Graphs II

Problem set Two checkpoint
problem due in the box up
front. Problem set one due in the box up front if you're using
a late period.

Quick Announcements

- Sorry about the fire alarm!
- We're going to be offset by about half a lecture for a few days.
- No deadlines will be adjusted. We're still on track!

A graph is a mathematical structure for representing relationships.

A graph consists of a set of nodes (or vertices) connected by edges (or arcs)

A graph is a mathematical structure for representing relationships.

A graph consists of a set of nodes (or vertices) connected by edges (or arcs)

A graph is a mathematical structure for representing relationships.

A graph consists of a set of nodes (or vertices) connected by edges (or arcs)

Formalizing Graphs

- Formally, a graph is an ordered pair $G=(V, E)$, where
- V is a set of nodes.
- E is a set of edges, which are either ordered pairs or unordered pairs of elements from V.

Undirected Connectivity

Navigating a Graph

Navigating a Graph

Navigating a Graph

Navigating a Graph

From

Navigating a Graph

IP

In an undirected graph, two nodes u and v are called connected iff there is a path from u to v.

We denote this as $\boldsymbol{u} \leftrightarrow \boldsymbol{v}$.
If u is not connected to v, we write $\boldsymbol{u} \not \leftrightarrow \boldsymbol{\nu}$.

Properties of Connectivity

- Theorem: The following properties hold for the connectivity relation \leftrightarrow :
- For any node $v \in V$, we have $v \leftrightarrow v$.
- For any nodes $u, v \in V$, if $u \leftrightarrow v$, then $v \leftrightarrow u$.
- For any nodes $u, v, w \in V$, if $u \leftrightarrow v$ and $v \leftrightarrow w$, then $u \leftrightarrow w$.
- Can prove by thinking about the paths that are implied by each.

Connected Components

$$
\because \because
$$

$$
\because \because
$$

$$
\because \because
$$

An Initial Definition

- Attempted Definition \#1: A piece of an undirected graph $G=(V, E)$ is a set $C \subseteq V$ such that for any nodes $u, v \in C$, the relation $u \leftrightarrow v$ holds.
- Intuition: a piece of a graph is a set of nodes that are all connected to one another.

> This definition has some problems; please don't use it as a reference.

$$
\because \because
$$

$$
\because \because
$$

$$
\because \because:
$$

$$
\because \because:
$$

$\because \because:$

An Updated Definition

- Attempted Definition \#2: A piece of an undirected graph $G=(V, E)$ is a set $C \subseteq V$ where
- For any nodes $u, v \in C$, the relation $u \leftrightarrow v$ holds.
- For any nodes $u \in C$ and $v \in V-C$, the relation $u \nrightarrow v$ holds.
- Intuition: a piece of a graph is a set of nodes that are all connected to one another that doesn't "miss" any nodes.

This definition still has problems; please don't use it as a reference.

$$
\because \because
$$

A Final Definition

- Definition: A connected component of an undirected graph $G=(V, E)$ is a nonempty set $C \subseteq V$ where
- For any nodes $u, v \in C$, the relation $u \leftrightarrow v$ holds.
- For any nodes $u \in C$ and $v \in V-C$, the relation $u \nrightarrow v$ holds.
- Intuition: a connected component is a nonempty set of nodes that are all connected to one another that includes as many nodes as possible.

Some Announcements

Announcements

- Problem Set 1 solutions released at end of today's lecture.
- Aiming to return problem sets no later than Thursday.
- Problem Set 2 out, due Friday at the start of lecture.
- Checkpoints should be returned by Wednesday.

Announcements

- Two new TAs:
- Je-ok Choi
- Bertrand Decoster
- Welcome!

Casual CS Dinner

- Casual dinner for women studying computer science tomorrow.
- 5:30PM - 8:00PM in Gates 519 (the newly renovated fifth floor!)
- RSVP at http://bit.ly/cscasualdinners.
- Highly recommended!

Your Questions

</announcements>

Manipulating our Definition

Proving the Obvious

- Theorem: If $G=(V, E)$ is a graph, then every node $v \in V$ belongs to exactly one connected component.
- How exactly would we prove a statement like this one?
- Use an existence and uniqueness proof:
- Prove there is at least one object of that type.
- Prove there is at most one object of that type.
- These are usually separate proofs.

Part 1: Every node belongs to at least one connected component.

Proving Existence

- Given an arbitrary graph $G=(V, E)$ and an arbitrary node $v \in V$, we need to show that there exists some connected component C where $v \in C$.
- The key part of this is the existential statement

There exists a connected component C

 such that $v \in C$.- The challenge: how can we find the connected component that v belongs to given that v is an arbitrary node in an arbitrary graph?

$$
\because \because
$$

The Conjecture

- Conjecture: Let $G=(V, E)$ be an undirected graph. Then for any node $v \in V$, the set $\{x \in V \mid v \leftrightarrow x\}$ is a connected component and it contains v.
- If we can prove this, we have shown existence: at least one connected component contains v.

Lemma 1: Let $G=(V, E)$ be an undirected graph. For any node $v \in V$, the set $C=\{x \in V \mid v \leftrightarrow x\}$ contains v.

Lemma 1: Let $G=(V, E)$ be an undirected graph. For any node $v \in V$, the set $C=\{x \in V \mid v \leftrightarrow x\}$ contains v.
Proof: The relation $v \leftrightarrow v$ holds for any $v \in V$.

Lemma 1: Let $G=(V, E)$ be an undirected graph. For any node $v \in V$, the set $C=\{x \in V \mid v \leftrightarrow x\}$ contains v.
Proof: The relation $v \leftrightarrow v$ holds for any $v \in V$. Therefore, by definition of C, we see that $v \in C$.

Lemma 1: Let $G=(V, E)$ be an undirected graph. For any node $v \in V$, the set $C=\{x \in V \mid v \leftrightarrow x\}$ contains v.
Proof: The relation $v \leftrightarrow v$ holds for any $v \in V$. Therefore, by definition of C, we see that $v \in C$. \square

Lemma 1: Let $G=(V, E)$ be an undirected graph. For any node $v \in V$, the set $C=\{x \in V \mid v \leftrightarrow x\}$ contains v.

Proof: The relation $v \leftrightarrow v$ holds for any $v \in V$. Therefore, by definition of C, we see that $v \in C$. \square

The Tricky Part

- We need to show for any $v \in V$ that the set $C=\{x \in V \mid v \leftrightarrow x\}$ is a connected component.
- Therefore, we need to show
- $C \neq \varnothing$;
- for any $x, y \in C$, the relation $x \leftrightarrow y$ holds; and
- for any $x \in C$ and $y \notin C$, the relation $x \nleftarrow y$ holds.

Lemma 2: Let $G=(V, E)$ be an undirected graph. Choose some node $v \in V$ and let $C=\{x \in V \mid v \leftrightarrow x\}$. Then for any nodes $x, y \in C$, we have $x \leftrightarrow y$.

Lemma 2: Let $G=(V, E)$ be an undirected graph. Choose some node $v \in V$ and let $C=\{x \in V \mid v \leftrightarrow x\}$. Then for any nodes $x, y \in C$, we have $x \leftrightarrow y$.
Proof: By definition, since $x \in C$ and $y \in C$, we have $v \leftrightarrow x$ and $v \leftrightarrow y$.

Lemma 2: Let $G=(V, E)$ be an undirected graph. Choose some node $v \in V$ and let $C=\{x \in V \mid v \leftrightarrow x\}$. Then for any nodes $x, y \in C$, we have $x \leftrightarrow y$.
Proof: By definition, since $x \in C$ and $y \in C$, we have $v \leftrightarrow x$ and $v \leftrightarrow y$. By our earlier theorem, since $v \leftrightarrow x$, we know $x \leftrightarrow v$.

Lemma 2: Let $G=(V, E)$ be an undirected graph. Choose some node $v \in V$ and let $C=\{x \in V \mid v \leftrightarrow x\}$. Then for any nodes $x, y \in C$, we have $x \leftrightarrow y$.
Proof: By definition, since $x \in C$ and $y \in C$, we have $v \leftrightarrow x$ and $v \leftrightarrow y$. By our earlier theorem, since $\nu \leftrightarrow x$, we know $x \leftrightarrow \nu$. By the same theorem, since $x \leftrightarrow v$ and $v \leftrightarrow y$, we know $x \leftrightarrow y$, as required.

Lemma 2: Let $G=(V, E)$ be an undirected graph. Choose some node $v \in V$ and let $C=\{x \in V \mid v \leftrightarrow x\}$. Then for any nodes $x, y \in C$, we have $x \leftrightarrow y$.
Proof: By definition, since $x \in C$ and $y \in C$, we have $v \leftrightarrow x$ and $v \leftrightarrow y$. By our earlier theorem, since $\nu \leftrightarrow x$, we know $x \leftrightarrow \nu$. By the same theorem, since $x \leftrightarrow v$ and $v \leftrightarrow y$, we know $x \leftrightarrow y$, as required.

Lemma 2: Let $G=(V, E)$ be an undirected graph. Choose some node $v \in V$ and let $C=\{x \in V \mid v \leftrightarrow x\}$. Then for any nodes $x, y \in C$, we have $x \leftrightarrow y$.
Proof: By definition, since $x \in C$ and $y \in C$, we have $v \leftrightarrow x$ and $v \leftrightarrow y$. By our earlier theorem, since $\nu \leftrightarrow x$, we know $x \leftrightarrow \nu$. By the same theorem, since $x \leftrightarrow v$ and $v \leftrightarrow y$, we know $x \leftrightarrow y$, as required.

Lemma 3: Let $G=(V, E)$ be an undirected graph. Choose some node $v \in V$ and let $C=\{x \in V \mid v \leftrightarrow x\}$. Then for any nodes $x \in C$ and $y \in V-C$, we have $x \nrightarrow y$.

Lemma 2: Let $G=(V, E)$ be an undirected graph. Choose some node $v \in V$ and let $C=\{x \in V \mid v \leftrightarrow x\}$. Then for any nodes $x, y \in C$, we have $x \leftrightarrow y$.
Proof: By definition, since $x \in C$ and $y \in C$, we have $v \leftrightarrow x$ and $v \leftrightarrow y$. By our earlier theorem, since $\nu \leftrightarrow x$, we know $x \leftrightarrow \nu$. By the same theorem, since $x \leftrightarrow v$ and $v \leftrightarrow y$, we know $x \leftrightarrow y$, as required.

Lemma 3: Let $G=(V, E)$ be an undirected graph. Choose some node $v \in V$ and let $C=\{x \in V \mid v \leftrightarrow x\}$. Then for any nodes $x \in C$ and $y \in V-C$, we have $x \nrightarrow y$.
Proof: By contradiction; assume $x \in C$ and $y \in V-C$, but that $x \leftrightarrow y$.

Lemma 2: Let $G=(V, E)$ be an undirected graph. Choose some node $v \in V$ and let $C=\{x \in V \mid v \leftrightarrow x\}$. Then for any nodes $x, y \in C$, we have $x \leftrightarrow y$.
Proof: By definition, since $x \in C$ and $y \in C$, we have $v \leftrightarrow x$ and $v \leftrightarrow y$. By our earlier theorem, since $\nu \leftrightarrow x$, we know $x \leftrightarrow \nu$. By the same theorem, since $x \leftrightarrow v$ and $v \leftrightarrow y$, we know $x \leftrightarrow y$, as required.

Lemma 3: Let $G=(V, E)$ be an undirected graph. Choose some node $v \in V$ and let $C=\{x \in V \mid v \leftrightarrow x\}$. Then for any nodes $x \in C$ and $y \in V-C$, we have $x \nrightarrow y$.
Proof: By contradiction; assume $x \in C$ and $y \in V-C$, but that $x \leftrightarrow y$. Since $x \in C$, we have $v \leftrightarrow x$.

Lemma 2: Let $G=(V, E)$ be an undirected graph. Choose some node $v \in V$ and let $C=\{x \in V \mid v \leftrightarrow x\}$. Then for any nodes $x, y \in C$, we have $x \leftrightarrow y$.
Proof: By definition, since $x \in C$ and $y \in C$, we have $v \leftrightarrow x$ and $v \leftrightarrow y$. By our earlier theorem, since $\nu \leftrightarrow x$, we know $x \leftrightarrow \nu$. By the same theorem, since $x \leftrightarrow v$ and $v \leftrightarrow y$, we know $x \leftrightarrow y$, as required.

Lemma 3: Let $G=(V, E)$ be an undirected graph. Choose some node $v \in V$ and let $C=\{x \in V \mid v \leftrightarrow x\}$. Then for any nodes $x \in C$ and $y \in V-C$, we have $x \nrightarrow y$.
Proof: By contradiction; assume $x \in C$ and $y \in V-C$, but that $x \leftrightarrow y$. Since $x \in C$, we have $v \leftrightarrow x$. Because $v \leftrightarrow x$ and $x \leftrightarrow y$, we know $v \leftrightarrow y$.

Lemma 2: Let $G=(V, E)$ be an undirected graph. Choose some node $v \in V$ and let $C=\{x \in V \mid v \leftrightarrow x\}$. Then for any nodes $x, y \in C$, we have $x \leftrightarrow y$.
Proof: By definition, since $x \in C$ and $y \in C$, we have $v \leftrightarrow x$ and $v \leftrightarrow y$. By our earlier theorem, since $\nu \leftrightarrow x$, we know $x \leftrightarrow \nu$. By the same theorem, since $x \leftrightarrow v$ and $v \leftrightarrow y$, we know $x \leftrightarrow y$, as required.

Lemma 3: Let $G=(V, E)$ be an undirected graph. Choose some node $v \in V$ and let $C=\{x \in V \mid v \leftrightarrow x\}$. Then for any nodes $x \in C$ and $y \in V-C$, we have $x \nrightarrow y$.
Proof: By contradiction; assume $x \in C$ and $y \in V-C$, but that $x \leftrightarrow y$. Since $x \in C$, we have $v \leftrightarrow x$. Because $v \leftrightarrow x$ and $x \leftrightarrow y$, we know $v \leftrightarrow y$. Therefore, we see $y \in C$.

Lemma 2: Let $G=(V, E)$ be an undirected graph. Choose some node $v \in V$ and let $C=\{x \in V \mid v \leftrightarrow x\}$. Then for any nodes $x, y \in C$, we have $x \leftrightarrow y$.
Proof: By definition, since $x \in C$ and $y \in C$, we have $v \leftrightarrow x$ and $v \leftrightarrow y$. By our earlier theorem, since $\nu \leftrightarrow x$, we know $x \leftrightarrow \nu$. By the same theorem, since $x \leftrightarrow v$ and $v \leftrightarrow y$, we know $x \leftrightarrow y$, as required.

Lemma 3: Let $G=(V, E)$ be an undirected graph. Choose some node $v \in V$ and let $C=\{x \in V \mid v \leftrightarrow x\}$. Then for any nodes $x \in C$ and $y \in V-C$, we have $x \nrightarrow y$.
Proof: By contradiction; assume $x \in C$ and $y \in V-C$, but that $x \leftrightarrow y$. Since $x \in C$, we have $v \leftrightarrow x$. Because $v \leftrightarrow x$ and $x \leftrightarrow y$, we know $v \leftrightarrow y$. Therefore, we see $y \in C$. However, since $y \in V-C$, we know that $y \notin C$.

Lemma 2: Let $G=(V, E)$ be an undirected graph. Choose some node $v \in V$ and let $C=\{x \in V \mid v \leftrightarrow x\}$. Then for any nodes $x, y \in C$, we have $x \leftrightarrow y$.
Proof: By definition, since $x \in C$ and $y \in C$, we have $v \leftrightarrow x$ and $v \leftrightarrow y$. By our earlier theorem, since $\nu \leftrightarrow x$, we know $x \leftrightarrow \nu$. By the same theorem, since $x \leftrightarrow v$ and $v \leftrightarrow y$, we know $x \leftrightarrow y$, as required.

Lemma 3: Let $G=(V, E)$ be an undirected graph. Choose some node $v \in V$ and let $C=\{x \in V \mid v \leftrightarrow x\}$. Then for any nodes $x \in C$ and $y \in V-C$, we have $x \nrightarrow y$.
Proof: By contradiction; assume $x \in C$ and $y \in V-C$, but that $x \leftrightarrow y$. Since $x \in C$, we have $v \leftrightarrow x$. Because $v \leftrightarrow x$ and $x \leftrightarrow y$, we know $v \leftrightarrow y$. Therefore, we see $y \in C$. However, since $y \in V-C$, we know that $y \notin C$. We have reached a contradiction, so our assumption was wrong.

Lemma 2: Let $G=(V, E)$ be an undirected graph. Choose some node $v \in V$ and let $C=\{x \in V \mid v \leftrightarrow x\}$. Then for any nodes $x, y \in C$, we have $x \leftrightarrow y$.
Proof: By definition, since $x \in C$ and $y \in C$, we have $v \leftrightarrow x$ and $v \leftrightarrow y$. By our earlier theorem, since $v \leftrightarrow x$, we know $x \leftrightarrow v$. By the same theorem, since $x \leftrightarrow v$ and $v \leftrightarrow y$, we know $x \leftrightarrow y$, as required.

Lemma 3: Let $G=(V, E)$ be an undirected graph. Choose some node $v \in V$ and let $C=\{x \in V \mid v \leftrightarrow x\}$. Then for any nodes $x \in C$ and $y \in V-C$, we have $x \nrightarrow y$.
Proof: By contradiction; assume $x \in C$ and $y \in V-C$, but that $x \leftrightarrow y$. Since $x \in C$, we have $v \leftrightarrow x$. Because $v \leftrightarrow x$ and $x \leftrightarrow y$, we know $v \leftrightarrow y$. Therefore, we see $y \in C$. However, since $y \in V-C$, we know that $y \notin C$. We have reached a contradiction, so our assumption was wrong. Therefore, if $x \in C$ and $y \in V-C$, we know $x \nrightarrow y$.

Lemma 2: Let $G=(V, E)$ be an undirected graph. Choose some node $v \in V$ and let $C=\{x \in V \mid v \leftrightarrow x\}$. Then for any nodes $x, y \in C$, we have $x \leftrightarrow y$.
Proof: By definition, since $x \in C$ and $y \in C$, we have $v \leftrightarrow x$ and $v \leftrightarrow y$. By our earlier theorem, since $v \leftrightarrow x$, we know $x \leftrightarrow v$. By the same theorem, since $x \leftrightarrow v$ and $v \leftrightarrow y$, we know $x \leftrightarrow y$, as required.

Lemma 3: Let $G=(V, E)$ be an undirected graph. Choose some node $v \in V$ and let $C=\{x \in V \mid v \leftrightarrow x\}$. Then for any nodes $x \in C$ and $y \in V-C$, we have $x \leftrightarrow y$.
Proof: By contradiction; assume $x \in C$ and $y \in V-C$, but that $x \leftrightarrow y$. Since $x \in C$, we have $v \leftrightarrow x$. Because $v \leftrightarrow x$ and $x \leftrightarrow y$, we know $v \leftrightarrow y$. Therefore, we see $y \in C$. However, since $y \in V-C$, we know that $y \notin C$. We have reached a contradiction, so our assumption was wrong. Therefore, if $x \in C$ and $y \in V-C$, we know $x \nrightarrow y$.

Lemma 2: Let $G=(V, E)$ be an undirected graph. Choose some node $v \in V$ and let $C=\{x \in V \mid v \leftrightarrow x\}$. Then for any nodes $x, y \in C$, we have $x \leftrightarrow y$.
Proof: By definition, since $x \in C$ and $y \in C$, we have $v \leftrightarrow x$ and $v \leftrightarrow y$. By our earlier theorem, since $v \leftrightarrow x$, we know $x \leftrightarrow v$. By the same theorem, since $x \leftrightarrow v$ and $v \leftrightarrow y$, we know $x \leftrightarrow y$, as required.

Lemma 3: Let $G=(V, E)$ be an undirected graph. Choose some node $v \in V$ and let $C=\{x \in V \mid v \leftrightarrow x\}$. Then for any nodes $x \in C$ and $y \in V-C$, we have $x \nrightarrow y$.
Proof: By contradiction; assume $x \in C$ and $y \in V-C$, but that $x \leftrightarrow y$. Since $x \in C$, we have $v \leftrightarrow x$. Because $v \leftrightarrow x$ and $x \leftrightarrow y$, we know $v \leftrightarrow y$. Therefore, we see $y \in C$. However, since $y \in V-C$, we know that $y \notin C$. We have reached a contradiction, so our assumption was wrong. Therefore, if $x \in C$ and $y \in V-C$, we know $x \leftrightarrow y$.

Theorem: Let $G=(V, E)$ be an undirected graph. Then every node $v \in V$ belongs to some connected component of G.

Lemma 2: Let $G=(V, E)$ be an undirected graph. Choose some node $v \in V$ and let $C=\{x \in V \mid v \leftrightarrow x\}$. Then for any nodes $x, y \in C$, we have $x \leftrightarrow y$.
Proof: By definition, since $x \in C$ and $y \in C$, we have $v \leftrightarrow x$ and $v \leftrightarrow y$. By our earlier theorem, since $v \leftrightarrow x$, we know $x \leftrightarrow v$. By the same theorem, since $x \leftrightarrow v$ and $v \leftrightarrow y$, we know $x \leftrightarrow y$, as required.

Lemma 3: Let $G=(V, E)$ be an undirected graph. Choose some node $v \in V$ and let $C=\{x \in V \mid v \leftrightarrow x\}$. Then for any nodes $x \in C$ and $y \in V-C$, we have $x \nrightarrow y$.
Proof: By contradiction; assume $x \in C$ and $y \in V-C$, but that $x \leftrightarrow y$. Since $x \in C$, we have $v \leftrightarrow x$. Because $v \leftrightarrow x$ and $x \leftrightarrow y$, we know $v \leftrightarrow y$. Therefore, we see $y \in C$. However, since $y \in V-C$, we know that $y \notin C$. We have reached a contradiction, so our assumption was wrong. Therefore, if $x \in C$ and $y \in V-C$, we know $x \leftrightarrow y$.

Theorem: Let $G=(V, E)$ be an undirected graph. Then every node $v \in V$ belongs to some connected component of G.
Proof: Take any $v \in V$ and let $C=\{x \in V \mid v \leftrightarrow x\}$.

Lemma 2: Let $G=(V, E)$ be an undirected graph. Choose some node $v \in V$ and let $C=\{x \in V \mid v \leftrightarrow x\}$. Then for any nodes $x, y \in C$, we have $x \leftrightarrow y$.
Proof: By definition, since $x \in C$ and $y \in C$, we have $v \leftrightarrow x$ and $v \leftrightarrow y$. By our earlier theorem, since $v \leftrightarrow x$, we know $x \leftrightarrow v$. By the same theorem, since $x \leftrightarrow v$ and $v \leftrightarrow y$, we know $x \leftrightarrow y$, as required.

Lemma 3: Let $G=(V, E)$ be an undirected graph. Choose some node $v \in V$ and let $C=\{x \in V \mid v \leftrightarrow x\}$. Then for any nodes $x \in C$ and $y \in V-C$, we have $x \nrightarrow y$.
Proof: By contradiction; assume $x \in C$ and $y \in V-C$, but that $x \leftrightarrow y$. Since $x \in C$, we have $v \leftrightarrow x$. Because $v \leftrightarrow x$ and $x \leftrightarrow y$, we know $v \leftrightarrow y$. Therefore, we see $y \in C$. However, since $y \in V-C$, we know that $y \notin C$. We have reached a contradiction, so our assumption was wrong. Therefore, if $x \in C$ and $y \in V-C$, we know $x \leftrightarrow y$.

Theorem: Let $G=(V, E)$ be an undirected graph. Then every node $v \in V$ belongs to some connected component of G.
Proof: Take any $v \in V$ and let $C=\{x \in V \mid v \leftrightarrow x\}$. Lemma 1 tells us $v \in C$, so $C \neq \emptyset$.

Lemma 2: Let $G=(V, E)$ be an undirected graph. Choose some node $v \in V$ and let $C=\{x \in V \mid v \leftrightarrow x\}$. Then for any nodes $x, y \in C$, we have $x \leftrightarrow y$.
Proof: By definition, since $x \in C$ and $y \in C$, we have $v \leftrightarrow x$ and $v \leftrightarrow y$. By our earlier theorem, since $v \leftrightarrow x$, we know $x \leftrightarrow v$. By the same theorem, since $x \leftrightarrow v$ and $v \leftrightarrow y$, we know $x \leftrightarrow y$, as required.

Lemma 3: Let $G=(V, E)$ be an undirected graph. Choose some node $v \in V$ and let $C=\{x \in V \mid v \leftrightarrow x\}$. Then for any nodes $x \in C$ and $y \in V-C$, we have $x \nrightarrow y$.
Proof: By contradiction; assume $x \in C$ and $y \in V-C$, but that $x \leftrightarrow y$. Since $x \in C$, we have $v \leftrightarrow x$. Because $v \leftrightarrow x$ and $x \leftrightarrow y$, we know $v \leftrightarrow y$. Therefore, we see $y \in C$. However, since $y \in V-C$, we know that $y \notin C$. We have reached a contradiction, so our assumption was wrong. Therefore, if $x \in C$ and $y \in V-C$, we know $x \leftrightarrow y$.

Theorem: Let $G=(V, E)$ be an undirected graph. Then every node $v \in V$ belongs to some connected component of G.
Proof: Take any $v \in V$ and let $C=\{x \in V \mid v \leftrightarrow x\}$. Lemma 1 tells us $v \in C$, so $C \neq \emptyset$. By Lemmas 2 and $3, C$ is a connected component.

Lemma 2: Let $G=(V, E)$ be an undirected graph. Choose some node $v \in V$ and let $C=\{x \in V \mid v \leftrightarrow x\}$. Then for any nodes $x, y \in C$, we have $x \leftrightarrow y$.
Proof: By definition, since $x \in C$ and $y \in C$, we have $v \leftrightarrow x$ and $v \leftrightarrow y$. By our earlier theorem, since $v \leftrightarrow x$, we know $x \leftrightarrow v$. By the same theorem, since $x \leftrightarrow v$ and $v \leftrightarrow y$, we know $x \leftrightarrow y$, as required.

Lemma 3: Let $G=(V, E)$ be an undirected graph. Choose some node $v \in V$ and let $C=\{x \in V \mid v \leftrightarrow x\}$. Then for any nodes $x \in C$ and $y \in V-C$, we have $x \nrightarrow y$.
Proof: By contradiction; assume $x \in C$ and $y \in V-C$, but that $x \leftrightarrow y$. Since $x \in C$, we have $v \leftrightarrow x$. Because $v \leftrightarrow x$ and $x \leftrightarrow y$, we know $v \leftrightarrow y$. Therefore, we see $y \in C$. However, since $y \in V-C$, we know that $y \notin C$. We have reached a contradiction, so our assumption was wrong. Therefore, if $x \in C$ and $y \in V-C$, we know $x \nrightarrow y$.

Theorem: Let $G=(V, E)$ be an undirected graph. Then every node $v \in V$ belongs to some connected component of G.
Proof: Take any $v \in V$ and let $C=\{x \in V \mid v \leftrightarrow x\}$. Lemma 1 tells us $v \in C$, so $C \neq \emptyset$. By Lemmas 2 and $3, C$ is a connected component. Therefore, v belongs to at least one connected component.

Lemma 2: Let $G=(V, E)$ be an undirected graph. Choose some node $v \in V$ and let $C=\{x \in V \mid v \leftrightarrow x\}$. Then for any nodes $x, y \in C$, we have $x \leftrightarrow y$.
Proof: By definition, since $x \in C$ and $y \in C$, we have $v \leftrightarrow x$ and $v \leftrightarrow y$. By our earlier theorem, since $v \leftrightarrow x$, we know $x \leftrightarrow v$. By the same theorem, since $x \leftrightarrow v$ and $v \leftrightarrow y$, we know $x \leftrightarrow y$, as required.

Lemma 3: Let $G=(V, E)$ be an undirected graph. Choose some node $v \in V$ and let $C=\{x \in V \mid v \leftrightarrow x\}$. Then for any nodes $x \in C$ and $y \in V-C$, we have $x \nrightarrow y$.
Proof: By contradiction; assume $x \in C$ and $y \in V-C$, but that $x \leftrightarrow y$. Since $x \in C$, we have $v \leftrightarrow x$. Because $v \leftrightarrow x$ and $x \leftrightarrow y$, we know $v \leftrightarrow y$. Therefore, we see $y \in C$. However, since $y \in V-C$, we know that $y \notin C$. We have reached a contradiction, so our assumption was wrong. Therefore, if $x \in C$ and $y \in V-C$, we know $x \nrightarrow y$.

Theorem: Let $G=(V, E)$ be an undirected graph. Then every node $v \in V$ belongs to some connected component of G.
Proof: Take any $v \in V$ and let $C=\{x \in V \mid v \leftrightarrow x\}$. Lemma 1 tells us $v \in C$, so $C \neq \emptyset$. By Lemmas 2 and $3, C$ is a connected component. Therefore, v belongs to at least one connected component.

Part 2: Every node belongs to at most one connected component.

Uniqueness Proofs

- To show there is at most one object with some property P, show the following:

If \boldsymbol{x} has property \boldsymbol{P} and \boldsymbol{y} has property \boldsymbol{P}, then $\boldsymbol{x}=\boldsymbol{y}$.

- Rationale: x and y are just different names for the same thing; at most one object of the type can exist.

Uniqueness Proofs

- Suppose that C_{1} and C_{2} are connected components containing v.
- We need to prove that $C_{1}=C_{2}$.
- Idea: C_{1} and C_{2} are sets, so we can try to show that $C_{1} \subseteq C_{2}$ and that $C_{2} \subseteq C_{1}$.
- Just because we're working at a higher level of abstraction doesn't mean our existing techniques aren't useful!

Lemma: Let C be a connected component of an undirected graph $G=(V, E)$ and $v \in V$ a node contained in C. Then for any $x \in V$, we have $x \in C$ iff $v \leftrightarrow x$.

Lemma: Let C be a connected component of an undirected graph $G=(V, E)$ and $v \in V$ a node contained in C. Then for any $x \in V$, we have $x \in C$ iff $v \leftrightarrow x$.

Proof: We prove both directions of implication.

Lemma: Let C be a connected component of an undirected graph $G=(V, E)$ and $v \in V$ a node contained in C. Then for any $x \in V$, we have $x \in C$ iff $v \leftrightarrow x$.

Proof: We prove both directions of implication.
(\Rightarrow) First, we prove that if $x \in C$, then $v \leftrightarrow x$.
(\Leftarrow) Next, we prove that if $v \leftrightarrow x$, then $x \in C$.

Lemma: Let C be a connected component of an undirected graph $G=(V, E)$ and $v \in V$ a node contained in C. Then for any $x \in V$, we have $x \in C$ iff $v \leftrightarrow x$.

Proof: We prove both directions of implication. (\Rightarrow) First, we prove that if $x \in C$, then $v \leftrightarrow x$.
(\Leftarrow) Next, we prove that if $v \leftrightarrow x$, then $x \in C$.

Lemma: Let C be a connected component of an undirected graph $G=(V, E)$ and $v \in V$ a node contained in C. Then for any $x \in V$, we have $x \in C$ jiff $v \leftrightarrow \chi$.
Proof: We prove both directions of implication. (\Rightarrow) First, we prove that if $x \in C$, then $v \leftrightarrow x$.
(\curvearrowleft) Next, we prove that if $v \leftrightarrow x$, then $x \in C$.
When proving a biconditional, it is common to split the proof apart into two directions. The symbols (\Rightarrow) and (ϵ) denote where in the proof the two directions can be found.

Lemma: Let C be a connected component of an undirected graph $G=(V, E)$ and $v \in V$ a node contained in C. Then for any $x \in V$, we have $x \in C$ iff $v \leftrightarrow x$.

Proof: We prove both directions of implication.
(\Rightarrow) First, we prove that if $x \in C$, then $v \leftrightarrow x$.
(\Leftarrow) Next, we prove that if $v \leftrightarrow x$, then $x \in C$.

Lemma: Let C be a connected component of an undirected graph $G=(V, E)$ and $v \in V$ a node contained in C. Then for any $x \in V$, we have $x \in C$ iff $v \leftrightarrow x$.

Proof: We prove both directions of implication.
\Leftrightarrow) First, we prove that if $x \in C$, then $v \leftrightarrow x$. Since nodes $x, v \in C$ and C is a connected component, we have $v \leftrightarrow x$, as required.
(\Leftarrow) Next, we prove that if $v \leftrightarrow x$, then $x \in C$.

Lemma: Let C be a connected component of an undirected graph $G=(V, E)$ and $v \in V$ a node contained in C. Then for any $x \in V$, we have $x \in C$ iff $v \leftrightarrow x$.

Proof: We prove both directions of implication.
\Rightarrow) First, we prove that if $x \in C$, then $v \leftrightarrow x$. Since nodes $x, v \in C$ and C is a connected component, we have $v \leftrightarrow x$, as required.
(\Leftarrow) Next, we prove that if $v \leftrightarrow x$, then $x \in C$. We proceed by contrapositive and instead prove that if $x \notin C$, then $v \nrightarrow x$.

Lemma: Let C be a connected component of an undirected graph $G=(V, E)$ and $v \in V$ a node contained in C. Then for any $x \in V$, we have $x \in C$ iff $v \leftrightarrow x$.

Proof: We prove both directions of implication.
\Leftrightarrow) First, we prove that if $x \in C$, then $v \leftrightarrow x$. Since nodes $x, v \in C$ and C is a connected component, we have $v \leftrightarrow x$, as required.
(\Leftarrow) Next, we prove that if $v \leftrightarrow x$, then $x \in C$. We proceed by contrapositive and instead prove that if $x \notin C$, then $v \nleftarrow x . C$ is a connected component, so because $v \in C$ and $x \in V-C$ we know $v \nrightarrow x$, as required.

Lemma: Let C be a connected component of an undirected graph $G=(V, E)$ and $v \in V$ a node contained in C. Then for any $x \in V$, we have $x \in C$ iff $v \leftrightarrow x$.

Proof: We prove both directions of implication.
\Leftrightarrow) First, we prove that if $x \in C$, then $v \leftrightarrow x$. Since nodes $x, v \in C$ and C is a connected component, we have $v \leftrightarrow x$, as required.
(\Leftarrow) Next, we prove that if $v \leftrightarrow x$, then $x \in C$. We proceed by contrapositive and instead prove that if $x \notin C$, then $v \nleftarrow x . C$ is a connected component, so because $v \in C$ and $x \in V-C$ we know $v \nrightarrow x$, as required.

Theorem: Let $G=(V, E)$ be an undirected graph. Then every node $v \in V$ belongs to at most one connected component of G.

Theorem: Let $G=(V, E)$ be an undirected graph. Then every node $v \in V$ belongs to at most one connected component of G.
Proof: Let C_{1} and C_{2} be connected components containing some node $v \in V$.

Theorem: Let $G=(V, E)$ be an undirected graph. Then every node $v \in V$ belongs to at most one connected component of G.
Proof: Let C_{1} and C_{2} be connected components containing some node $v \in V$. We will prove that $C_{1}=C_{2}$.

Theorem: Let $G=(V, E)$ be an undirected graph. Then every node $v \in V$ belongs to at most one connected component of G.
Proof: Let C_{1} and C_{2} be connected components containing some node $v \in V$. We will prove that $C_{1}=C_{2}$. To do so, we will show that $C_{1} \subseteq C_{2}$ and that $C_{2} \subseteq C_{1}$.

Theorem: Let $G=(V, E)$ be an undirected graph. Then every node $v \in V$ belongs to at most one connected component of G.
Proof: Let C_{1} and C_{2} be connected components containing some node $v \in V$. We will prove that $C_{1}=C_{2}$. To do so, we will show that $C_{1} \subseteq C_{2}$ and that $C_{2} \subseteq C_{1}$.

To show $C_{1} \subseteq C_{2}$, consider any arbitrary $x \in C_{1}$. We will prove that $x \in C_{2}$.

Theorem: Let $G=(V, E)$ be an undirected graph. Then every node $v \in V$ belongs to at most one connected component of G.
Proof: Let C_{1} and C_{2} be connected components containing some node $v \in V$. We will prove that $C_{1}=C_{2}$. To do so, we will show that $C_{1} \subseteq C_{2}$ and that $C_{2} \subseteq C_{1}$.

To show $C_{1} \subseteq C_{2}$, consider any arbitrary $x \in C_{1}$. We will prove that $x \in C_{2}$. Since $x \in C_{1}$ and $v \in C_{1}$, by our lemma we know that $v \leftrightarrow x$.

Theorem: Let $G=(V, E)$ be an undirected graph. Then every node $v \in V$ belongs to at most one connected component of G.
Proof: Let C_{1} and C_{2} be connected components containing some node $v \in V$. We will prove that $C_{1}=C_{2}$. To do so, we will show that $C_{1} \subseteq C_{2}$ and that $C_{2} \subseteq C_{1}$.

To show $C_{1} \subseteq C_{2}$, consider any arbitrary $x \in C_{1}$. We will prove that $x \in C_{2}$. Since $x \in C_{1}$ and $v \in C_{1}$, by our lemma we know that $v \leftrightarrow x$. Similarly, by our lemma, since $v \in C_{2}$ and $v \leftrightarrow x$, we know that $x \in C_{2}$.

Theorem: Let $G=(V, E)$ be an undirected graph. Then every node $v \in V$ belongs to at most one connected component of G.
Proof: Let C_{1} and C_{2} be connected components containing some node $v \in V$. We will prove that $C_{1}=C_{2}$. To do so, we will show that $C_{1} \subseteq C_{2}$ and that $C_{2} \subseteq C_{1}$.

To show $C_{1} \subseteq C_{2}$, consider any arbitrary $x \in C_{1}$. We will prove that $x \in C_{2}$. Since $x \in C_{1}$ and $v \in C_{1}$, by our lemma we know that $v \leftrightarrow x$. Similarly, by our lemma, since $v \in C_{2}$ and $v \leftrightarrow x$, we know that $x \in C_{2}$. Since our choice of x was arbitrary, this means that $C_{1} \subseteq C_{2}$.

Theorem: Let $G=(V, E)$ be an undirected graph. Then every node $v \in V$ belongs to at most one connected component of G.
Proof: Let C_{1} and C_{2} be connected components containing some node $v \in V$. We will prove that $C_{1}=C_{2}$. To do so, we will show that $C_{1} \subseteq C_{2}$ and that $C_{2} \subseteq C_{1}$.

To show $C_{1} \subseteq C_{2}$, consider any arbitrary $x \in C_{1}$. We will prove that $x \in C_{2}$. Since $x \in C_{1}$ and $v \in C_{1}$, by our lemma we know that $v \leftrightarrow x$. Similarly, by our lemma, since $v \in C_{2}$ and $v \leftrightarrow x$, we know that $x \in C_{2}$. Since our choice of x was arbitrary, this means that $C_{1} \subseteq C_{2}$.
By using a similar line of reasoning and interchanging the roles of C_{2} and C_{1}, we also see that $C_{2} \subseteq C_{1}$.

Theorem: Let $G=(V, E)$ be an undirected graph. Then every node $v \in V$ belongs to at most one connected component of G.
Proof: Let C_{1} and C_{2} be connected components containing some node $v \in V$. We will prove that $C_{1}=C_{2}$. To do so, we will show that $C_{1} \subseteq C_{2}$ and that $C_{2} \subseteq C_{1}$.

To show $C_{1} \subseteq C_{2}$, consider any arbitrary $x \in C_{1}$. We will prove that $x \in C_{2}$. Since $x \in C_{1}$ and $v \in C_{1}$, by our lemma we know that $v \leftrightarrow x$. Similarly, by our lemma, since $v \in C_{2}$ and $v \leftrightarrow x$, we know that $x \in C_{2}$. Since our choice of x was arbitrary, this means that $C_{1} \subseteq C_{2}$.
By using a similar line of reasoning and interchanging the roles of C_{2} and C_{1}, we also see that $C_{2} \subseteq C_{1}$. Thus $C_{1} \subseteq C_{2}$ and $C_{2} \subseteq C_{1}$, so $C_{1}=C_{2}$, as required.

Theorem: Let $G=(V, E)$ be an undirected graph. Then every node $v \in V$ belongs to at most one connected component of G.
Proof: Let C_{1} and C_{2} be connected components containing some node $v \in V$. We will prove that $C_{1}=C_{2}$. To do so, we will show that $C_{1} \subseteq C_{2}$ and that $C_{2} \subseteq C_{1}$.

To show $C_{1} \subseteq C_{2}$, consider any arbitrary $x \in C_{1}$. We will prove that $x \in C_{2}$. Since $x \in C_{1}$ and $v \in C_{1}$, by our lemma we know that $v \leftrightarrow x$. Similarly, by our lemma, since $v \in C_{2}$ and $v \leftrightarrow x$, we know that $x \in C_{2}$. Since our choice of x was arbitrary, this means that $C_{1} \subseteq C_{2}$.
By using a similar line of reasoning and interchanging the roles of C_{2} and C_{1}, we also see that $C_{2} \subseteq C_{1}$. Thus $C_{1} \subseteq C_{2}$ and $C_{2} \subseteq C_{1}$, so $C_{1}=C_{2}$, as required. \square

Why All This Matters

- I chose the example of connected components to
- describe how to come up with a precise definition for intuitive terms;
- see how to manipulate a definition once we've come up with one;
- explore existence and uniqueness proofs, which we'll see more of later on; and
- explore multipart proofs with several different lemmas.

Planar Graphs

$\therefore \therefore \therefore \circ$

$$
\because
$$

This graph is sometimes called the utility graph.

A graph is called a planar graph iff there is some way to draw it in a 2D plane without any of the edges crossing.

0
\bullet
\therefore
\square

Graph Coloring

\bullet

Graph Coloring

Graph Coloring

Graph Coloring

Graph Coloring

- An undirected graph $G=(V, E)$ with no self-loops (edges from a node to itself) is called \boldsymbol{k}-colorable iff the nodes in V can be assigned one of k different colors such that no two nodes of the same color are joined by an edge.
- The minimum number of colors needed to color a graph is called that graph's chromatic number.

Theorem (Four-Color Theorem): Every planar graph is 4-colorable.

- 1850s: Four-Color Conjecture posed.
- 1879: Kempe proves the Four-Color Theorem.
- 1890: Heawood finds a flaw in Kempe's proof.
- 1976: Appel and Haken design a computer program that proves the Four-Color Theorem. The program checked 1,936 specific cases that are "minimal counterexamples;" any counterexample to the theorem must contain one of the 1,936 specific cases.
- 1980s: Doubts rise about the validity of the proof due to errors in the software.
- 1989: Appel and Haken revise their proof and show it is indeed correct. They publish a book including a 400-page appendix of all the cases to check.
- 1996: Roberts, Sanders, Seymour, and Thomas reduce the number of cases to check down to 633.
- 2005: Werner and Gonthier repeat the proof using an established automatic theorem prover (Coq), improving confidence in the truth of the theorem.

Next Time

- Binary Relations
- Another way of studying connectivity.
- The Pigeonhole Principle
- Proof by counting?

