∈ C,
we have x ↔ y.

Proof: By definition, since x ∈ C and y ∈ C, we have v ↔ x and v ↔ y. 
By our earlier theorem, since v ↔ x, we know x ↔ v. By the same
theorem, since x ↔ v and v ↔ y, we know x ↔ y, as required. ■

 

Lemma 3: Let G = (V, E) be an undirected graph. Choose some node
v ∈ V and let C = { x ∈ V | v ↔ x }. Then for any nodes x ∈ C and
y ∈ V – C, we have x ↮ y.

Proof: By contradiction; assume x ∈ C and y ∈ V – C, but that x ↔ y.
Since x ∈ C, we have v ↔ x. Because v ↔ x and x ↔ y, we know
v ↔ y. Therefore, we see y ∈ C. However, since y ∈ V – C, we know
that y ∉ C. We have reached a contradiction, so our assumption
was wrong. Therefore, if x ∈ C and y ∈ V – C, we know x ↮ y. ■

 

Theorem: Let G = (V, E) be an undirected graph. Then every node
v ∈ V belongs to some connected component of G.

Proof: Take any v ∈ V and let C = { x ∈ V | v ↔ x }. Lemma 1 tells us
v ∈ C, so C ≠ Ø. By Lemmas 2 and 3, C is a connected component.
Therefore, v belongs to at least one connected component. ■



  

Part 2: Every node belongs to at most 
one connected component.



  

Uniqueness Proofs

● To show there is at most one object with 
some property P, show the following:

If x has property P and y has property P,  
   then x = y.    

● Rationale: x and y are just different 
names for the same thing; at most one 
object of the type can exist.



  

Uniqueness Proofs

● Suppose that C₁ and C₂ are connected 
components containing v.

● We need to prove that C₁ = C₂.
● Idea: C₁ and C₂ are sets, so we can try to 

show that C₁ ⊆ C₂ and that C₂ ⊆ C₁.
● Just because we're working at a higher level 

of abstraction doesn't mean our existing 
techniques aren't useful!



  

Lemma: Let C be a connected component of an 
undirected graph G = (V, E) and v ∈ V a node
contained in C.  Then for any x ∈ V, we have x ∈ C
iff v ↔ x.

Proof: We prove both directions of implication.

(⇒) First, we prove that if x ∈ C, then v ↔ x. Since 
nodes x, v ∈ C and C is of a connected component, 
we have v ↔ x, as required.

(⇐) Next, we prove that if v ↔ x, then x ∈ C. We 
proceed by contrapositive and instead prove that if 
x ∉ C, then v ↮ x. C is a connected component, so 
because v ∈ C and x ∈ V – C we know v ↮ x, as 
required. ■
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When proving a biconditional, it is common to 
split the proof apart into two directions.  The 
symbols ( ) and ( ) denote where in the ⇒ ⇐

proof the two directions can be found.

When proving a biconditional, it is common to 
split the proof apart into two directions.  The 
symbols ( ) and ( ) denote where in the ⇒ ⇐

proof the two directions can be found.
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Theorem: Let G = (V, E) be an undirected graph. Then
every node v ∈ V belongs to at most one connected
component of G.

Proof: Let C₁ and C₂ be connected components containing
some node v ∈ V. We will prove that C₁ = C₂.  To do so,
we will show that C₁ ⊆ C₂ and that C₂ ⊆ C₁.

To show C₁ ⊆ C₂, consider any arbitrary x ∈ C₁.  We will 
prove that x ∈ C₂. Since x ∈ C₁ and v ∈ C₁, by our 
lemma we know that v ↔ x.  Similarly, by our lemma, 
since v ∈ C₂ and v ↔ x, we know that x ∈ C₂.  Since our 
choice of x was arbitrary, this means that C₁ ⊆ C₂.

By using a similar line of reasoning and interchanging 
the roles of C₂ and C₁, we also see that C₂ ⊆ C₁. Thus
C₁ ⊆ C₂ and C₂ ⊆ C₁, so C₁ = C₂, as required. ■
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Why All This Matters

● I chose the example of connected 
components to
● describe how to come up with a precise 

definition for intuitive terms;
● see how to manipulate a definition once 

we've come up with one;
● explore existence and uniqueness proofs, 

which we'll see more of later on; and
● explore multipart proofs with several 

different lemmas.



  

Planar Graphs
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This graph is 
sometimes called 
the utility graph.

This graph is 
sometimes called 
the utility graph.



  

A graph is called a planar graph iff there 
is some way to draw it in a 2D plane 

without any of the edges crossing.



  



  



  



  



  



  



  



  

Graph Coloring



  

Graph Coloring



  

Graph Coloring



  

Graph Coloring



  

Graph Coloring

● An undirected graph G = (V, E) with no 
self-loops (edges from a node to itself) is 
called k-colorable iff the nodes in V can 
be assigned one of k different colors such 
that no two nodes of the same color are 
joined by an edge.

● The minimum number of colors needed to 
color a graph is called that graph's 
chromatic number.



  

Theorem (Four-Color Theorem): Every 
planar graph is 4-colorable.



  

● 1850s: Four-Color Conjecture posed.

● 1879: Kempe proves the Four-Color Theorem.

● 1890: Heawood finds a flaw in Kempe's proof.

● 1976: Appel and Haken design a computer program that 
proves the Four-Color Theorem.  The program checked 
1,936 specific cases that are “minimal counterexamples;” 
any counterexample to the theorem must contain one of the 
1,936 specific cases.

● 1980s: Doubts rise about the validity of the proof due to 
errors in the software.

● 1989: Appel and Haken revise their proof and show it is 
indeed correct. They publish a book including a 400-page 
appendix of all the cases to check.

● 1996: Roberts, Sanders, Seymour, and Thomas reduce the 
number of cases to check down to 633.

● 2005: Werner and Gonthier repeat the proof using an 
established automatic theorem prover (Coq), improving 
confidence in the truth of the theorem.



  

Next Time

● Binary Relations
● Another way of studying connectivity.

● The Pigeonhole Principle
● Proof by counting‽


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120

