
  

Mathematical Induction



  

Everybody – do the wave!



  

The Wave

● If done properly, everyone will eventually 
end up joining in.

● Why is that?
● Someone (me!) started everyone off.
● Once the person before you did the wave, 

you did the wave.



  

The principle of mathematical induction 
states that if for some P(n) the following hold:

P(0) is true

and

For any n ∈ ℕ, we have P(n) → P(n + 1)

then

For any n ∈ ℕ, P(n) is true.

If it starts 
true…

…and it stays 
true…

…then it's 
always true.



  

Induction, Intuitively

● It's true for 0.
● Since it's true for 0, it's true for 1.
● Since it's true for 1, it's true for 2.
● Since it's true for 2, it's true for 3.
● Since it's true for 3, it's true for 4.
● Since it's true for 4, it's true for 5.
● Since it's true for 5, it's true for 6.
● …



  

Proof by Induction

● Suppose that you want to prove that some 
property P(n) holds of all natural numbers.  
To do so:
● Prove that P(0) is true.

– This is called the basis or the base case.
● Prove that for all n ∈ ℕ, that if P(n) is true, then 

P(n + 1) is true as well.
– This is called the inductive step.
– P(n) is called the inductive hypothesis.

● Conclude by induction that P(n) holds for all n.



  

Some Summations



  

20 = 1      = 21 – 1

20 + 21 = 1 + 2 = 3 = 22 – 1

20 + 21 + 22 = 1 + 2 + 4 = 7 = 23 – 1

20 + 21 + 22 + 23 = 1 + 2 + 4 + 8 = 15 = 24 – 1

20 + 21 + 22 + 23 + 24 = 1 + 2 + 4 + 8 + 16 = 31 = 25 – 1



  

Theorem: The sum of the first n powers of two is 2n – 1.
 

Proof: By induction.  Let P(n) be “the sum of the first n powers
of two is 2n – 1.”  We will show P(n) is true for all n ∈ ℕ.

 

For our base case, we need to show P(0) is true, meaning
the sum of the first zero powers of two is 20 – 1. Since the
sum of the first zero powers of two is 0 = 20 – 1, we see
P(0) is true.

 

For the inductive step, assume that for some n ∈ ℕ that 
P(n) holds, meaning that 20 + 21 + … + 2n-1 = 2n – 1.  We 
need to show that P(n + 1) holds, meaning that the sum
of the first n + 1 powers of two is numbers is 2n+1 – 1.

 

Consider the sum of the first n + 1 powers of two. This is
the sum of the first n powers of two, plus 2n.  Using the 
inductive hypothesis, we see that

 

20 + 21 + … + 2n-1 + 2n = (20 + 21 + … + 2n-1) + 2n

= 2n – 1 + 2n

= 2(2n) – 1
= 2n+1 – 1

 

Thus P(n + 1) is true, completing the induction. ■
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Structuring a Proof by Induction
● State that your proof works by induction.
● State your choice of P(n).
● Prove the base case:

● State what P(0) is, then prove it using any technique you'd 
like.

● Prove the inductive step:
● State that for some arbitrary n ∈ ℕ that you're assuming 

P(n) and mention what P(n) is.
● State that you are trying to prove P(n + 1) and what 

P(n + 1) means.
● Prove P(n + 1) using any technique you'd like.

● This is very rigorous, so as we gain more familiarity 
with induction we will start being less formal in our 
proofs.



  

Induction, Intuitively

● You can imagine an “machine” that turns 
proofs of P(n) into proofs of P(n + 1).

● Starting with a proof of P(0), we can run 
the machine as many times as we'd like 
to get proofs of P(1), P(2), P(3), … .

● The principle of mathematical induction 
says that this style of reasoning is a 
rigorous argument.



  

A Quick Aside

● This result helps explain the range of 
numbers that can be stored in an int.

● If you have an unsigned 32-bit integer, 
the largest value you can store is given 
by 1 + 2 + 4 + 8 + … + 231 = 232 – 1.

● This formula for sums of powers of two 
has many other uses as well.  We'll see 
one next week.



  

Notation: Summations

● Summation notation gives a compact 
way for discussing sums of multiple 
terms.

● For example, instead of writing the sum
1 + 2 + 3 + … + n, we can write

 

∑
i=1

n

i
Sum from i = 1 to n

of i



  

Summation Examples

∑
i=1

5

i=1+ 2+ 3+ 4+ 5=15

∑
i=0

3

2i=20
+21

+22
+23

=15

∑
i=0

2

(i2−i)=(02
−0)+ (12

−1)+ (22
−2)=2



  

The Empty Sum

● A sum of no numbers is called the empty 
sum and is defined to be zero.

● Examples:

● Why do you think it's defined to be zero 
as opposed to some other number?

∑
i=1

0

2i=0 ∑
i=0

−1

i=0∑
i=137

42

i i=0



  

Theorem: For any natural number n, 

Proof: By induction.  Let P(n) be
 

P(n) ≡                  
 

For our base case, we need to show P(0) is true, meaning that 
 

Since 20 – 1 = 0 and the left-hand side is the empty sum, P(0)
holds.

For the inductive step, assume that for some n ∈ ℕ, that P(n)
holds, so 

We need to show that P(n + 1) holds, meaning that
 

To see this, note that
 

Thus P(n + 1) holds, completing the induction. ■

∑
i=0

n−1

2i=2n−1

∑
i=0

n−1

2i=2n−1

∑
i=0

n

2i=(∑
i=0

n−1

2i)+2n=2n−1+2n=2(2n)−1=2n+1
−1

∑
i=0

−1

2i=20
−1

∑
i=0

n−1

2i=2n−1

∑
i=0

n

2i=2n+1
−1



  

A Brief Interlude for Announcements



  

Recitation Sections

● Handout #06 contains several discussion 
questions for this week.

● We will set up several recitation sections 
where you can work through these problems 
with one of the TAs.
● Dates/times announced later today.
● All sections cover the same material.

● Solutions distributed at recitation sections 
and online later this week.



  

Problem Set Clarification

● All problem sets are designed to use only 
the material up to and include the lecture 
in which they are released.

● We'll explicitly mark any problems for 
which we won't have covered the 
requisite material.



  

Ask Us A Question:
 

“What are the criteria used to grade
proofs in our problem sets?”



  

Back to our regularly
scheduled programming...

math



  

How Not To Induct



  

An Incorrect Proof
Theorem: For any n ∈ ℕ, we have              .
 
Proof: By induction.  Let P(n) be defined as P(n) ≡             .      
 

Assume that for some n ∈ ℕ that P(n) holds, so

 
We want to show that P(n + 1) is true, which means
that we want to show

To see this, note that
 

So P(n + 1) holds, completing the induction. ■

∑
i=0

n−1

2i=2n

∑
i=0

n−1

2i=2n

∑
i=0

n−1

2i=2n

∑
i=0

n

2i=2n+1

∑
i=0

n

2i = ∑
i=0

n−1

2i+2n = 2n+2n = 2n+1

Where did we 
prove the base 

case?

Where did we 
prove the base 

case?



  

When proving P(n) is true
for all n ∈ ℕ by induction,

make sure to show the base case!

Otherwise, your argument is invalid!



  

Why This Worked

● The math internally checked out because 
we made an incorrect assumption!

● Induction requires both the base case 
and the inductive step.
● The base case shows that the property 

initially holds true.
● The inductive step shows how each step 

influences the next.



  

The Counterfeit Coin Problem



  

Problem Statement

● You are given a set of three seemingly 
identical coins, two of which are real and 
one of which is counterfeit.

● The counterfeit coin weighs more than 
the rest of the coins.

● You are given a balance.  Using only one 
weighing on the balance, find the 
counterfeit coin.



  

A Harder Problem

● You are given a set of nine seemingly 
identical coins, eight of which are real 
and one of which is counterfeit.

● The counterfeit coin weighs more than 
the rest of the coins.

● You are given a balance.  Using only two 
weighings on the balance, find the 
counterfeit coin.



  

If we have n weighings on the scale, what 
is the largest number of coins out of which 

we can find the counterfeit?



  

A Pattern

● Assume out of the coins that are given, exactly 
one is counterfeit and weighs more than the 
other coins.

● If we have no weighings, how many coins can 
we have while still being able to find the 
counterfeit?
● One coin, since that coin has to be the counterfeit!

● If we have one weighing, we can find the 
counterfeit out of three coins.

● If we have two weighings, we can find the 
counterfeit out of nine coins.



  

So far, we have

1, 3, 9 = 30, 31, 32

Does this pattern continue?



  

Theorem: Given n weighings, we can detect which of 3n coins is counterfeit.
  

Proof: By induction. Let P(n) be “Given n weighings, we can detect which
of 3n coins is counterfeit.” We prove that P(n) is true for all n ∈ ℕ.

  

For the base case, we show P(0), that we can detect which of 30 = 1
coins is counterfeit in no weighings. Exactly one coin is counterfeit, so
the sole coin must be counterfeit and we can find it with no weighings.

  

For the inductive step, suppose P(n) holds for some n ∈ ℕ, so we can
detect which of 3n coins is counterfeit using n weighings. We will show
P(n + 1) holds, meaning we can detect a counterfeit in 3n+1 coins using
n + 1 weighings.

  

Given 3n+1 coins, split them into three groups of size 3n; call them A, B,
and C. Put the coins in A on one side of the scale and the coins in B on
the other. We consider three cases based on how the scale tips:

  

  Case 1: Side A is heavier.  Then the counterfeit must be in group A.
  Case 2: Side B is heavier. Then the counterfeit must be in group B.
  Case 3: The scale is balanced.  Then the counterfeit must be in

   group C, since it isn't in groups A or B.
  

In all cases, we use one weighing to find a set of 3n coins containing the
counterfeit coin. By the inductive hypothesis, with n more weighings, we
can find which of these 3n coins is counterfeit. This means that we can
find the counterfeit of 3n+1 coins in n + 1 weighings. Thus P(n + 1) holds,
completing the induction. ■



  

The MU Puzzle



  

Gödel, Escher Bach:
An Eternal Golden Braid

● Pulitzer-Prize winning 
book exploring recursion, 
computability, and 
consciousness.

● Written by Douglas 
Hofstadter, computer 
scientist at Indiana 
University.

● A great (but dense!) read.



  

The MU Puzzle

● Begin with the string MI.

● Repeatedly apply one of the following 
operations:
● Double the contents of the string after the M: for 

example, MIIU becomes MIIUIIU or MI becomes 
MII.

● Replace III with U: MIIII becomes MUI or MIU
● Append U to the string if it ends in I: MI becomes 
MIU

● Remove any UU: MUUU becomes MU

● Question: How do you transform MI to MU?



  

MI

MII

MIIII
A) Double the contents of 

the string after M.

B) Replace III with U.

C) Remove UU

D) Append U if the string 
ends in I.

MIIIIU

MUIU

MUIUUIU

MUIIU

       A

       A

       D

       B

       A

       C



  

A) Double the contents of 
the string after M.

B) Replace III with U.

C) Remove UU

D) Append U if the string 
ends in I.

Try It!

Starting with MI, apply these
operations to make MU:



  

Not a single person in this room 
was able to solve this puzzle.

Are we even sure that there is a solution?



  7

MI

MII

MIIII

MIIIIU

MIIIIUIIIIU

MIIIIUUIU

MIIIIUUIUIIIIUUIU

1

2

4

4

8

5

10

MUIUUIUIIIIUUIU

Counting I's



  

The Key Insight

● Initially, the number of I's is not a 
multiple of three.

● To make MU, the number of I's must end 
up as a multiple of three.

● Can we ever make the number of I's a 
multiple of three?



  

Lemma: Beginning with MI and applying any legal sequence of moves,
  the number of Is never becomes a multiple of three.
 

Proof: By induction. Let P(n) be “Starting with MI and making n moves, the
  number of Is is not a multiple of 3.” We prove P(n) holds for all n ∈ ℕ. As a
  base case, we prove P(0), that after making no moves the number of Is is
  not a multiple of 3. MI has one I in it, which is not a multiple of 3.
 

  For the inductive step, assume for some n ∈ ℕ that P(n) holds: after any
  sequence of n moves, the number of Is is not a multiple of 3. We prove
  P(n+1): after n+1 moves, the number of Is is not a multiple of 3. Any
  sequence of n+1 moves is a sequence of n moves followed by an (n+1)st
  move. By the inductive hypothesis, after the first n moves, the number
  of Is is not a multiple of 3, so before the (n+1)st move, the number of Is
  equals either 3k+1 or 3k+2 for some k ∈ ℕ. Consider the (n+1)st move:
 

Case 1: “Double the string after the M.” Then we end up with either
    2(3k+1) = 6k+2 = 3(2k)+2   or   2(3k+2) = 6k+4 = 3(2k+1) + 1 Is,
    neither of which is a multiple of 3.

 

Case 2: “Delete UU” or “append U.” The number of Is is unchanged.
 

Case 3: “Delete III.”  The number of Is either changes from 3k + 1
    to 3k+1 – 3 = 3(k–1)+1 or from 3k+2 to 3k+2 – 3 = 3(k–1) + 2,
    neither of which is a multiple of 3.

 

  Thus after the (n+1)st move, the number of Is is not a multiple of three,  
  so P(n+1) holds, completing the induction.■



  

Theorem: The MU puzzle has no solution.

Proof: By contradiction; assume it has a solution.  By our
lemma, the number of I's in the final string must
not be a multiple of three.  However, for the solution
to be valid, the number of I's must be 0, which is a
multiple of three.  We have reached a contradiction,
so our assumption was wrong and the MU puzzle has
no solution. ■



  

Algorithms and Loop Invariants

● The proof we just made had the form
● “If P is true before we perform an action, it is true 

after we perform an action.”

● We could therefore conclude that after any series 
of actions of any length, if P was true beforehand, 
it is true now.

● In algorithmic analysis, this is called a loop 
invariant.

● Proofs on algorithms often use loop invariants to 
reason about the behavior of algorithms.
● Take CS161 for more details!



  

Next Time

● Variations on Induction
● Starting induction later.
● Taking larger steps.
● Complete induction.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

