Graphs

Problem Set one
due right now in
the box up front.

Mathematical Structures

- Just as there are common data structures in programming, there are common mathematical structures in discrete math.
- So far, we've seen simple structures like sets and natural numbers, but there are many other important structures out there.
- Over the next few weeks, we'll explore several of them.

Graphs

Chemical Bonds

PANFLUTE FLOWCHART

Tetrahedron

Icosahedron

Dodecahedron

Octahedron

Cube

facebook.

facebook.

What's in Common

- Each of these structures consists of
- Individual objects and
- Links between those objects.
- Goal: find a general framework for describing these objects and their properties.

A graph is a mathematical structure for representing relationships.

A graph is a mathematical structure for representing relationships.

A graph consists of a set of nodes (or vertices) connected by edges (or arcs)

A graph is a mathematical structure for representing relationships.

A graph consists of a set of nodes (or vertices) connected by edges (or arcs)

A graph is a mathematical structure for representing relationships.

A graph consists of a set of nodes (or vertices) connected by edges (or arcs)

Some graphs are directed.

Some graphs are undirected.

Some graphs are undirected.

You can think of them as directed graphs with edges both ways.

Formalizing Graphs

- How might we define a graph mathematically?
- Need to specify
- What the nodes in the graph are, and
- What the edges are in the graph.
- The nodes can be pretty much anything.
- What about the edges?

Ordered and Unordered Pairs

- An unordered pair is a set $\{a, b\}$ of two elements (remember that sets are unordered).
- $\{0,1\}=\{1,0\}$
- An ordered pair (a, b) is a pair of elements in a specific order.
- $(0,1) \neq(1,0)$.
- Two ordered pairs are equal iff each of their components are equal.

Formalizing Graphs

- Formally, a graph is an ordered pair $G=(V, E)$, where
- V is a set of nodes.
- E is a set of edges.
- G is defined as an ordered pair so it's clear which set is the nodes and which is the edges.
- V can be any set whatsoever.
- E is one of two types of sets:
- A set of unordered pairs of elements from V.
- A set of ordered pairs of elements from V.

Undirected Connectivity

Navigating a Graph

Navigating a Graph

Navigating a Graph

Navigating a Graph

$\mathrm{PT} \rightarrow \mathrm{VC} \rightarrow \mathrm{PC} \rightarrow \mathrm{CC} \rightarrow \mathrm{SC} \rightarrow \mathrm{CDC}$

Navigating a Graph

Navigating a Graph

$$
\mathrm{PT} \rightarrow \mathrm{VC} \rightarrow \mathrm{VEC} \rightarrow \mathrm{SC} \rightarrow \mathrm{CDC}
$$

Navigating a Graph

Navigating a Graph

$$
\mathrm{PT} \rightarrow \mathrm{CI} \rightarrow \mathrm{FC} \rightarrow \mathrm{CDC}
$$

A path from v_{1} to v_{n} is a sequence of nodes $v_{1}, v_{2}, \ldots, v_{n}$ where $\left(v_{k}, v_{k+1}\right) \in E$ for all natural numbers in the range $1 \leq k \leq n-1$.

The length of a path is the number of edges it contains, which is one less than the number of nodes in the path.

A path from v_{1} to v_{n} is a sequence of nodes $v_{1}, v_{2}, \ldots, v_{n}$ where $\left\{v_{k}, v_{k+1}\right\} \in E$ for all natural numbers in the range $1 \leq k \leq n-1$.

The length of a path is the number of edges it contains, which is one less than the number of nodes in the path.

Navigating a Graph

Navigating a Graph

Navigating a Graph

$\mathrm{PC} \rightarrow \mathrm{CC} \rightarrow \mathrm{VEC} \rightarrow \mathrm{VC} \rightarrow \mathrm{PC}$

Navigating a Graph

$\mathrm{PC} \rightarrow \mathrm{CC} \rightarrow \mathrm{VEC} \rightarrow \mathrm{VC} \rightarrow \mathrm{PC} \rightarrow \mathrm{CC} \rightarrow \mathrm{VEC} \rightarrow \mathrm{VC} \rightarrow \mathrm{PC}$

$\mathrm{PT} \rightarrow \mathrm{VC} \rightarrow \mathrm{PC} \rightarrow \mathrm{CC} \rightarrow \mathrm{VEC} \rightarrow \mathrm{VC} \rightarrow \mathrm{IP}$

A cycle in a graph is a path from a node to itself.

The length of a cycle is the number of edges in that cycle.

A simple path in a graph is a path that does not revisit any nodes or edges.

A simple cycle in a graph is a cycle that does not revisit any nodes or edges (except the start/end node).

Navigating a Graph

Navigating a Graph

Navigating a Graph

Navigating a Graph

From

Navigating a Graph

IP

In an undirected graph, two nodes u and v are called connected iff there is a path from u to v.

We denote this as $\boldsymbol{u} \leftrightarrow \boldsymbol{v}$.
If u is not connected to v, we write $\boldsymbol{u} \not \leftrightarrow \boldsymbol{\nu}$.

Next Time

- The Rest of The Lecture
- Sorry about the fire alarm!
- Connected components.
- Planar graphs.
- Binary Relations
- Equivalence relations.
- Partial orders (ITA).

