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What is a Proof?



  

Induction and Deduction

● In the sciences, much reasoning is done inductively.
● Conduct a series of experiments and find a rule that 

explains all the results.
● Conclude that there is a general principle explaining the 

results.
● Even if all data are correct, the conclusion might be 

incorrect.
● In mathematics, reasoning is done deductively.

● Begin with a series of statements assumed to be true.
● Apply logical reasoning to show that some conclusion 

necessarily follows.
● If all the starting assumptions are correct, the 

conclusion necessarily must be correct.



  

Structure of a Mathematical Proof

● Begin with a set of initial assumptions.

● Some will be explicitly stated, others 
assumed as background knowledge.

● Apply logical reasoning to derive the final 
result from those initial assumptions.

● Assuming all intermediary steps follow sound 
logical reasoning, the final result necessarily 
follows from the assumptions.

● It is a secondary question whether the initial 
assumptions are correct; that's the domain of 
the philosophy of mathematics.



  

Direct Proofs



  

Direct Proofs

● A direct proof is the simplest type of 
proof.

● Starting with an initial set of 
assumptions, apply simple logical steps 
to derive the result.
● Directly prove that the result is true.

● Contrasts with indirect proofs, which 
we'll see on Friday.



  

Two Quick Definitions

● An integer n is even if there is some 
integer k such that n = 2k.
● This means that 0 is even.

● An integer n is odd if there is some 
integer k such that n = 2k + 1.

● We'll assume the following for now:
● Every integer is either even or odd.
● No integer is both even and odd.



  

A Simple Direct Proof

Theorem: If n is an even integer, then n2 is even.
Proof: Let n be any even integer.
 

Since n is even, there is some integer k
such that n = 2k.

 

This means that n2 = (2k)2 = 4k2 = 2(2k2).
 

Since 2k2 is an integer, this means that
there is some integer m (namely, 2k2) such
that n2 = 2m.

 

Thus n2 is even. ■
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An Important Result

● Set equality is defined as follows

A = B precisely when every element
of A belongs to B and vice-versa

● This definition makes it a bit tricky to 
prove that two sets are equal.

● It's often easier to use the following 
result to show that two sets are equal:

For any sets A and B,
if A ⊆ B and B ⊆ A, then A = B.



  

Theorem:For any sets A and B, if A ⊆ B and B ⊆ A, 
then A = B.

Proof: Let A and B be arbitrary sets such that A ⊆ B and
B ⊆ A.

By definition, A ⊆ B means that for all x ∈ A,
x ∈ B.

By definition, B ⊆ A means that for all x ∈ B,
x ∈ A.

Thus whenever x ∈ A, x ∈ B and whenever x ∈ B,
x ∈ A as well.

Consequently, A = B. ■
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Proving Something Always Holds

● Many statements have the form

For any X, P(X) is true.
● Examples:

For all integers n, if n is even, n2 is even.  

For any sets A and B, if A ⊆ B and B ⊆ A, then A = B.  

For all sets S, |S| < | (S)|.  ℘

Everybody's looking forward to the weekend, weekend.  

● How do we prove these statements when there 
are (potentially) infinitely many cases to check?



  

Arbitrary Choices

● To prove that P(x) is true for all possible x, 
show that no matter what choice of x you 
make, P(x) must be true.

● Start the proof by making an arbitrary choice 
of x:
● “Let x be chosen arbitrarily.”
● “Let x be an arbitrary even integer.”
● “Let x be an arbitrary set containing 137.”
● “Consider any x.”

● Demonstrate that P(x) holds true for this 
choice of x.
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An Incorrect Proof

Theorem: For any natural number n, the sum of
all the positive divisors of n is always no
greater than 2n.

Proof: Consider an arbitrary natural number, say,
16.  16 has positive divisors 1, 2, 4, 8, and 16.
Note that 1 + 2 + 4 + 8 + 16 = 31 ≤ 2 · 16.
Since our choice of n was arbitrary, we see that
for an arbitrary natural number n, the sum of
all the divisors of n is no greater than 2n. ■
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ar·bi·trar·y
adjective /ˈärbiˌtrerē/ 

1. Based on random choice or personal whim, rather than 
any reason or system - “his mealtimes were entirely 
arbitrary”

2. (of power or a ruling body) Unrestrained and autocratic 
in the use of authority - “arbitrary rule by King and 
bishops has been made impossible”

3. (of a constant or other quantity) Of unspecified value

Source: Google



  

ar·bi·trar·y
adjective /ˈärbiˌtrerē/ 

1. Based on random choice or personal whim, rather than 
any reason or system - “his mealtimes were entirely 
arbitrary”

2. (of power or a ruling body) Unrestrained and autocratic 
in the use of authority - “arbitrary rule by King and 
bishops has been made impossible”

3. (of a constant or other quantity) Of unspecified value

Use this 
definition

Source: Google



  

ar·bi·trar·y
adjective /ˈärbiˌtrerē/ 

1. Based on random choice or personal whim, rather than 
any reason or system - “his mealtimes were entirely 
arbitrary”

2. (of power or a ruling body) Unrestrained and autocratic 
in the use of authority - “arbitrary rule by King and 
bishops has been made impossible”

3. (of a constant or other quantity) Of unspecified value

Use this 
definition

Not this 
one!

Source: Google



  

To prove something is true for all x,
don't choose an x and base the proof

off of your choice.

Instead, leave x unspecified
and show that no matter what x is,
the specified property must hold.



  

Another Incorrect Proof

Theorem: For any sets A and B, A ⊆ A ∩ B.

Proof: We need to show that if x ∈ A, then
x ∈ A ∩ B as well.

Consider any arbitrary x ∈ A ∩ B.  This
means that x ∈ A and x ∈ B, so x ∈ A as
required. ■
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If you want to prove that P implies Q, 
assume P and prove Q.

Don't assume Q and then prove P!



  

An Entirely Different Proof

Theorem: There exists a natural number n > 0
such that the sum of all natural
numbers less than n is equal to n.
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Universal vs. Existential Statements

● A universal statement is a statement of the form

For all x, P(x) is true.
● We've seen how to prove these statements.

An existential statement is a statement of the 
form

There exists an x for which P(x) is true.

How do you prove an existential statement?
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form
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Proving an Existential Statement

● We will see several different ways to 
prove “there is some x for which P(x) is 
true.”

● Simple approach: Just go and find some x 
for which P(x) is true!
● In our case, we need to find a positive 

natural number n such that that sum of all 
smaller natural numbers is equal to n.

● Can we find one?



  

An Entirely Different Proof

Theorem: There exists a natural number n > 0
such that the sum of all natural 
numbers less than n is equal to n.

 

Proof: Take n = 3.
 

There are three natural numbers smaller
than 3: 0, 1, and 2.

 

We have 0 + 1 + 2 = 3.
 

Thus 3 is a natural number greater than
zero equal to the sum of all smaller natural
numbers. ■
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Extended Example: XOR



  

Logical Operators

● A bit is a value that is either 0 or 1.
● The set 𝔹 = {0, 1} is the set of all bits.
● A logical operator is an operator that 

takes in some number of bits and 
produces a new bit as output.

● Example: Logical NOT, denoted ¬x:

¬0 = 1                ¬1 = 0     



  

Logical XOR

● The exclusive OR operator (XOR) operates on 
two bits and produces 0 if the bits are the same 
and 1 if they are different.
● Since XOR operates on two values, it is called a

binary operator.

● We denote the XOR of a and b by a ⊕ b.
● Formally, XOR is defined as follows:

0 ⊕ 0 = 0                0 ⊕ 1 = 1   

1 ⊕ 0 = 1                1 ⊕ 1 = 0   



  

Fun with XOR

● The XOR operator has numerous uses 
throughout computer science.
● Applications in cryptography, data structures, 

error-correcting codes, networking, machine 
learning, etc.

● XOR is useful because of four key properties:
● XOR has an identity element.
● XOR is self-inverting.
● XOR is associative.
● XOR is commutative.



  

Identity Elements

● An identity element for a binary operator 
 is some value ★ z such that for any a:

a  ★ z = z  ★ a = a

Example: 0 is an identity element for +:

a + 0 = 0 + a = a

Example: 1 is an identity element for ×:

a × 1 = 1 × a = a



  

Identity Elements

An identity element for a binary operator 
 is some value ★ z such that for any a:

a  ★ z = z  ★ a = a

Example: 0 is an identity element for +:

a + 0 = 0 + a = a

Example: 1 is an identity element for ×:

a × 1 = 1 × a = a



  

Identity Elements

An identity element for a binary operator 
 is some value ★ z such that for any a:

a  ★ z = z  ★ a = a

Example: 0 is an identity element for +:

a + 0 = 0 + a = a

Example: 1 is an identity element for ×:

a × 1 = 1 × a = a
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Theorem: 0 is an identity element for ⊕.
Proof: We will prove that for any b ∈ 𝔹 that b ⊕ 0 = b and

that 0 ⊕ b = b.  To do this, consider an arbitrary
b ∈ 𝔹.  We consider two cases:

Case 1: b = 0.  Then we have
 

b ⊕ 0 = 0 ⊕ 0 0 ⊕ b = 0 ⊕ 0
= 0 = 0
= b = b

 
 

Case 2: b = 1.  Then we have
 

b ⊕ 0 = 1 ⊕ 0 0 ⊕ b = 0 ⊕ 1
= 1 = 1
= b = b

 

 In both cases, we find b ⊕ 0 = 0 ⊕ b = b.  Thus 0 is
 an identity element for ⊕. ■
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works by showing that the theorem is true 
regardless of what specific outcome arises.
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Self-Inverting Operators

● A binary operator  with identity ★
element z is called self-inverting when 
for any a, we have

a  ★ a = z
● Is + self-inverting?
● Is – self-inverting?



  

XOR is Self-Inverting

Theorem: ⊕ is self-inverting.
Proof: Since ⊕ has identity element 0, we will prove

  for any b ∈ 𝔹 that b ⊕ b = 0.  To do this, 
  consider any b ∈ 𝔹.  We consider two cases:

Case 1: b = 0.  Then b ⊕ b = 0 ⊕ 0 = 0.

Case 2: b = 1.  Then b ⊕ b = 1 ⊕ 1 = 0.

  In both cases we have b ⊕ b = 0, so ⊕ is
  self-inverting. ■



  

XOR is Self-Inverting

Theorem: ⊕ is self-inverting.
Proof: Since ⊕ has identity element 0, we will prove

  for any b ∈ 𝔹 that b ⊕ b = 0.  To do this, 
  consider any b ∈ 𝔹.  We consider two cases:

Case 1: b = 0.  Then b ⊕ b = 0 ⊕ 0 = 0.

Case 2: b = 1.  Then b ⊕ b = 1 ⊕ 1 = 0.

  In both cases we have b ⊕ b = 0, so ⊕ is
  self-inverting. ■



  

XOR is Self-Inverting

Theorem: ⊕ is self-inverting.
Proof: Since ⊕ has identity element 0, we will prove

  for any b ∈ 𝔹 that b ⊕ b = 0.  To do this, 
  consider any b ∈ 𝔹.  We consider two cases:

Case 1: b = 0.  Then b ⊕ b = 0 ⊕ 0 = 0.

Case 2: b = 1.  Then b ⊕ b = 1 ⊕ 1 = 0.

  In both cases we have b ⊕ b = 0, so ⊕ is
  self-inverting. ■



  

XOR is Self-Inverting

Theorem: ⊕ is self-inverting.
Proof: Since ⊕ has identity element 0, we will prove

  for any b ∈ 𝔹 that b ⊕ b = 0.  To do this, 
  consider any b ∈ 𝔹.  We consider two cases:

Case 1: b = 0.  Then b ⊕ b = 0 ⊕ 0 = 0.

Case 2: b = 1.  Then b ⊕ b = 1 ⊕ 1 = 0.

  In both cases we have b ⊕ b = 0, so ⊕ is
  self-inverting. ■



  

XOR is Self-Inverting

Theorem: ⊕ is self-inverting.
Proof: Since ⊕ has identity element 0, we will prove

  for any b ∈ 𝔹 that b ⊕ b = 0.  To do this, 
  consider any b ∈ 𝔹.  We consider two cases:

Case 1: b = 0.  Then b ⊕ b = 0 ⊕ 0 = 0.

Case 2: b = 1.  Then b ⊕ b = 1 ⊕ 1 = 0.

  In both cases we have b ⊕ b = 0, so ⊕ is
  self-inverting. ■



  

XOR is Self-Inverting

Theorem: ⊕ is self-inverting.
Proof: Since ⊕ has identity element 0, we will prove

  for any b ∈ 𝔹 that b ⊕ b = 0.  To do this, 
  consider any b ∈ 𝔹.  We consider two cases:

Case 1: b = 0.  Then b ⊕ b = 0 ⊕ 0 = 0.

Case 2: b = 1.  Then b ⊕ b = 1 ⊕ 1 = 0.

  In both cases we have b ⊕ b = 0, so ⊕ is
  self-inverting. ■



  

XOR is Self-Inverting

Theorem: ⊕ is self-inverting.
Proof: Since ⊕ has identity element 0, we will prove

  for any b ∈ 𝔹 that b ⊕ b = 0.  To do this, 
  consider any b ∈ 𝔹.  We consider two cases:

Case 1: b = 0.  Then b ⊕ b = 0 ⊕ 0 = 0.

Case 2: b = 1.  Then b ⊕ b = 1 ⊕ 1 = 0.

  In both cases we have b ⊕ b = 0, so ⊕ is
  self-inverting. ■



  

XOR is Self-Inverting

Theorem: ⊕ is self-inverting.
Proof: Since ⊕ has identity element 0, we will prove

  for any b ∈ 𝔹 that b ⊕ b = 0.  To do this, 
  consider any b ∈ 𝔹.  We consider two cases:

Case 1: b = 0.  Then b ⊕ b = 0 ⊕ 0 = 0.

Case 2: b = 1.  Then b ⊕ b = 1 ⊕ 1 = 0.

  In both cases we have b ⊕ b = 0, so ⊕ is
  self-inverting. ■



  

XOR is Self-Inverting

Theorem: ⊕ is self-inverting.
Proof: Since ⊕ has identity element 0, we will prove

  for any b ∈ 𝔹 that b ⊕ b = 0.  To do this, 
  consider any b ∈ 𝔹.  We consider two cases:

Case 1: b = 0.  Then b ⊕ b = 0 ⊕ 0 = 0.

Case 2: b = 1.  Then b ⊕ b = 1 ⊕ 1 = 0.

  In both cases we have b ⊕ b = 0, so ⊕ is
  self-inverting. ■



  

XOR is Self-Inverting

Theorem: ⊕ is self-inverting.
Proof: Since ⊕ has identity element 0, we will prove

  for any b ∈ 𝔹 that b ⊕ b = 0.  To do this, 
  consider any b ∈ 𝔹.  We consider two cases:

Case 1: b = 0.  Then b ⊕ b = 0 ⊕ 0 = 0.

Case 2: b = 1.  Then b ⊕ b = 1 ⊕ 1 = 0.

  In both cases we have b ⊕ b = 0, so ⊕ is
  self-inverting. ■



  

XOR is Self-Inverting

Theorem: ⊕ is self-inverting.
Proof: Since ⊕ has identity element 0, we will prove

  for any b ∈ 𝔹 that b ⊕ b = 0.  To do this, 
  consider any b ∈ 𝔹.  We consider two cases:

Case 1: b = 0.  Then b ⊕ b = 0 ⊕ 0 = 0.

Case 2: b = 1.  Then b ⊕ b = 1 ⊕ 1 = 0.

  In both cases we have b ⊕ b = 0, so ⊕ is
  self-inverting. ■



  

XOR is Self-Inverting

Theorem: ⊕ is self-inverting.
Proof: Since ⊕ has identity element 0, we will prove

  for any b ∈ 𝔹 that b ⊕ b = 0.  To do this, 
  consider any b ∈ 𝔹.  We consider two cases:

Case 1: b = 0.  Then b ⊕ b = 0 ⊕ 0 = 0.

Case 2: b = 1.  Then b ⊕ b = 1 ⊕ 1 = 0.

  In both cases we have b ⊕ b = 0, so ⊕ is
  self-inverting. ■



  

Associative Operators

● A binary operator  is called ★ associative 
when for any a, b and c, we have

a  (★ b  ★ c) = (a  ★ b)  ★ c  
● Is + associative?
● Is – associative?
● Is × associative?



  

Theorem: ⊕ is associative.
Proof: Consider any a, b, c ∈ 𝔹.  We will prove that

a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c.  To do this, we
consider two cases:

 

Case 1: c = 0.  Then we have that
 

   a ⊕ (b ⊕ c) = a ⊕ (b ⊕ 0)
  = a ⊕ b   (since 0 is an identity)

= (a ⊕ b) ⊕ 0 (since 0 is an identity)
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When You Get Stuck

● When writing proofs, you are bound to get stuck 
at some point.

● When this happens, it can mean multiple things:
● What you're proving is incorrect.
● You are on the wrong track.
● You're on the right tack, but you need to prove an 

additional result to get to your goal.

● Unfortunately, there is no general way to 
determine which case you are in.

● You'll build this intuition through experience.



  

Where We're Stuck

● Right now, we have the expression

a ⊕ (b ⊕ 1) 

and we don't know how to simplify it.
● Let's focus on the (b ⊕ 1) part and see what we 

find:
● 0 ⊕ 1 = 1
● 1 ⊕ 1 = 0

● It seems like b ⊕ 1 = ¬b.  Could we prove it?



  

Relations Between Proofs

● Proofs often build off of one another: large results are 
almost often accomplished by building off of previous 
work.
● Like writing a large program – split the work into smaller 

methods, across different classes, etc. instead of putting 
the whole thing into main.

● A result that is proven specifically as a stepping stone 
toward a larger result is called a lemma.

● Our result that b ⊕ 1 = ¬b serves as a lemma in our 
larger proof that ⊕ is associative.



  

Lemma: For any b ∈ 𝔹, we have b ⊕ 1 = ¬b.
Proof: Consider any b ∈ 𝔹.  We consider two cases:
 

Case 1: b = 0.  Then
 

b ⊕ 1= 0 ⊕ 1
= 1
= ¬0
= ¬b.

Case 2: b = 1.  Then
 

b ⊕ 1= 1 ⊕ 1
= 0
= ¬1
= ¬b.

In both cases, we find that b ⊕ 1 = ¬b, which is
what we needed to show. ■
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Commutative Operators

● A binary operator  is called ★
commutative when the following is 
always true:

a  ★ b = b  ★ a  
● Is + commutative?
● Is – commutative?



  

Theorem: ⊕ is commutative.

Proof: Consider any a, b ∈ 𝔹.  We will prove a ⊕ b = b ⊕ a.
To do this, let x = a ⊕ b.  Then

x = a ⊕ b
x ⊕ b = (a ⊕ b) ⊕ b
x ⊕ b = a ⊕ (b ⊕ b) (since ⊕ is associative)
x ⊕ b = a ⊕ 0 (since ⊕ is self-inverting)
x ⊕ b = a (since 0 is an identity of ⊕)
x ⊕ (x ⊕ b) = x ⊕ a
(x ⊕ x) ⊕ b = x ⊕ a (since ⊕ is associative)
0 ⊕ b = x ⊕ a (since ⊕ is self-inverting)
b = x ⊕ a (since 0 is an identity of ⊕)
b ⊕ a = (x ⊕ a) ⊕ a
b ⊕ a = x ⊕ (a ⊕ a) (since ⊕ is associative)
b ⊕ a = x ⊕ 0 (since ⊕ is self-inverting)
b ⊕ a = x (since 0 is an identity of ⊕)

This means that a ⊕ b = x = b ⊕ a.  Therefore, ⊕ is
commutative. ■
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The only properties of  that ⊕

we used here are that it is 
associative, has an identity, and 
is self-inverting.  This same 
proof works for any operator 
with these three properties!

Binary operators that have this 
property give rise to boolean 
groups (but you don't need 
to know that for this class).

The only properties of  that ⊕

we used here are that it is 
associative, has an identity, and 
is self-inverting.  This same 
proof works for any operator 
with these three properties!

Binary operators that have this 
property give rise to boolean 
groups (but you don't need 
to know that for this class).



  

Application: Encryption



  

Bitstrings

● A bitstring is a finite sequence of 0s and 
1s.

● Internally, computers represent all data 
as bitstrings.
● For details on how, take CS107 or CS143.



  

Bitstrings and ⊕

● We can generalize the ⊕ operator from working 
on individual bits to working on bitstrings.

● If A and B are bitstrings of length n, then we'll 
define A ⊕ B to be the bitstring of length n 
formed by applying ⊕ to the corresponding bits 
of A and B.

● For example:

110110

011010⊕

101100



  

Encryption

● Suppose that you want to send me a 
secret bitstring M of length n.

● You should be able to read the message, 
but anyone who intercepts the secret 
message should not be able to read it.

● How might we accomplish this?



  

⊕ and Encryption

● In advance, you and I share a randomly-chosen 
bitstring K of length n (called the key) and 
keep it secret.

● To send me message M secretly, you send me 
the string C = M ⊕ K.
● C is called the ciphertext.

● To decrypt the ciphertext C, I compute the 
string C ⊕ K.  This is

 C ⊕ K = (M ⊕ K) ⊕ K

 C ⊕ K = M ⊕ (K ⊕ K)

 C ⊕ K = M



  

⊕ and Encryption

● Suppose that you don't have the key and get the 
message M ⊕ K.

● If K is chosen to be truly random, then every bit in 
M ⊕ K appears to be truly random.

● Intuition: Let b be a original bit from the message 
and k be the corresponding bit in the key.
● If k = 0, then b ⊕ k = b ⊕ 0 = b.
● If k = 1, then b ⊕ k = b ⊕ 1 = ¬b.

● Since the key bit is truly random, the bits in the 
original string are flipped totally randomly.

● Can formalize the math; take CS109 for details!



  

An Example

01010000010101010101000001010000010010010100010101010011

11011100101110111100010011010101111001101111011111000010

M

K

C 10001100111011101001010010000101101011111011001010010001

Œî”…©²‘

PUPPIES



  

An Example

11011100101110111100010011010101111001101111011111000010K

C 10001100111011101001010010000101101011111011001010010001

Œî”…©²‘

01010000010101010101000001010000010010010100010101010011

PUPPIES

M



  

An Example

01001100010011110100110001000110010000010100100101001100

C 10001100111011101001010010000101101011111011001010010001

Œî”…©²‘

01011100010101010101000001010000010010010100010101010011

LOLFAIL

K?
C

M?



  

Some Caveats

● This scheme is very insecure if you encrypt 
multiple messages using the same key.
● Good exercise: Figure out why this is!

● This scheme guarantees security if the key is 
random, but it isn't tamperproof.
● You'll see why this is on the problem set.

● General good advice: never implement your 
own cryptography!

● Take CS255 for more details!



  

Next Time

● Indirect Proofs
● Proof by contradiction.
● Proof by contrapositive.
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