Direct Proofs

Recommended Reading

Albrieflhistorylof

The Quest to Think the Unthinkable

BRIAN CLEGG

A Brief History of Infinity

The Mystery of the Aleph

DAVID FOSTER
MABE

A Compact History of
∞

Everything and More

Recommended Courses

Math 161: Set Theory

What is a Proof?

Induction and Deduction

- In the sciences, much reasoning is done inductively.
- Conduct a series of experiments and find a rule that explains all the results.
- Conclude that there is a general principle explaining the results.
- Even if all data are correct, the conclusion might be incorrect.
- In mathematics, reasoning is done deductively.
- Begin with a series of statements assumed to be true.
- Apply logical reasoning to show that some conclusion necessarily follows.
- If all the starting assumptions are correct, the conclusion necessarily must be correct.

Structure of a Mathematical Proof

- Begin with a set of initial assumptions.
- Some will be explicitly stated, others assumed as background knowledge.
- Apply logical reasoning to derive the final result from those initial assumptions.
- Assuming all intermediary steps follow sound logical reasoning, the final result necessarily follows from the assumptions.
- It is a secondary question whether the initial assumptions are correct; that's the domain of the philosophy of mathematics.

Direct Proofs

Direct Proofs

- A direct proof is the simplest type of proof.
- Starting with an initial set of assumptions, apply simple logical steps to derive the result.
- Directly prove that the result is true.
- Contrasts with indirect proofs, which we'll see on Friday.

Two Quick Definitions

- An integer n is even if there is some integer k such that $n=2 k$.
- This means that 0 is even.
- An integer n is odd if there is some integer k such that $n=2 k+1$.
- We'll assume the following for now:
- Every integer is either even or odd.
- No integer is both even and odd.

A Simple Direct Proof

Theorem: If n is an even integer, then n^{2} is even. Proof: Let n be an even integer.

Since n is even, there is some integer k such that $n=2 k$.
This means that $n^{2}=(2 k)^{2}=4 k^{2}=2\left(2 k^{2}\right)$.
Since $2 k^{2}$ is an integer, this means that there is some integer m (namely, $2 k^{2}$) such that $n^{2}=2 m$.

Thus n^{2} is even.

> This symbol
> means "end of proof"

A Simple Direct Proof

Theorem: If n is an even integer, then n^{2} is even. Proof: Let n be an even integer.

Since n is even, there is some integer k such the $\begin{gathered}\text { To prove a statement of the } \\ \text { form }\end{gathered}$ This me

Since $2 k$
"If P, then $Q^{\prime \prime}$ there is
that $n^{2}=$ Assume that \boldsymbol{P} is true, then show that \boldsymbol{Q} must be true as well.
Thus n^{2}

A Simple Direct Proof

Theorem: If n is an even integer, then n^{2} is even. Proof: Let n be an even integer.

Since n is even, there is some integer k such that $n=2 k$.

This means th This is the definition of an ${ }^{2}$). Since $2 k^{2}$ is a even integer. When | there is some | writing a mathematical |
| :--- | :--- |
| that $n^{2}=2 m$. | proof, it's common to call | Thus n^{2} is eve back to the definitions.

A Simple Direct Proof

Theorem: If n is an even integer, then n^{2} is even. Proof: Let n be an even integer.

Since n is even, there is some integer k such that $n=2 k$.

This means that $n^{2}=(2 k)^{2}=4 k^{2}=2\left(2 k^{2}\right)$.
Since $2 k^{2}$ Notice how we use the value of \boldsymbol{k} there is so that we obtained above. Giving that $n^{2}=$ names to quantities, even if we
Thus n^{2} is aren't fully sure what they are, allows us to manipulate them. This is similar to variables in programs.

A Simple Direct Proof

Theorem: If n i Our ultimate goal is to prove that 1. Proof: Let $n \mathrm{~b} n^{2}$ is even. This means that we Since n need to find some \boldsymbol{m} such that such th $n^{2}=2 m$. Here, we're explicitly This showing how we can do that.

Since $2 k^{2}$ is an integer, this means that there is some integer m (namely, $2 k^{2}$) such that $n^{2}=2 m$.

Thus n^{2} is even.

A Simple Direct Proof

Theorem: If n is an even integer, then n^{2} is even. Proof: Let n be an even integer.

Since n is even, there is some integer k such that $n=2 k$.

This me
Since $2 k$ Hey, that shat we trying to show: were done now. there is
that n^{2}
Thus n^{2} is even.

An Important Result

- Set equality is defined as follows
$A=B$ precisely when every element of A belongs to B and vice-versa
- This definition makes it a bit tricky to prove that two sets are equal.
- It's often easier to use the following result to show that two sets are equal:

For any sets A and B, if $A \subseteq B$ and $B \subseteq A$, then $A=B$.

Theorem:For any sets A and B, if $A \subseteq B$ and $B \subseteq A$, then $A=B$.

Proving Something Always Holds

- Many statements have the form

For any $X, P(X)$ is true.

- Examples:

For all integers n, if n is even, n^{2} is even.
For any sets A and B, if $A \subseteq B$ and $B \subseteq A$, then $A=B$.
For all sets $S,|S|<|\wp(S)|$.
Everybody's looking forward to the weekend, weekend.

- How do we prove these statements when there are (potentially) infinitely many cases to check?

Arbitrary Choices

- To prove that $\mathrm{P}(x)$ is true for all possible x, show that no matter what choice of x you make, $\mathrm{P}(x)$ must be true.
- Start the proof by making an arbitrary choice of x :
- "Let x be chosen arbitrarily."
- "Let x be an arbitrary even integer."
- "Let x be an arbitrary set containing 137."
- "Consider any x."
- Demonstrate that $\mathrm{P}(x)$ holds true for this choice of x.

Theorem: For any sets A and B, if $A \subseteq B$ and $B \subseteq A$, then $A=B$.
Proof: Let A and B be arbitrary sets such that $A \subseteq B$ and $B \subseteq A$.

> We're showing here that regardless of what \boldsymbol{A} and
> \boldsymbol{B} you pick, the result will still be true.

Theorem: For any sets A and B, if $A \subseteq B$ and $B \subseteq A$, then $A=B$.

Proof: Let A and B be arbitrary sets such that $A \subseteq B$ and $B \subseteq A$.

> To prove a statement of the form

"If P, then $Q^{\prime \prime}$

Assume that \boldsymbol{P} is true, then show that \boldsymbol{Q} must be true as well.

Theorem:For any sets A and B, if $A \subseteq B$ and $B \subseteq A$, then $A=B$.

Proof: \quad Let A and B be arbitrary sets such that $A \subseteq B$ and $B \subseteq A$.

By definition, $A \subseteq B$ means that for all $x \in A$, we have $x \in B$.

By definition, $B \subseteq A$ means that for all $x \in B$, we have $x \in A$.

Thus whenever $x \in A$ we have $x \in B$ and whenever $x \in B$ we have $x \in A$.

Consequently, $A=B$.

An Incorrect Proof

Theorem: For any natural number n, the sum of all the positive divisors of n is always no greater than $2 n$.

Proof: Consider an arbitrary natural number, say, 16. 16 has positive divisors $1,2,4,8$, and 16 . Note that $1+2+4+8+16=31 \leq 2 \cdot 16$. Since our choice of n was arbitrary, we see that for an arbitrary natural number n, the sum of all the divisors of n is no greater than $2 n$.

ar•bi•trar•y adjective /'ärbi,trerē/ one!

1. Based on random choice or personal whim, rather than any reason or system - "his mealtimes were entirely arbitrary"
2. (of power or a ruling body) Unrestrained and autocratic in the use of authority - "arbitrary rule by King and bishops has been made impossible"
3. (of a constant or other quantity) Of unspecified value

> Use this
> definition

To prove something is true for all x, don't choose an x and base the proof off of your choice.

Instead, leave x unspecified and show that no matter what x is, the specified property must hold.

Another Incorrect Proof

Theorem: For any sets A and $B, A \subseteq A \cap B$.
Proof: We need to show that if $x \in A$, then $x \in A \cap B$ as well.

Consider any arbitrary $x \in A \cap B$. This means that $x \in A$ and $x \in B$, so $x \in A$ as required.

If you want to prove that P implies Q, assume P and prove Q.

Don't assume Q and then prove P !

An Entirely Different Proof

Theorem: There exists a natural number $n>0$ such that the sum of all natural numbers less than n is equal to n.

This is a fundamentally different type of proof that what we 've done before. Instead of showing
that every object has some property, we want to show that some object has a given property.

Universal vs. Existential Statements

- A universal statement is a statement of the form For all $x, P(x)$ is true.
- We've seen how to prove these statements.
- An existential statement is a statement of the form

There exists an x for which $P(x)$ is true.

- How do you prove an existential statement?

Proving an Existential Statement

- We will see several different ways to prove "there is some x for which $\mathrm{P}(x)$ is true."
- Simple approach: Just go and find some x for which $\mathrm{P}(x)$ is true!
- In our case, we need to find a positive natural number n such that that sum of all smaller natural numbers is equal to n.
- Can we find one?

An Entirely Different Proof

Theorem: There exists a natural number $n>0$ such that the sum of all natural numbers less than n is equal to n.
Proof: \quad Take $n=3$.
There are three natural numbers smaller than 3: 0, 1, and 2.

We have $0+1+2=3$.
Thus 3 is a natural number greater than zero equal to the sum of all smaller natural numbers.

Extended Example: XOR

Logical Operators

- A bit is a value that is either 0 or 1 .
- The set $\mathbb{B}=\{0,1\}$ is the set of all bits.
- A logical operator is an operator that takes in some number of bits and produces a new bit as output.
- Example: Logical NOT, denoted $\neg x$:

$$
\neg 0=1 \quad \neg 1=0
$$

Logical XOR

- The exclusive OR operator (XOR) operates on two bits and produces 0 if the bits are the same and 1 if they are different.
- Since XOR operates on two values, it is called a binary operator.
- We denote the XOR of a and b by $\boldsymbol{a} \oplus \boldsymbol{b}$.
- Formally, XOR is defined as follows:

$$
\begin{array}{ll}
0 \oplus 0=0 & 0 \oplus 1=1 \\
1 \oplus 0=1 & 1 \oplus 1=0
\end{array}
$$

Fun with XOR

- The XOR operator has numerous uses throughout computer science.
- Applications in cryptography, data structures, error-correcting codes, networking, machine learning, etc.
- XOR is useful because of four key properties:
- XOR has an identity element.
- XOR is self-inverting.
- XOR is associative.
- XOR is commutative.

Identity Elements

An identity element for a binary operator \star is some value z such that for any a :

$$
a \star z=z \star a=a
$$

In math-speak, the term
"for anya" is synonymous
with "for every a" or
"for every possibly choice of a."
It does not mean
"for some specific choice of a."

Identity Elements

- An identity element for a binary operator \star is some value z such that for any a :

$$
a \star z=z \star a=a
$$

- Example: 0 is an identity element for + :

$$
a+0=0+a=a
$$

- Example: 1 is an identity element for \times :

$$
a \times 1=1 \times a=a
$$

Theorem: 0 is an identity element for \oplus.
Proof: We will prove that for any $b \in \mathbb{B}$ that $b \oplus 0=b$ and that $0 \oplus b=b$. To do this, consider an arbitrary $b \in \mathbb{B}$. We consider two cases:

Case 1: $b=0$.

Case 2: $b=1$.

This is called a proof by cases
(alternatively, a proof by exhaustion) and works by showing that the theorem is true regardless of what specific outcome arises.

Theorem: 0 is an identity element for \oplus.
Proof: We will prove that for any $b \in \mathbb{B}$ that $b \oplus 0=b$ and that $0 \oplus b=b$. To do this, consider an arbitrary $b \in \mathbb{B}$. We consider two cases:

Case 1: $b=0$. Then we have

In both cases, we find $b \oplus 0=0 \oplus b=b$.

Theorem: 0 is an identity element for \oplus.
Proof: We will prove that for any $b \in \mathbb{B}$ that $b \oplus 0=b$ and that $0 \oplus b=b$. To do this, consider an arbitrary $b \in \mathbb{B}$. We consider two cases:

Case 1: $b=0$. Then we have

$$
\begin{array}{rlrl}
b \oplus 0 & =0 \oplus 0 & 0 \oplus b & =0 \\
& =0 & & =0 \\
& =b & & =b
\end{array}
$$

Case 2: $b=1$. Then we have

$$
\begin{array}{rlrl}
b \oplus 0 & =1 \oplus 0 & 0 \oplus b & =0 \oplus 1 \\
& =1 & & =1 \\
& =b & & =b
\end{array}
$$

In both cases, we find $b \oplus 0=0 \oplus b=b$. Thus 0 is an identity element for \oplus.

Self-Inverting Operators

- A binary operator \star with identity element z is called self-inverting when for any a, we have

$$
a \star a=z
$$

- Is + self-inverting?
- Is - self-inverting?

XOR is Self-Inverting

Theorem: \oplus is self-inverting.
Proof: Since \oplus has identity element 0, we will prove for any $b \in \mathbb{B}$ that $b \oplus b=0$. To do this, consider any $b \in \mathbb{B}$. We consider two cases:

Case 1: $b=0$. Then $b \oplus b=0 \oplus 0=0$.
Case 2: $b=1$. Then $b \oplus b=1 \oplus 1=0$.
In both cases we have $b \oplus b=0$, so \oplus is self-inverting.

Associative Operators

- A binary operator \star is called associative when for any a, b and c, we have

$$
a \star(b \star c)=(a \star b) \star c
$$

- Is + associative?
- Is - associative?
- Is \times associative?

Theorem: \oplus is associative.
Proof: Consider any $a, b, c \in \mathbb{B}$. We will prove that $a \oplus(b \oplus c)=(a \oplus b) \oplus c$. To do this, we consider two cases:

Case 1: $c=0$. Then we have that

$$
\begin{aligned}
a \oplus(b \oplus c) & =a \oplus(b \oplus 0) & & \\
& =a \oplus b & & \text { (since } 0 \text { is an identity) } \\
& =(a \oplus b) \oplus 0 & & \text { (since } 0 \text { is an identity) } \\
& =(a \oplus b) \oplus c & &
\end{aligned}
$$

Case 2: $c=1$. Then we have that

$$
\begin{aligned}
a \oplus(b \oplus c) & =a \oplus(b \oplus 1) \\
& =?
\end{aligned}
$$

When You Get Stuck

- When writing proofs, you are bound to get stuck at some point.
- When this happens, it can mean multiple things:
- What you're proving is incorrect.
- You are on the wrong track.
- You're on the right tack, but you need to prove an additional result to get to your goal.
- Unfortunately, there is no general way to determine which case you are in.
- You'll build this intuition through experience.

Where We're Stuck

- Right now, we have the expression

$$
a \oplus(b \oplus 1)
$$

and we don't know how to simplify it.

- Let's focus on the $(b \oplus 1)$ part and see what we find:
- $\mathbf{0} \oplus 1=\mathbf{1}$
- $\mathbf{1} \oplus 1=\mathbf{0}$
- It seems like $b \oplus 1=\neg b$. Could we prove it?

Relations Between Proofs

- Proofs often build off of one another: large results are almost often accomplished by building off of previous work.
- Like writing a large program - split the work into smaller methods, across different classes, etc. instead of putting the whole thing into main.
- A result that is proven specifically as a stepping stone toward a larger result is called a lemma.
- Our result that $b \oplus 1=\neg b$ serves as a lemma in our larger proof that \oplus is associative.

Lemma: For any $b \in \mathbb{B}$, we have $b \oplus 1=\neg b$. Proof: Consider any $b \in \mathbb{B}$. We consider two cases:

Case 1: $b=0$. Then

$$
\begin{aligned}
b \oplus 1 & =0 \oplus 1 \\
& =1 \\
& =\neg 0 \\
& =\neg b .
\end{aligned}
$$

Case 2: $b=1$. Then

$$
\begin{aligned}
b \oplus 1 & =1 \oplus 1 \\
& =0 \\
& =\neg 1 \\
& =\neg b .
\end{aligned}
$$

In both cases, we find that $b \oplus 1=\neg b$, which is what we needed to show.

Theorem: \oplus is associative. Proof: Consider any $a, b, c \in \mathbb{B}$. We will prove that $a \oplus(b \oplus c)=(a \oplus b) \oplus c$. To do this, we consider two cases:

Case 1: $c=0$. Then we have that

$$
\begin{aligned}
a \oplus(b \oplus c) & =a \oplus(b \oplus 0) & & \\
& =a \oplus b & & \text { (since } 0 \text { is an identity) } \\
& =(a \oplus b) \oplus 0 & & \text { (since } 0 \text { is an identity) } \\
& =(a \oplus b) \oplus c & &
\end{aligned}
$$

Case 2: $c=1$. Then we have that

$$
\begin{aligned}
a \oplus(b \oplus c) & =a \oplus(b \oplus 1) \\
& =a \oplus \neg b \\
& =? ?
\end{aligned}
$$

(using our lemma)

Lemma 2: For any $a, b \in \mathbb{B}$, we have $a \oplus \neg b=\neg(a \oplus b)$. Proof: Consider any $a, b \in \mathbb{B}$. We consider two cases:

$$
\left.\begin{array}{l}
\text { Case 1: } b=0 \text {. Then } \\
\qquad \begin{array}{rlr}
a \oplus \neg b & =a \oplus \neg 0 & \\
& =a \oplus 1 & \\
& =\neg a & \\
& =\neg(a \oplus 0) & \\
& =\neg(a \oplus b) &
\end{array} \\
\\
\end{array} \quad \begin{array}{l}
\text { (since our first lemma) } \\
\\
\end{array}\right)
$$

Case 2: $b=1$. Then

$$
\begin{array}{rlrl}
a \oplus \neg b & =a \oplus \neg 1 & & \\
& =a \oplus 0 & & \\
& =a & & \text { (since } 0 \text { is an identity) } \\
& =\neg(\neg a) & & \\
& =\neg(a \oplus 1) & \text { (using our first lemma) } \\
& =\neg(a \oplus b) & &
\end{array}
$$

In both cases, we find that $a \oplus \neg b=\neg(a \oplus b)$, as required.

Theorem: \oplus is associative.
Proof: Consider any $a, b, c \in \mathbb{B}$. We will prove that $a \oplus(b \oplus c)=(a \oplus b) \oplus c$. We consider two cases:

Case 1: $c=0$. Then we have that

$$
\begin{aligned}
a \oplus(b \oplus c) & =a \oplus(b \oplus 0) & & \\
& =a \oplus b & & \text { (since } 0 \text { is an identity) } \\
& =(a \oplus b) \oplus 0 & & \text { (since } 0 \text { is an identity) } \\
& =(a \oplus b) \oplus c & &
\end{aligned}
$$

Case 2: $c=1$. Then we have that

$$
\begin{aligned}
a \oplus(b \oplus c) & =a \oplus(b \oplus 1) & & \\
& =a \oplus \neg b & & \text { (using lemma 1) } \\
& =\neg(a \oplus b) & & \text { (using lemma 2) } \\
& =(a \oplus b) \oplus 1 & & \text { (using lemma 1) } \\
& =(a \oplus b) \oplus c & &
\end{aligned}
$$

In both cases we have $a \oplus(b \oplus c)=(a \oplus b) \oplus c$, and therefore \oplus is associative.

Commutative Operators

- A binary operator \star is called commutative when the following is always true:

$$
a \star b=b \star a
$$

- Is + commutative?
- Is - commutative?

Theorem: \oplus is commutative.
Proof: Consider any $a, b \in \mathbb{B}$. We will prove $a \oplus b=b \oplus a$. To do this, let $x=a \oplus b$. Then

$$
\begin{array}{ll}
x=a \oplus b & \\
x \oplus b=(a \oplus b) \oplus b & \\
x \oplus b=a \oplus(b \oplus b) & \text { (since } \oplus \text { is associative) } \\
x \oplus b=a \oplus 0 & \text { (since } \oplus \text { is self-inverting) } \\
x \oplus b=a & \text { (since } 0 \text { is an identity of } \oplus \text {) } \\
x \oplus(x \oplus b)=x \oplus a & \\
(x \oplus x) \oplus b=x \oplus a & \text { (since } \oplus \text { is associative) } \\
0 \oplus b=x \oplus a & \text { (since } \oplus \text { is self-inverting) } \\
b=x \oplus a & \text { (since } 0 \text { is an identity of } \oplus \text {) } \\
b \oplus a=(x \oplus a) \oplus a & \\
b \oplus a=x \oplus(a \oplus a) & \text { (since } \oplus \text { is associative) } \\
b \oplus a=x \oplus 0 & \text { (since } \oplus \text { is self-inverting) } \\
b \oplus a=x & \text { (since } 0 \text { is an identity of } \oplus \text {) }
\end{array}
$$

This means that $a \oplus b=x=b \oplus a$. Therefore, \oplus is commutative.

Theorem: \oplus is commutative.
Proof: Consider any $a, b \in \mathbb{B}$. We will prove $a \oplus b=b \oplus a$. To do this, let $x=a \oplus b$. Then

$$
\begin{aligned}
& x=a \oplus b \\
& x \oplus b=(a \oplus b) \oplus b \\
& x \oplus b=a \oplus(b \oplus b) \\
& x \oplus b=a \oplus 0 \\
& x \oplus b=a \\
& x \oplus(x \oplus b)=x \oplus a \\
& (x \oplus x) \oplus b=x \oplus a \\
& 0 \oplus b=x \oplus a \\
& b=x \oplus a \\
& b \oplus a=(x \oplus a) \oplus a \\
& b \oplus a=x \oplus(a \oplus a) \\
& b \oplus a=x \oplus 0 \\
& b \oplus a=x
\end{aligned}
$$

The only properties of \oplus that we used here are that it is associative, has an identity, and is self-inverting. This same proof works for any operator with these three properties:

Binary operators that have this property give rise to boolean groups (but you don't need to know that for this class).

This means that $a \oplus b=$ commutative.

Application: Encryption

Bitstrings

- A bitstring is a finite sequence of 0 s and 1s.
- Internally, computers represent all data as bitstrings.
- For details on how, take CS107 or CS143.

Bitstrings and \oplus

- We can generalize the \oplus operator from working on individual bits to working on bitstrings.
- If A and B are bitstrings of length n, then we'll define $A \oplus B$ to be the bitstring of length n formed by applying \oplus to the corresponding bits of A and B.
- For example:

110110

$\oplus 011010$

101100

Encryption

- Suppose that you want to send me a secret bitstring M of length n.
- You should be able to read the message, but anyone who intercepts the secret message should not be able to read it.
- How might we accomplish this?

\oplus and Encryption

- In advance, you and I share a randomly-chosen bitstring K of length n (called the key) and keep it secret.
- To send me message M secretly, you send me the string $C=M \oplus K$.
- C is called the ciphertext.
- To decrypt the ciphertext C, I compute the string $C \oplus K$. This is

$$
\begin{aligned}
C \oplus K & =(M \oplus K) \oplus K \\
& =M \oplus(K \oplus K) \\
& =M
\end{aligned}
$$

\oplus and Encryption

- Suppose that you don't have the key and get the message $M \oplus K$.
- If K is chosen to be truly random, then every bit in $M \oplus K$ appears to be truly random.
- Intuition: Let b be a original bit from the message and k be the corresponding bit in the key.
- If $k=0$, then $b \oplus k=b \oplus 0=b$.
- If $k=1$, then $b \oplus k=b \oplus 1=\neg b$.
- Since the key bit is truly random, the bits in the original string are flipped totally randomly.
- Can formalize the math; take CS109 for details!

An Example

PUPPIES

M 01010000010101010101000001010000010010010100010101010011
K 11011100101110111100010011010101111001101111011111000010
C 10001100111011101001010010000101101011111011001010010001

> ©

An Example

$$
\mathbb{F}_{1}^{\prime \prime}
$$

C 10001100111011101001010010000101101011111011001010010001
K 11011100101110111100010011010101111001101111011111000010
M 01010000010101010101000001010000010010010100010101010011

PUPPIES

An Example

$$
\mathbb{E}^{\prime \prime}{ }^{\prime \prime}
$$

C 10001100111011101001010010000101101011111011001010010001
$K ? 01011100010101010101000001010000010010010100010101010011$
$M^{?} 01001100010011110100110001000110010000010100100101001100$

LOLFAIL

Some Caveats

- This scheme is very insecure if you encrypt multiple messages using the same key.
- Good exercise: Figure out why this is!
- This scheme guarantees security if the key is random, but it isn't tamperproof.
- You'll see why this is on the problem set.
- General good advice: never implement your own cryptography!
- Take CS255 for more details!

Next Time

- Indirect Proofs
- Proof by contradiction.
- Proof by contrapositive.

