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Announcements

● Problem Set 9 due right now.
– Using a 72-hour extension, due Monday at 2:15PM.

● Problem Set 8 graded, should be returned at the end 
of lecture.

● Final Friday Four Square of the quarter!
– Today at 4:15PM, Outside Gates

● Final exam review sessions this weekend.
– Saturday and Sunday at 2PM in Gates 104

● Please evaluate this course on Axess!  Your 
feedback really does make a difference!
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Imagine what it must have been like to 
discover all of the results in this class.



  

Cantor's Theorem: |S| < | (℘ S)|

Corollary: Unsolvable problems exist.



  

What problems are unsolvable?



  

First, we need to learn
how to prove things.

Otherwise, how can we know for
sure that we're right about anything?



  

Now, we need to learn how to prove things 
about processes that proceed step-by-step.

So let's learn induction.



  

We also should be sure we have some rules 
about how reasoning works.

Let's add some logic into the mix.



  

Okay!  So now we're ready to go!

What problems are unsolvable?



  

Well, first we need a
definition of a computer!
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Cool!  Now we have a model of a computer!



  

We're not quite sure what we can solve at
this point, but that's okay for now.

Let's call the languages we can capture
this way the regular languages.



  

I wonder what other
machines we can make?
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Wow!  Those new machines are
way cooler than our old ones!



  

I wonder if they're more powerful?
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Wow! I guess not. That's surprising!

So now we have a new way of modeling
computers with finite memory!



  

I wonder how we can combine
these machines together?
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Cool!  Since we can glue
machines together, we can glue

languages together as well.



  

How are we going to do that?



  

a+(.a+)*@a+(.a+)+



  

Cool!  We've got a new way
of describing languages.



  

So what sorts of languages
can we describe?
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Awesome!  We got back the
exact same class of languages.



  

It seems like all our models give us the
same power! Did we get every language?
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Wow, I guess not.



  

But we did learn something cool:

We have just explored what problems 
can be solved with finite computers.



  

So what else is out there?



  

Well, what if we add memory
to our machines?



  

int, ε → ε

+, ε → ε
*, ε → ε

ε, Z
0
 → ε

(, ε → ( ), ( → ε

start



  

These machines can do more
than our old machines!



  

Can we describe these
languages another way?



  

S → aX
X → b | C
C → Cc | ε



  

ε, S → 1S
ε, S → 1S1
ε, S → ≥
Σ, Σ → ε

ε, ε → S ε, Z
0
 → Z

0start

S → 1S1
S → 1S
S → ≥



  

Awesome!



  

So did we get every language yet?



  

S

R

u v y z

xv y

R

R

uv2xy2z ∈ L



  

Hmmm... guess not.



  

So what if we make our
memory a little better?
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Wow, these are hard to design.

Is there an easier way?



  

 2: Accept

 0: If reading 0, go to M0.
 1: If reading 1, go to M1.

// M0
 3: Write B.
 4: Move right.
 5: If reading 0, go to 4.
 6: If reading 1, go to 4.
 7: Move left.
 8: If reading 0, go to Next.
 9: Reject.

// M1
10: Write B.
11: Move right.
12: If reading 0, go to 11.
13: If reading 1, go to 11.
14: Move left.
15: If reading 1, go to Next.

// Next

18: Move left.
19: If reading 0, go to 18
20: If reading 1, go to 18
21: Move right
22: Go to Start.

// Start

17: Write B.

16: Reject.



  

0: If reading B, go to 4.
1: If reading 1, go to 5.
2: Move right.
3: Go to 0.
4: Accept.
5: Reject.
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Much better!  So let's add
some new features.



  

// Match
 7: Move tape 2 left until {B}

 8: Move tape 2 right.

10: Write $ to tape 1, track 2.

 9: Move tape 1 right.

13: Load tape 1, track 1 into X.

14: Load tape 2 into Y.

11: If B on tape 2, go to Acc.

12: If B on tape 1, go to Rej.

15: If X = Y, go to 17.

16: Go to Mismatch.

17: Move tape 1 right.

18: Move tape 2 right.

19: Go to 11.

// Mismatch
20: Move tape 1.2 left until {$}

21: Go to Match.

// Acc

// Rej
23: Reject.

22: Accept.



  

Wow!  Looks like we can't
get any more powerful.

(The Church-Turing thesis says
that this is not a coincidence!)



  

So why is that?
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Wow! Our machines can
simulate one another!

This is a theoretical justification
for why all these models are
equivalent to one another.



  

So... can we solve everything yet?
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Oh great.  Some problems
are impossible to solve.



  

So is there just one
problem we can't solve?



  

LD ≤M ATM

ATM ∈ RE

ATM ∉ R



  

Okay... maybe we can't decide
or recognize everything.

Can we at least verify or refute everything?



  

LD ≤ REGULARTM

LD ≤ REGULARTM
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Wow.  That's pretty deep.



  

So... what can we do efficiently?



  

PP



  

NPN P



  

So... how are you two related again?



  

No clue.



  

But what do we know about them?
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What other mysteries remain in
theoretical computer science?



  

A Whole World of Theory Awaits!



  

Theory is all about exploring, 
experimenting, and discovering.

We've barely scratched the surface of 
theoretical computer science.



  

Theory is all about exploring, 
experimenting, and discovering.

We've barely scratched the surface of 
theoretical computer science.



  

Where to Go From Here
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heoret ical

CS154
● Intro to Automata and Complexity 

Theory
● An in-depth treatment of automata, 

computability, and complexity.
● Emphasis on theoretical results in 

automata theory and complexity.
● Launching point for more advanced 

courses (CS254, CS354)
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T
heoret ical

CS258
● Intro to Programming Language 

Theory
● Explore questions of computability in 

terms of recursion and recursive 
functions.

● Excellent complement to the material in 
this course; highly recommended.

● Offered every other year; consider 
checking it out!
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CS109
● Intro to Probability for Computer 

Scientists
● Learn to embrace randomness.
● Use your newly acquired proof skills in 

an entirely different domain.
● See how computers can use statistics to 

learn patterns.
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T
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CS255
● Intro to Cryptography
● Use hard problems to your advantage!
● Explore NP-hardness and its relation to 

cryptography.
● See how to design secure systems out of 

hard problems.



  

A
pplied

T
heoret ical

CS161
● Design and Analysis of Algorithms
● Learn how to approach new problems 

and solve them efficiently.
● Learn how to deal with NP-hardness in 

the real world.
● Learn how to ace job interviews
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CS143
● Compilers
● Watch automata, grammars, 

undecidability, and NP-completeness 
come to life by building a complete 
working compiler from scratch.

● See just how much firepower you can get 
from all this material.
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CS107
● Computer Organization and Systems 
● You don't need to be a theoretician to 

love computer science!
● If you want to learn how the machine 

works under the hood, look no further.



  



  

There are more 
problems to solve than 
there are programs to 

solve them.



  

Where We've Been
● Given this hard theoretical limit, what can 

we compute?
– What are the hardest problems we can solve?
– How powerful of a computer do we need to solve 

these problems?
– Of what we can compute, what can we compute 
efficiently?

● What tools do we need to reason about this?
– How do we build mathematical models of 

computation?
– How can we reason about these models?



  

What We've Covered
● Sets

● Graphs

● Proof Techniques

● Relations

● Functions

● Cardinality

● Induction

● Logic

● Pigeonhole Principle

● Trees

● DFAs

● NFAs

● Regular Expressions

● CFGs

● PDAs

● Pumping Lemmas

● Turing Machines

● R, RE, and co-RE

● Unsolvable Problems

● Reductions

● Time Complexity

● P

● NP

● NP-Completeness



  

My Email Address:

htiek@cs.stanford.edu

mailto:htiek@cs.stanford.edu


  

Final Thoughts
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