Mathematical Induction

Part Two



Announcements

 Problem Set 1 due Friday, October 4 at
the start of class.

 Problem Set 1 checkpoints graded, will
be returned at end of lecture.

« Afterwards, will be available in the filing
cabinets in the Gates Open Area near the
submissions box.



The principle of mathematical induction
states that if for some P(n) the following hold:

ﬁ»P(O) is true
It it starts ~and it stays

frue. and true. v
For any n € N, we have P(n) - P(n + 1)
then Then it's

always Tvue;)
For any n € N, P(n) is true.



n—1

Theorem: For any natural number n, Z 2'=2"—1
i=0

Proof: By induction. Let P(n) be

n—1

P(n) = Z 2'=2"—1
For our base case, we need to show P(0) is true, meaning that
~1
> 2'=2"—1
i=0

Since 2°-1 =0 and_the left-hand side is the empty sum, P(0)
holds.

For the inductive step, assume that for some n € N, that P(n)
holds, so n—1

D> 2i=2"—1

=0

We need to show that P(n + 1) holds, meaning that
Z 21' — 2n+ 1

To see thls note that
Zz Zz +2"=2"—1+2"=2(2")-1=2"-1

Thus P(n + 1) holds, completing the induction.




Induction in Practice

» Typically, a proot by induction will not
explicitly state P(n).

» Rather, the proof will describe P(n) implicitly
and leave it to the reader to fill in the detalils.

« Provided that there is sufficient detail to
determine

« what P(n) is,
e that P(0) is true, and that
« whenever P(n) is true, P(n + 1) is true,

the proot is usually valid.



n—1

Theorem: For any natural number n, Z 2'=2"—1
i=0

Proof: By induction on n. For our base case, if n = 0, note that
—1
D> 2'=0=2"—1
i=0
and the theorem is true for 0.

For the inductive step, assume that for some n the theorem is
true. Then we have that

n n—1
D 2= i+2"'=2"—142"=2(2")—1=2""~1

i=0 i=0
so the theorem is true for n + 1, completing the induction. W



Variations on Induction: Starting Later



Induction Starting at O

« To prove that P(n) is true for all natural
numbers greater than or equal to O:

« Show that P(0) is true.

 Show that for any n = 0, that
P(n) - P(n + 1).

« Conclude P(n) holds for all natural numbers
greater than or equal to O.



Induction Starting at K

« To prove that P(n) is true for all natural
numbers greater than or equal to k:

« Show that P(k) is true.

 Show that for any n = Kk, that
P(n) - P(n + 1).

« Conclude P(n) holds for all natural numbers
greater than or equal to k.

* Pretty much identical to before, except
that the induction begins at a later point.
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Useful Fact

« Theorem: Any line drawn through a
convex polygon splits that polygon into
two convex polygons.
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Useful Fact

« Theorem: Any line drawn through a
convex polygon splits that polygon into
two convex polygons.

§ .




Summing Angles

» Interesting fact: the sum of the angles in
a convex polygon depends only on the
number of vertices in the polygon, not
the shape of that polygon.

 Theorem: For any convex polygon with n
vertices, the sum of the angles in that
polygon is (n - 2) - 180°.

 Ang
 Ang

les in a triangle add up to 180°.
es in a quadrilateral add up to 360°.

« Ang.

es in a pentagon add up to 540°.



Theorem: The sum of the angles in any convex polygon with n vertices
1Is(n-2)-180°.
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Using Induction

« Many proofs that work by induction can
be written non-inductively by using
similar arguments.

 Don't feel that you have to use induction;
it's one of many tools in your proof
toolbox!



Variations on Induction: Bigger Steps
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For what values of n can a square be
subdivided into n squares?



1 2 3 4 5 6 7 8 9 10 11 12
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The Key Insight

« If we can subdivide a square into n squares, we
can also subdivide it into n + 3 squares.

* Since we can subdivide a bigger square into 6, 7,
and 8 squares, we can subdivide a square into n
squares for any n = 6:

« For multiples of three, start with 6 and keep adding
three squares until n is reached.

 For numbers congruent to one modulo three, start
with 7 and keep adding three squares until n is
reached.

 For numbers congruent to two modulo three, start
with 8 and keep adding three squares until n is
reached.
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true and a square can be subdivided into n squares. We prove
P(n + 3), that a square can be subdivided into n + 3 squares.
To see this, obtain a subdivision of a square into n squares.
Then, choose a square and split it into four equal squares.
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there are now n + 3 total squares. Thus P(n + 3) holds,
completing the induction. W
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« This induction has three consecutive base cases
and takes steps of size three.
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Generalizing Induction

« When doing a proof by induction:

 Feel free to use multiple base cases.

« Feel free to take steps of sizes other than
one.

» Just be careful to make sure you cover all
the numbers you think that you're
covering!
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An Observation

* In a prootf by induction, the inductive
step works as follows:

 Assume that for some particular n that P(n)
1S true.

« Prove that P(n + 1) is true.

 Notice: When trying to prove P(n + 1),
we already know P(0), P(1), P(2), ..., P(n)
but only assume P(n) is true.

« Why are we discarding all the
intermediary results?



Complete Induction

o If the following are true:
« P(0) is true, and

« If P(0), P(1), P(2), ..., P(n) are true, then P(n+1)
is true as well.

« Then P(n) is true for all n € N.

« This is called the principle of complete
induction or the principle of strong
induction.

* (A note: this also works starting from a number
other than 0O; just modify what you're assuming
appropriately.)



Proof by Complete Induction

State that your proof works by complete induction.

State your choice of P(n).

Prove the base case: state what P(0) is, then prove it
using any technique you'd like.

Prove the inductive step:

« State that for some arbitrary n € N that you're
assuming P(0), P(1), ..., P(n) (that is, P(n') for all
natural numbers 0 = n' < n.)

« State that you are trying to prove P(n + 1) and what
P(n + 1) means.

 Prove P(n + 1) using any technique you'd like.



Example: Polygon Triangulation




Polygon Triangulation

» Given a convex polygon, an elementary
triangulation of that polygon is a way ot
connecting the vertices with lines such
that

e No two lines intersect, and

 The polygon is converted into a set of
triangles.

* Question: How many lines do you have to
draw to elementarily triangulate a
convex polygon?
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Some Observations

 Every elementary triangulation of the same
convex polygon seems to require the same
number of lines.

 The number of lines depends on the number
of vertices:

e 5 vertices: 2 lines
e 0 vertices: 3 lines

8 vertices: 5 lines

 Conjecture: Every elementary triangulation
of an n-vertex convex polygon requires n - 3
lines.
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Elementary Triangulations

n-k+ 2
vertices

k
vertices



Theorem: Every elementary triangulation of a convex polygon with n
vertices requires n - 3 lines.
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P(n) holds for all n = 3. As a base case, we prove P(3):
elementarily triangulating a convex polygon with three vertices
requires no lines.
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For the inductive step, assume for some n = 3 that P(3), P(4), ...,
P(n) are true.
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Proof: By complete induction. Let P(n) be “every elementary
triangulation of a convex polygon requires n-3 lines.” We prove
P(n) holds for all n = 3. As a base case, we prove P(3):
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P(n) are true. This means any elementary triangulation of an
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prove P(n+1): any elementary triangulation of any (n+1)-vertex
convex polygon uses n-2 lines.

Let A be an arbitrary convex polygon with n+1 vertices.
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Proof: By complete induction. Let P(n) be “every elementary
triangulation of a convex polygon requires n-3 lines.” We prove
P(n) holds for all n = 3. As a base case, we prove P(3):
elementarily triangulating a convex polygon with three vertices
requires no lines. Any polygons with three vertices is a triangle,
so any elementary triangulation of it will have no lines.

For the inductive step, assume for some n = 3 that P(3), P(4), ...,
P(n) are true. This means any elementary triangulation of an
n'-vertex convex polygon, where 3 =< n' < n, uses n'-3 lines. We
prove P(n+1): any elementary triangulation of any (n+1)-vertex
convex polygon uses n-2 lines.

Let A be an arbitrary convex polygon with n+1 vertices. Pick any
elementary triangulation of A and select an arbitrary line in that
triangulation.
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vertices in B, meaning C has (n+1)-k+2 = n-k+3 vertices. By our
inductive hypothesis, any triangulations of B and C must use k-3
and n-k lines, respectively.
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Proof: By complete induction. Let P(n) be “every elementary
triangulation of a convex polygon requires n-3 lines.” We prove
P(n) holds for all n = 3. As a base case, we prove P(3):
elementarily triangulating a convex polygon with three vertices
requires no lines. Any polygons with three vertices is a triangle,
so any elementary triangulation of it will have no lines.

For the inductive step, assume for some n = 3 that P(3), P(4), ...,
P(n) are true. This means any elementary triangulation of an
n'-vertex convex polygon, where 3 =< n' < n, uses n'-3 lines. We
prove P(n+1): any elementary triangulation of any (n+1)-vertex
convex polygon uses n-2 lines.

Let A be an arbitrary convex polygon with n+1 vertices. Pick any
elementary triangulation of A and select an arbitrary line in that
triangulation. This line splits A into two smaller convex polygons
B and C, which are also triangulated. Let k be the number of
vertices in B, meaning C has (n+1)-k+2 = n-k+3 vertices. By our
inductive hypothesis, any triangulations of B and C must use k-3
and n-k lines, respectively. Therefore, the total number of lines in
the triangulation of A is n-k+k-3+1 = n-2.



Theorem: Every elementary triangulation of a convex polygon with n
vertices requires n - 3 lines.

Proof: By complete induction. Let P(n) be “every elementary
triangulation of a convex polygon requires n-3 lines.” We prove
P(n) holds for all n = 3. As a base case, we prove P(3):
elementarily triangulating a convex polygon with three vertices
requires no lines. Any polygons with three vertices is a triangle,
so any elementary triangulation of it will have no lines.

For the inductive step, assume for some n = 3 that P(3), P(4), ...,
P(n) are true. This means any elementary triangulation of an
n'-vertex convex polygon, where 3 =< n' < n, uses n'-3 lines. We
prove P(n+1): any elementary triangulation of any (n+1)-vertex
convex polygon uses n-2 lines.

Let A be an arbitrary convex polygon with n+1 vertices. Pick any
elementary triangulation of A and select an arbitrary line in that
triangulation. This line splits A into two smaller convex polygons
B and C, which are also triangulated. Let k be the number of
vertices in B, meaning C has (n+1)-k+2 = n-k+3 vertices. By our
inductive hypothesis, any triangulations of B and C must use k-3
and n-k lines, respectively. Therefore, the total number of lines in
the triangulation of A is n-k+k-3+1 = n-2. Thus P(n+1) holds,
completing the induction. B




Using Complete Induction

« When is it appropriate to use complete
induction in contrast to standard induction?

 Depends on the proof approach:

« Typically, standard induction is used when a
problem of size n + 1 is reduced to a simpler
problem of size n.

« Typically, complete induction is used when the
problem of size n + 1 is split into multiple
subproblems of unknown but smaller sizes.

It is never “wrong” to use complete induction.
It just might be unnecessary. We suggest
writing drafts of your proofs just in case.



Summary

e Induction doesn't have to start at 0. It's
perfectly fine to start induction later on.

* Induction doesn't have to take steps of size 1.
It's not uncommon to see other step sizes.

« Induction doesn't have to have a single base
case.

 Complete induction lets you assume all prior
results, not just the last result.



Next Time

 Graphs
« Representing relationships between objects.
« Connectivity in graphs.
« Planar graphs.
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