
  

Welcome to CS103!

● Lectures are recorded – sorry for being 
in such a packed room!

● Two Handouts
● Also available online if you'd like!

● Today:
● Course Overview
● Introduction to Set Theory
● The Limits of Computation



  

Goals for this Course



  

Goals for this Course

● How do we prove something with 
absolute certainty?
● Discrete Mathematics

● What problems can we solve with 
computers?
● Computability Theory

● Why are some problems harder to solve 
than others?
● Complexity Theory
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http://cs103.stanford.edu

The Course Website

http://cs103.stanford.edu/


  

“Prerequisite”

CS106A



  

Recommended Reading



  

Online Course Notes



  

Grading Policies

60% Assignments
15% Midterm
25% Final



  

Let's Get Started!



  

Introduction to Set Theory



  

“The chemical elements”
“Cute animals”

“Cool people”

“US coins.”

“All the computers on the
Stanford network.”

“CS103 students”



  

A set is an unordered collection of distinct 
objects, which may be anything (including 

other sets).

, , ,

Set notation: Curly braces 
with commas separating out 

the elements

Set notation: Curly braces 
with commas separating out 

the elements



  

A set is an unordered collection of distinct 
objects, which may be anything (including 

other sets).

, , ,

, , ,

These are 
the same 

set!

These are 
the same 

set!



  

A set is an unordered collection of distinct 
objects, which may be anything (including 

other sets).

,

, , , , ,

These are the 
same set!

These are the 
same set!



  

A set is an unordered collection of distinct 
objects, which may be anything (including 

other sets).

Ø
We use this symbol to 
denote the empty set.

The empty set 
contains no elements.

=



  

Are these equal to one another?

Ø Ø≠

This set contains 
nothing at all.

This set contains 
nothing at all.

This set has one 
element, which 

happens to be the 
empty set.

This set has one 
element, which 

happens to be the 
empty set.



  

Are these equal to one another?

1 1≠

This is a 
number.

This is a 
number.

This is a set.  
It contains a 

number.

This is a set.  
It contains a 

number.



  

Membership

, , ,

Is          in this set?

∈



  

Membership

, , ,

Is           in this set?

∉



  

Set Membership

● Given a set S and an object x, we write

x ∈ S

if x is contained in S, and

x ∉ S 

otherwise.
● If x ∈ S, we say that x is an element of S.
● Given any object and any set, either that 

object is an element of the set or it isn't.



  

Infinite Sets

● Some sets contain infinitely many elements!

● The natural numbers, ℕ: { 0, 1, 2, 3, …}
● Some mathematicians don't include zero; in this 

class, assume that 0 is a natural number.
● The integers, ℤ: { …, -2, -1, 0, 1, 2, … }

● Z is from German “Zahlen.”
● The real numbers, ℝ, including rational and 

irrational numbers.

● e ∈ ℝ, π ∈ ℝ, 4 ∈ ℝ, etc.



  

Describing Complex Sets

● Here are some English descriptions of 
infinite sets:

“All even numbers.”

“All real numbers less than 137.”

“All negative integers.”

● We can't list the (infinitely many!) 
elements of these sets!

● How would we rigorously describe them?



  

{ n | n ∈ ℕ and n is even }

The set of all n

n is a natural 
number

and n is even

Even Natural Numbers

where

{ 0, 2, 4, 6, 8, 10, 12, 14, 16, … }



  

Set Builder Notation

● A set may be specified in set-builder 
notation:

{ x | some property x satisfies }
● For example:

{ r | r ∈ ℝ and r < 137 }

{ n | n is a power of two }

{ S | S is a set of US currency }

{ a | a is cute animal }



  

Combining Sets



  

Venn Diagrams

A B

1

2

4

5

3

A = { 1, 2, 3 }
B = { 3, 4, 5 }



  

Venn Diagrams

A B

A

1

2

4

5

3

A = { 1, 2, 3 }
B = { 3, 4, 5 }



  

Venn Diagrams

A B

B

1

2

4

5

3

A = { 1, 2, 3 }
B = { 3, 4, 5 }



  

Venn Diagrams

A B

A ∪ B

1

2

4

5

3

A = { 1, 2, 3 }
B = { 3, 4, 5 }

Union

{ 1, 2, 3, 4, 5 }



  

Venn Diagrams

A B

A ∩ B

1

2

4

5

3

A = { 1, 2, 3 }
B = { 3, 4, 5 }

Intersection

{ 3 }



  

Venn Diagrams

A B

A – B

1

2

4

5

3

A = { 1, 2, 3 }
B = { 3, 4, 5 }

Difference

{ 1, 2 }



  

Venn Diagrams

A B

A \ B

1

2

4

5

3

A = { 1, 2, 3 }
B = { 3, 4, 5 }

Difference

{ 1, 2 }



  

Venn Diagrams

A B

A Δ B

1

2

4

5

3

A = { 1, 2, 3 }
B = { 3, 4, 5 }

Symmetric
Difference

{ 1, 2, 4, 5 }



  

Venn Diagrams

A B

A Δ B



  

Venn Diagrams



  

Venn Diagrams for Three Sets



  

Venn Diagrams for Four Sets

A

B C

D

Question to ponder: 
why can't we just 
draw four circles?

Question to ponder: 
why can't we just 
draw four circles?



  

Venn Diagrams for Five Sets



  

Venn Diagrams for Seven Sets

http://moebio.com/research/sevensets/

http://moebio.com/research/sevensets/


  

Subsets and Power Sets



  

Subsets

● A set S is a subset of a set T (denoted 
S ⊆ T) if all elements of S are also 
elements of T.

● Examples:
● { 1, 2, 3 } ⊆ { 1, 2, 3, 4 }
● ℕ ⊆ ℤ   (every natural number is an integer)
● ℤ ⊆ ℝ   (every integer is a real number)



  

What About the Empty Set?

● A set S is a subset of a set T (denoted 
S ⊆ T) if all elements of S are also 
elements of T.

● Is Ø ⊆ S for any set S?
● Yes: This statement true for all sets S.
● Vacuous truth: A statement that is true 

because it does not apply to anything.
● “All unicorns are blue.”
● “All unicorns are pink.”



  

Proper Subsets

● A set S is a subset of a set T (denoted 
S ⊆ T) if all elements of S are also 
elements of T.

● By definition, any set is a subset of itself.
● A proper subset of a set S is a set T 

such that T ⊆ S and T ≠ S.
● There are multiple notations for this: we 

either write T  ⊊ S or T ⊂ S.



  

,,,,

,S = 

℘(S) = 

℘(S) is the 
power set of S 
(the set of all 
subsets of S)

℘(S) is the 
power set of S 
(the set of all 
subsets of S)

Ø



  

What is (Ø)?℘

Answer: {Ø}



  

Cardinalities



  

Cardinality

● The cardinality of a set is the number of 
elements it contains.

● We denote it |S|.
● Examples:

● | { a, b, c, d, e} | = 5
● | { {a, b}, {c, d, e, f, g}, {h} } | = 3
● | { 1, 2, 3, 3, 3, 3, 3 } | = 3
● | { n | n ∈ ℕ and n < 137 } | = 137



  

The Cardinality of ℕ

● What is |ℕ|?
● There are infinitely many natural numbers.
● |ℕ| can't be a natural number, since it's 

infinitely large.

● We need to introduce a new term.

● Definition: |ℕ| = ₀ℵ .
● Pronounced “Aleph-Zero,” “Aleph-Nought,” 

or “Aleph-Null.”



  

Consider the set

S = { x | x ∈ ℕ and x is even }

What is |S|?



  

How Big Are These Sets?

, , ,

, ,,



  

Comparing Cardinalities

● Two sets have the same cardinality if 
their elements can be put into a 
one-to-one correspondence with one 
another.

● The intuition:

, , ,

, ,,



  
,

Comparing Cardinalities

● Two sets have the same cardinality if 
their elements can be put into a 
one-to-one correspondence with one 
another.

● The intuition:

, , ,

,,
We've run out 
of elements in 
the second 

set!



  

Infinite Cardinalities

0 1 2 3 4 5 6 7 8 ...

0 2 4 6 8 10 12 14 16 ...

n ↔ 2n

S = { n | n ∈ ℕ and n is even }

|S| = |ℕ| = ℵ0

ℕ

S



  

Infinite Cardinalities

0 1 2 3 4 5 6 7 8 ...

-3-2-1

ℕ

ℤ 0 1 2 3 4 ...-4

   n ↔ n / 2         (if n is even)
   n ↔ -(n + 1) / 2 (if n is odd)

|ℕ| = |ℤ| = ℵ0



  

Infinite Cardinalities

0 1 2 3 4 5 6 7 ...

1 2 4 8 16 32 64 128 ...

n ↔ 2n

P = { n | n ∈ ℕ and n is a power of two}

|P| = |ℕ| = ℵ0

ℕ

P



  

Important Question

Do all infinite sets have
the same cardinality?



  

Prepare for one of the most beautiful (and 
surprising!) results in mathematics...



  

,,,,

,S = 

℘(S) = Ø
|S| < | (S)|℘



  

,S = 

℘(S) = 

,

, ,

Ø

, , ,

, , , ,

, , ,

|S| < | (S)|℘



  

S = {a, b, c, d}

℘(S) = {
Ø,

{a}, {b}, {c}, {d},
{a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {b, e}

{a, b, c}, {a, b, d}, {a, c, d}, {b, c, d},
{a, b, c, d}

}

|S| < | (℘ S)|



  

If S is infinite, what is
the relation between |S| and | (℘ S)|?

Does |S| = | (℘ S)|?



  

If |S| = | (℘ S)|, there has to be a one-to-one 
correspondence between elements of S and 

subsets of S.

What might this correspondence look like?



  

x0

x2

x3

x4

x5

{ 0, 2, 4, ... }

{ 0, 2, 4, ... }

{ 0, 2, 4, ... }

{ 0, 2, 4, ... }

{ x0, x2, x4, ... }

{ x0, x3, x4, ... }

{ x4, ... }

{ x1, x4, ... }

{ 0, 2, 4, ... }

{ 0, 2, 4, ... }

{ “b”, “ab”, ... }

{ x0, x1, x2, x3, x4, x5, ... }

x1

...

{ x0, x5, ... }

0 1 2 3 4 5 ...x0 x1 x2 x3 x4 x5 ...



  

x0

x2

x3

x4

x5

{ 0, 2, 4, ... }

...

Y Y YN N N …

Y Y Y NN N …

Y NN N N N …

Y Y NN NN …

Y Y NNNN …

Y Y Y Y Y Y …

… … … … … … …

x1

{ 0, 2, 4, ... }{ “b”, “ab”, ... }Y NYN N …N YN

x0 x1 x2 x3 x4 x5 ...



  

{ 0, 2, 4, ... }Y Y YN N N …

Y Y Y NN N …

Y NN N N N …

Y Y NN NN …

Y Y NNNN …

Y Y Y Y Y Y …

… … … … … …

…Y N N N N Y

…...

{ 0, 2, 4, ... }{ “b”, “ab”, ... }Y NYN Y …N YN

x0

x2

x3

x3

x4

x1

x0 x1 x2 x3 x4 x5 ...

Which row in the 
table is paired 
with this set?

Which row in the 
table is paired 
with this set?x4

x5



  

{ 0, 2, 4, ... }Y Y YN N N …

Y Y Y NN N …

Y NN N N N …

Y Y NN NN …

Y Y NNNN …

Y Y Y Y Y Y …

… … … … … …

…Y N N N N Y

…...

{ 0, 2, 4, ... }{ “b”, “ab”, ... }Y NYN Y …N YN

x0

x2

x3

x3

x4

x1

x0 x1 x2 x3 x4 x5 ...

x4

x5

Flip all Y's to 
N's and 

vice-versa to 
get a new set

Flip all Y's to 
N's and 

vice-versa to 
get a new set

N Y Y Y N ...Y



  

The Diagonalization Proof

● The complemented diagonal cannot 
appear anywhere in the table.
● In row n, the nth element must be wrong.

● No matter how we try to assign subsets 
of S to elements of S, there will always 
be at least one subset left over.

● Cantor's Theorem: Every set is strictly 
smaller than its power set:

For any set S, |S| < | (℘ S)|    



  

Infinite Cardinalities

● Recall: |ℕ| = ₀.ℵ
● By Cantor's Theorem:

|ℕ| < | (ℕ)|℘

| (ℕ)| < | ( (ℕ))|℘ ℘ ℘

| ( (ℕ))| < | ( ( (ℕ)))|℘ ℘ ℘ ℘ ℘

| ( ( (ℕ)))| < | ( ( ( (ℕ))))|℘ ℘ ℘ ℘ ℘ ℘ ℘

…

● Not all infinite sets have the same size!
● There are infinitely many infinities!



  

What does this have to do
with computation?



  

“The set of all computer programs”

“The set of all problems to solve”



  

Strings and Problems

● Consider the set of all strings:

{ “”, “a”, “b”, “c”, ..., “aa”, “ab”, “ac,” … }
● For any set of strings S, we can solve the 

following problem about S:

Write a program that accepts as input       
a string, then prints out whether or       

not that string belongs to set S.       
● Therefore, there are at least as many 

problems to solve as there are sets of 
strings.



  

Every computer program is a string.

So, there can't be any more
programs than there are strings.

From Cantor's Theorem, we know that there are 
more sets of strings than strings.

There are at least as many problems
as there are sets of strings.

|Programs| |Strings| |Sets of Strings| |Problems|≤ ≤<



  

|Programs| < |Problems|

Every computer program is a string.

So, there can't be any more
programs than there are strings.

From Cantor's Theorem, we know that there are 
more sets of strings than strings.

There are at least as many problems
as there are sets of strings.



  

There are more 
problems to solve than 
there are programs to 

solve them.



  

It Gets Worse

● Because there are more problems than strings, 
we can't even describe some of the problems 
that we can't solve.
● The set of all English phrases is no larger than the 

set of all strings, which is smaller than the set of 
all problems.

● Using more advanced set theory, we can show 
that there are infinitely more problems than 
solutions.

● In fact, if you pick a totally random problem, 
the probability that you can solve it is zero.



  

But then it gets better...



  

Where We're Going
● Given this hard theoretical limit, what can 

we compute?
● What are the hardest problems we can solve?
● How powerful of a computer do we need to solve 

these problems?
● Of what we can compute, what can we compute 

efficiently?

● What tools do we need to reason about this?
● How do we build mathematical models of 

computation?
● How can we reason about these models?



  

Next Time

● Mathematical Proof
● What is a mathematical proof?
● How can we prove things with certainty?
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