## Graphs

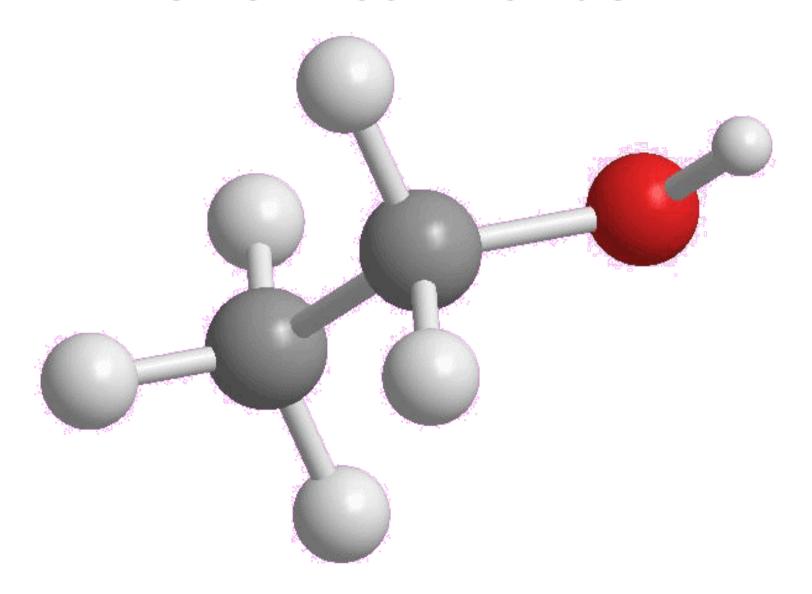
Problem Set One due right now in the box up front.

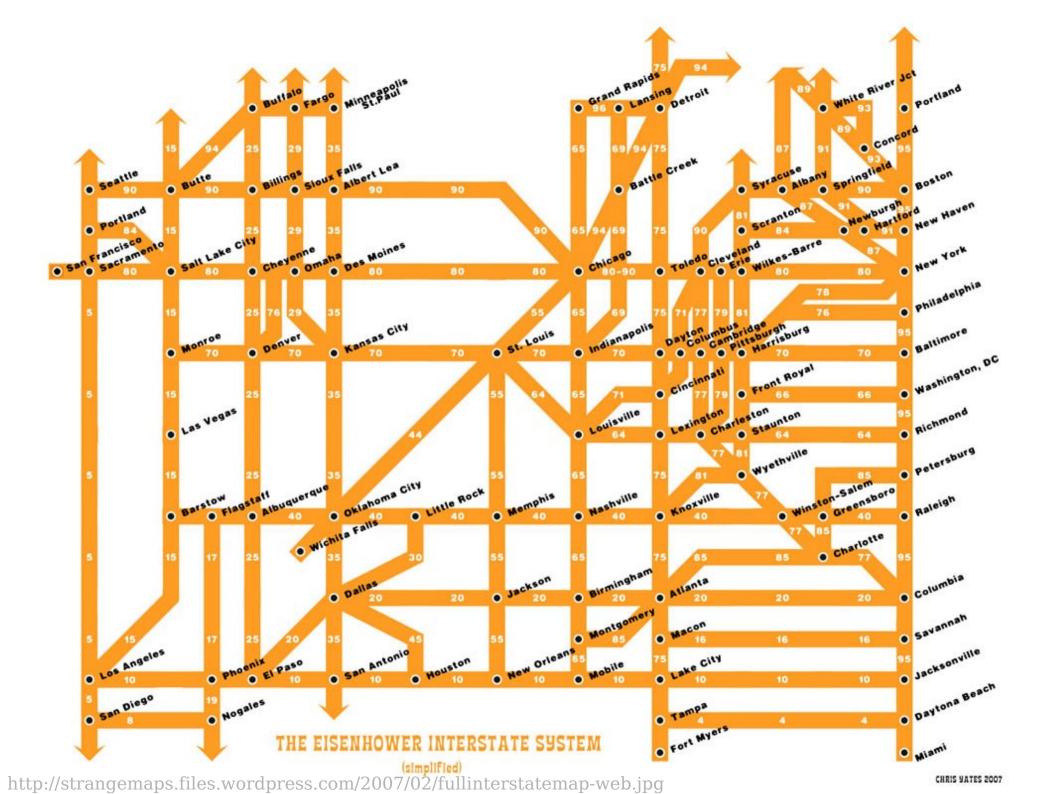
#### Mathematical Structures

- Just as there are common data structures in programming, there are common mathematical structures in discrete math.
- So far, we've seen simple structures like sets and natural numbers, but there are many other important structures out there.
- Over the next few weeks, we'll explore several of them.

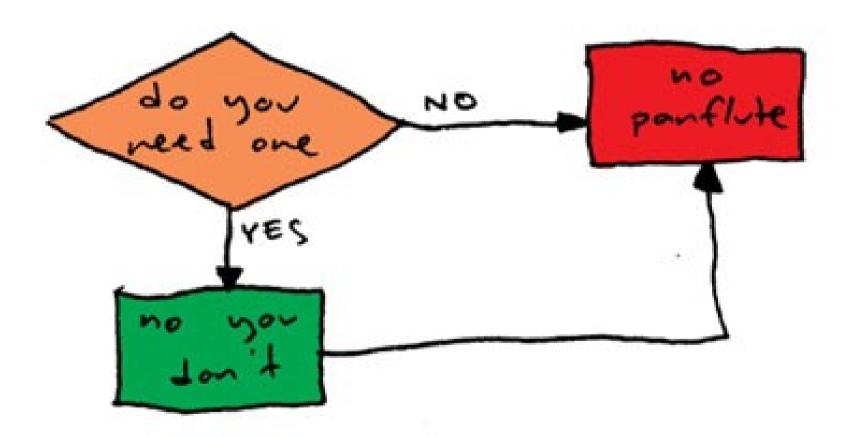
## Graphs

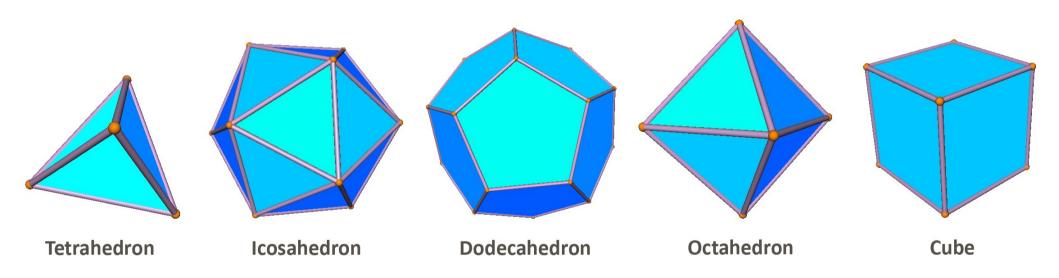
#### Chemical Bonds

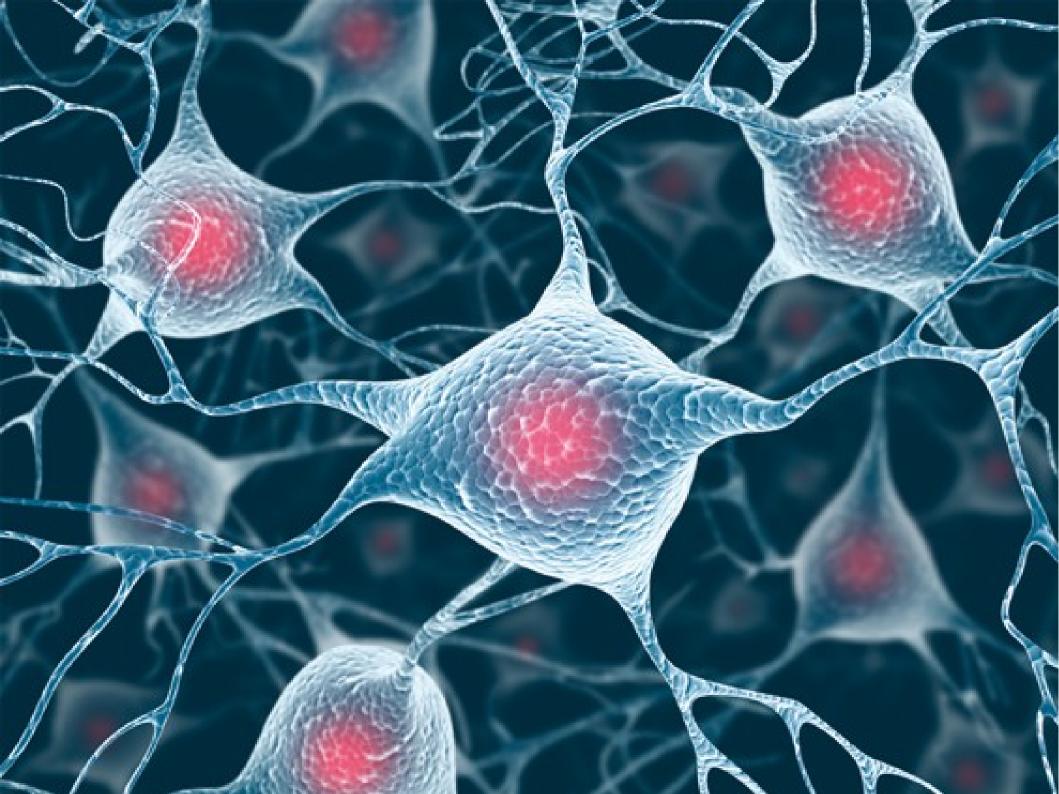




#### PANFLUTE FLOWCHART



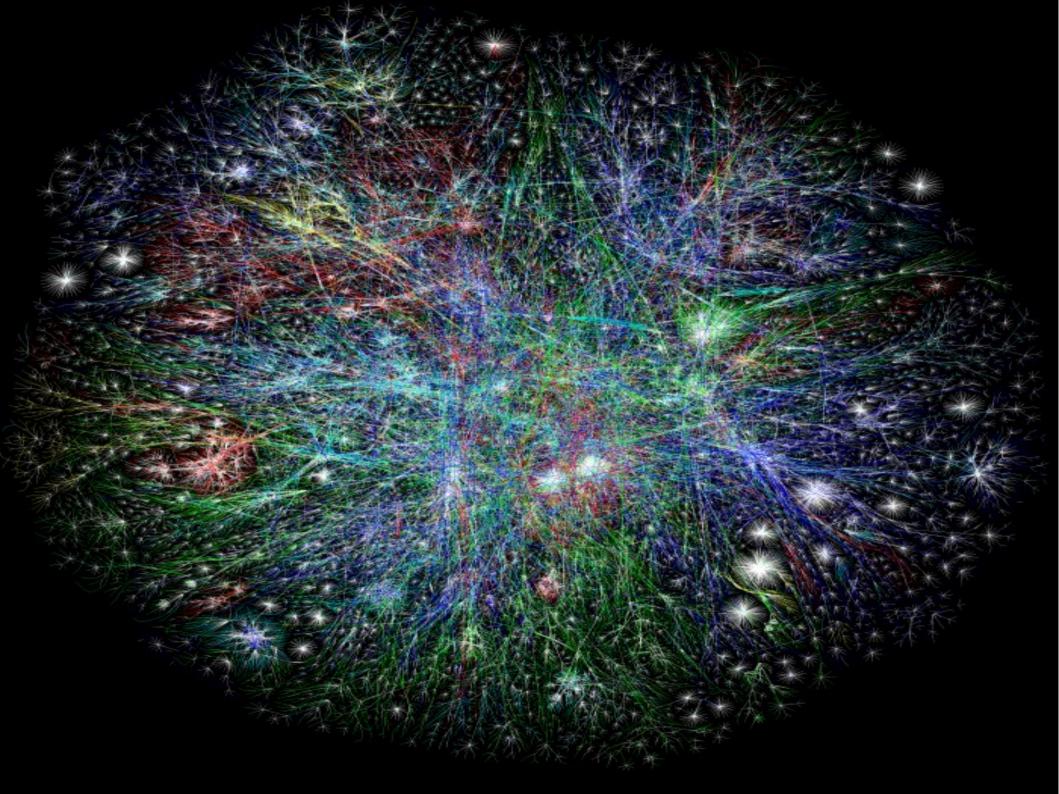




# facebook®

Me too!

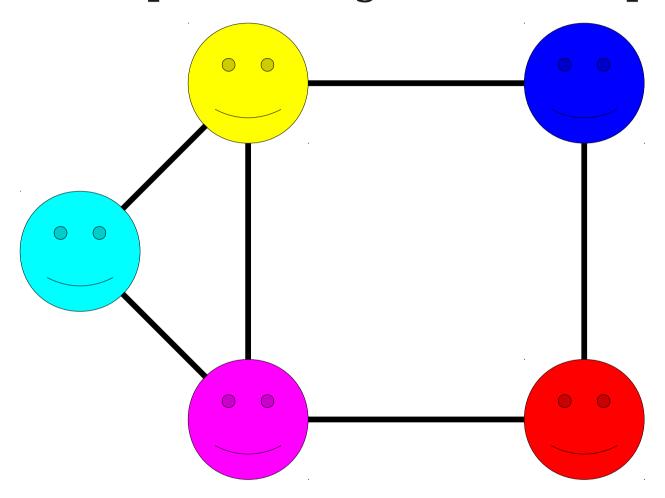




#### What's in Common

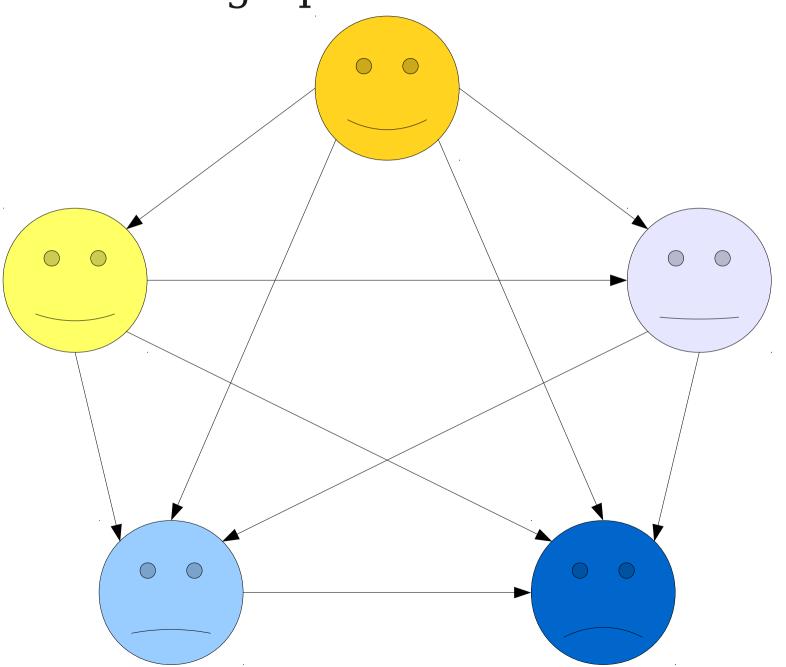
- Each of these structures consists of
  - Individual objects and
  - Links between those objects.
- Goal: find a general framework for describing these objects and their properties.

A **graph** is a mathematical structure for representing relationships.

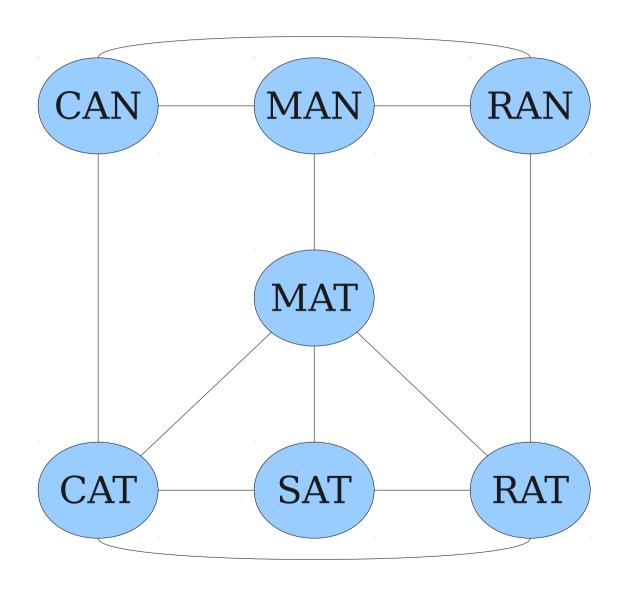


A graph consists of a set of **nodes** (or **vertices**) connected by **edges** (or **arcs**)

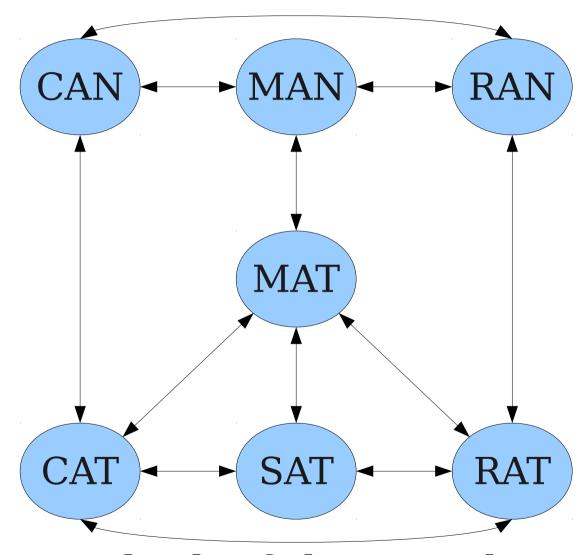
Some graphs are directed.



#### Some graphs are undirected.



Some graphs are undirected.



You can think of them as directed graphs with edges both ways.

## Formalizing Graphs

- How might we define a graph mathematically?
- Need to specify
  - What the nodes in the graph are, and
  - What the edges are in the graph.
- The nodes can be pretty much anything.
- What about the edges?

#### Ordered and Unordered Pairs

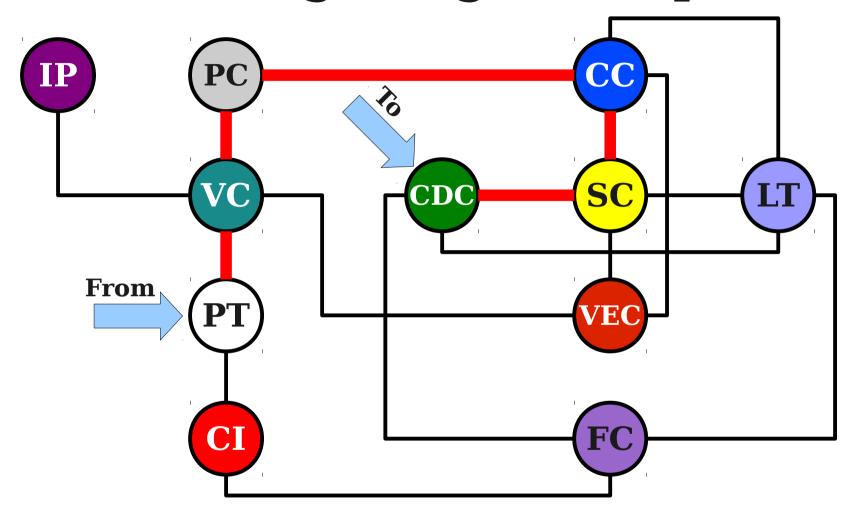
• An **unordered pair** is a set {*a*, *b*} of two elements (remember that sets are unordered).

- $\{0, 1\} = \{1, 0\}$
- An **ordered pair** (*a*, *b*) is a pair of elements in a specific order.
  - $(0, 1) \neq (1, 0)$ .
  - Two ordered pairs are equal iff each of their components are equal.

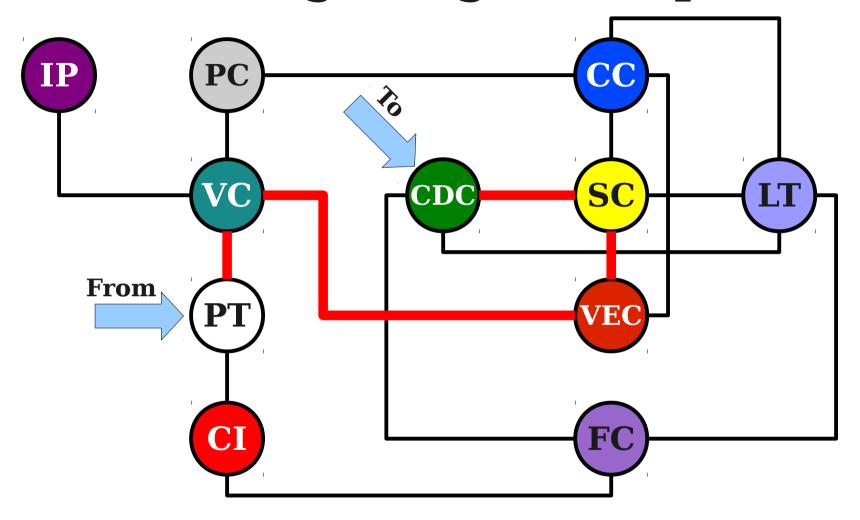
## Formalizing Graphs

- Formally, a **graph** is an ordered pair G = (V, E), where
  - *V* is a set of nodes.
  - *E* is a set of edges.
- *G* is defined as an *ordered* pair so it's clear which set is the nodes and which is the edges.
- *V* can be any set whatsoever.
- *E* is one of two types of sets:
  - A set of *unordered* pairs of elements from V.
  - A set of *ordered* pairs of elements from *V*.

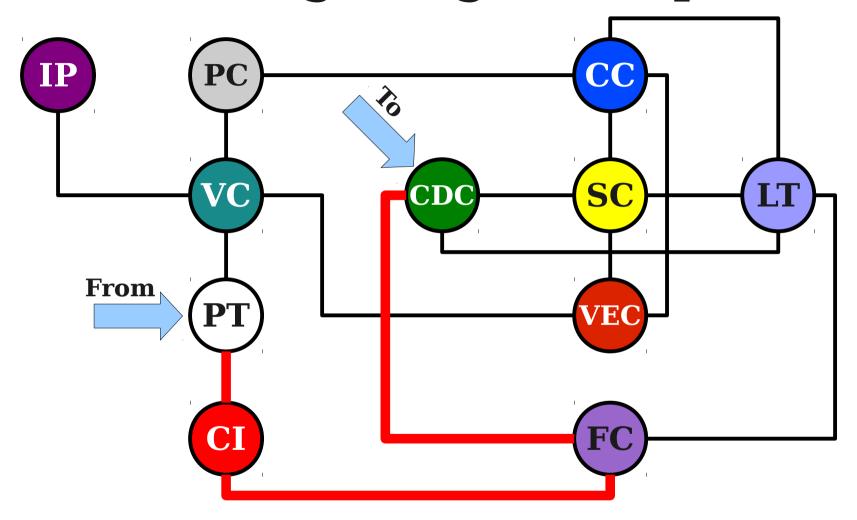
**Undirected Connectivity** 



 $PT \rightarrow VC \rightarrow PC \rightarrow CC \rightarrow SC \rightarrow CDC$ 



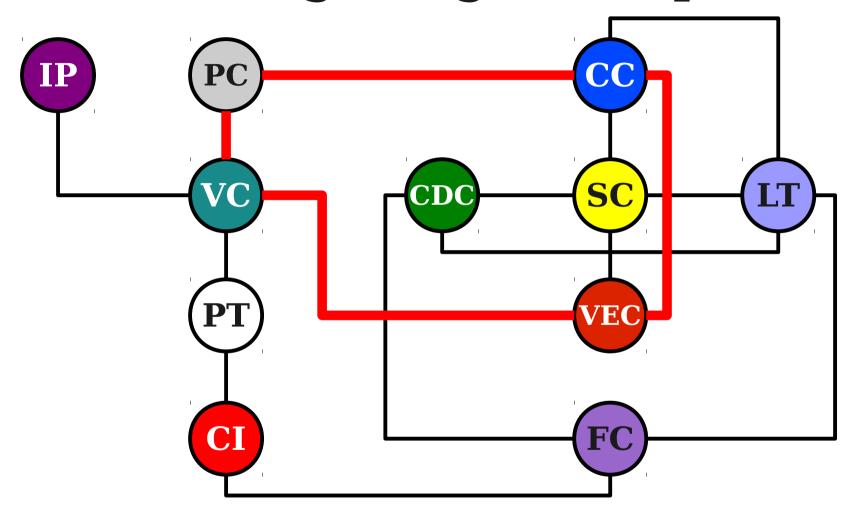
 $PT \rightarrow VC \rightarrow VEC \rightarrow SC \rightarrow CDC$ 



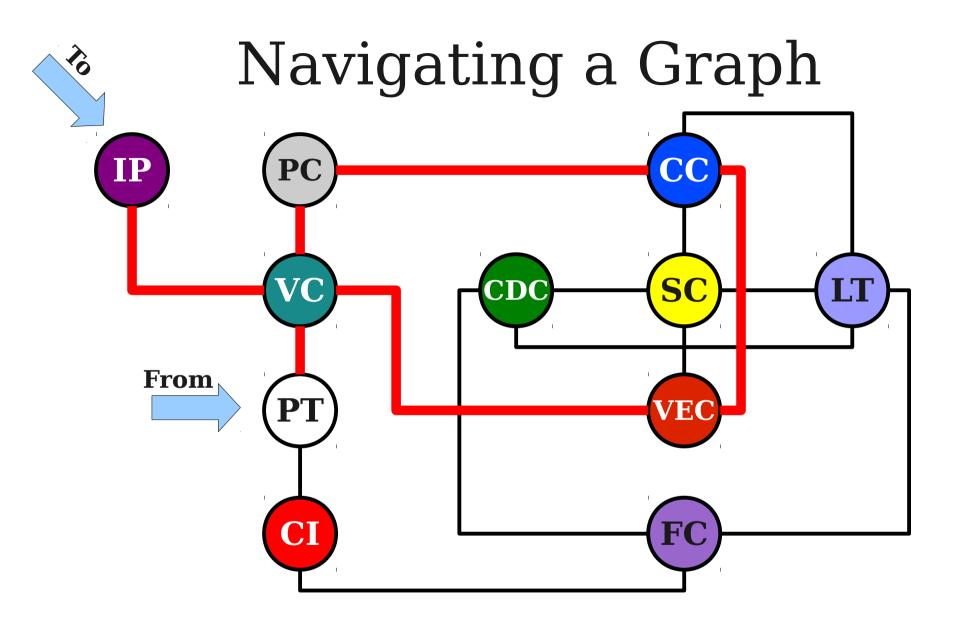
 $PT \rightarrow CI \rightarrow FC \rightarrow CDC$ 

A path from  $v_1$  to  $v_n$  is a sequence of nodes  $v_1, v_2, ..., v_n$  where  $(v_k, v_{k+1}) \in E$  for all natural numbers in the range  $1 \le k \le n - 1$ .

The **length** of a path is the number of edges it contains, which is one less than the number of nodes in the path.



 $PC \rightarrow CC \rightarrow VEC \rightarrow VC \rightarrow PC$ 



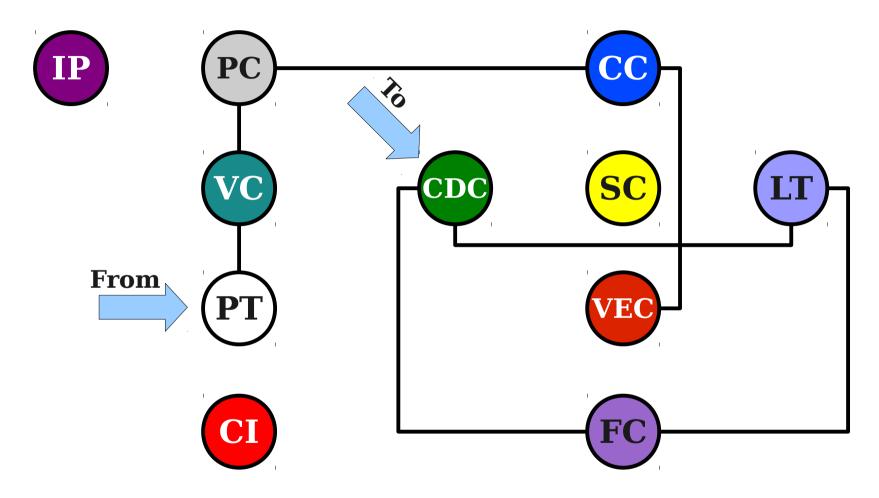
 $PT \rightarrow VC \rightarrow PC \rightarrow CC \rightarrow VEC \rightarrow VC \rightarrow IP$ 

A cycle in a graph is a path from a node to itself.

The **length** of a cycle is the number of edges in that cycle.

A **simple path** in a graph is a path that does not revisit any nodes or edges.

A **simple cycle** in a graph is a cycle that does not revisit any nodes or edges (except the start/end node).



In an undirected graph, two nodes u and v are called **connected** iff there is a path from u to v.

We denote this as  $u \leftrightarrow v$ .

If u is not connected to v, we write  $u \leftrightarrow v$ .

#### Next Time

#### The Rest of The Lecture

- Sorry about the fire alarm!
- Connected components.
- Planar graphs.

#### Binary Relations

- Equivalence relations.
- Partial orders (ITA).