

The Big Picture

Announcements

● Problem Set 9 due right now.
– Using a 72-hour extension, due Monday at 2:15PM.

● Problem Set 8 graded, should be returned at the end
of lecture.

● Final Friday Four Square of the quarter!
– Today at 4:15PM, Outside Gates

● Final exam review sessions this weekend.
– Saturday and Sunday at 2PM in Gates 104

● Please evaluate this course on Axess! Your
feedback really does make a difference!

The Big Picture

The Big Picture

Imagine what it must have been like to
discover all of the results in this class.

Cantor's Theorem: |S| < | (℘ S)|

Corollary: Unsolvable problems exist.

What problems are unsolvable?

First, we need to learn
how to prove things.

Otherwise, how can we know for
sure that we're right about anything?

Now, we need to learn how to prove things
about processes that proceed step-by-step.

So let's learn induction.

We also should be sure we have some rules
about how reasoning works.

Let's add some logic into the mix.

Okay! So now we're ready to go!

What problems are unsolvable?

Well, first we need a
definition of a computer!

q
0

q
1

q
2

q
3

0

 1

0

1

0

1 1

0

start

q
2

Cool! Now we have a model of a computer!

We're not quite sure what we can solve at
this point, but that's okay for now.

Let's call the languages we can capture
this way the regular languages.

I wonder what other
machines we can make?

q
1

q
0

start
q

2

q
3

0 1

ε

q
4

0 q
5

0 q
5

q
2

0

1

Wow! Those new machines are
way cooler than our old ones!

I wonder if they're more powerful?

q
1

q
0

start
q

2

q
3

0 1

ε

q
4

0 q
5

0 q
5

q
2

0

1

q
03

start
q

14

0

q

1

q
5

0

q
2

1

q
2

q
5

q
1

 0

1 0

q
3

 1

 0
1

q
4 0

 10
1

0, 1

Wow! I guess not. That's surprising!

So now we have a new way of modeling
computers with finite memory!

I wonder how we can combine
these machines together?

start

ε

ε

ε

start

Cool! Since we can glue
machines together, we can glue

languages together as well.

How are we going to do that?

a+(.a+)*@a+(.a+)+

Cool! We've got a new way
of describing languages.

So what sorts of languages
can we describe?

q
s

q
f

q
f

q
1

q
2

R
12

R
21

R
11

R
22

start ε ε

ε R
11

* R
12

Awesome! We got back the
exact same class of languages.

It seems like all our models give us the
same power! Did we get every language?

q
1

q
2

q
3

q
0

0

1 1

0 1

q
5

1

0

0

 0, 1

0, 1

q
4

start

0 1 1 0 1 1
q

0
q

1
q

2
q

3
q

1
q

2

1
q

4
q

3

Wow, I guess not.

But we did learn something cool:

We have just explored what problems
can be solved with finite computers.

So what else is out there?

Well, what if we add memory
to our machines?

int, ε → ε

+, ε → ε
*, ε → ε

ε, Z
0
 → ε

(, ε → (), (→ ε

start

These machines can do more
than our old machines!

Can we describe these
languages another way?

S → aX
X → b | C
C → Cc | ε

ε, S → 1S
ε, S → 1S1
ε, S → ≥
Σ, Σ → ε

ε, ε → S ε, Z
0
 → Z

0start

S → 1S1
S → 1S
S → ≥

Awesome!

So did we get every language yet?

S

R

u v y z

xv y

R

R

uv2xy2z ∈ L

Hmmm... guess not.

So what if we make our
memory a little better?

q
0

q
0

q
1

q
2

q
3

q
4

q
5

q
acc q

rej

q
1

start q
rej

q
2

q
3

q
4

q
5

B → B, R

0 → B, R

1 → B, R

0 → 0, R
1 → 1, R

B → B, L

0 → 0, R
1 → 1, R

B → B, L

B → B, R

B → B, R

q
acc

 1 → 1, R

 0 → 0, R

0 → B, L

1 → B, L

0 → 0, L
1 → 1, L

B → B, R

Wow, these are hard to design.

Is there an easier way?

 2: Accept

 0: If reading 0, go to M0.
 1: If reading 1, go to M1.

// M0
 3: Write B.
 4: Move right.
 5: If reading 0, go to 4.
 6: If reading 1, go to 4.
 7: Move left.
 8: If reading 0, go to Next.
 9: Reject.

// M1
10: Write B.
11: Move right.
12: If reading 0, go to 11.
13: If reading 1, go to 11.
14: Move left.
15: If reading 1, go to Next.

// Next

18: Move left.
19: If reading 0, go to 18
20: If reading 1, go to 18
21: Move right
22: Go to Start.

// Start

17: Write B.

16: Reject.

0: If reading B, go to 4.
1: If reading 1, go to 5.
2: Move right.
3: Go to 0.
4: Accept.
5: Reject.

0 1 t
12

3

4 5

t
01

t
04

0 → 0, R
1 → 1, R Γ → Γ, L

B → B, R

Γ → Γ, L

a r

t
15

1 → 1, R

Γ → Γ, L

0 → 0, R
B → B, R

2
Γ → Γ, L

t
03

Γ → Γ, R

Γ → Γ, L Γ → Γ, R

Γ → Γ, R Γ → Γ, R

start

a r

Much better! So let's add
some new features.

// Match
 7: Move tape 2 left until {B}

 8: Move tape 2 right.

10: Write $ to tape 1, track 2.

 9: Move tape 1 right.

13: Load tape 1, track 1 into X.

14: Load tape 2 into Y.

11: If B on tape 2, go to Acc.

12: If B on tape 1, go to Rej.

15: If X = Y, go to 17.

16: Go to Mismatch.

17: Move tape 1 right.

18: Move tape 2 right.

19: Go to 11.

// Mismatch
20: Move tape 1.2 left until {$}

21: Go to Match.

// Acc

// Rej
23: Reject.

22: Accept.

Wow! Looks like we can't
get any more powerful.

(The Church-Turing thesis says
that this is not a coincidence!)

So why is that?

0 : M o v ...

...

e l e f t . 1 : G

0 1 x 0 0 A 0 <

o>

...

Simulated tape of the program being executed.

Program tape holding the program being executed.

Scratch tape for intermediate computation.

Variables for intermediate storage.

Instr

>

Letter

Wow! Our machines can
simulate one another!

This is a theoretical justification
for why all these models are
equivalent to one another.

So... can we solve everything yet?

No No Acc Acc No …

Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc …

No Acc Acc Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … …

No No No Acc No Acc …

M
1

M
2

M
0

M
3

M
4

M
5

w
0

w
1

w
2

w
3

w
4

w
5 …

…

Acc

Acc

Acc

No

Acc

No

…

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

Oh great. Some problems
are impossible to solve.

So is there just one
problem we can't solve?

LD ≤M ATM

ATM ∈ RE

ATM ∉ R

Okay... maybe we can't decide
or recognize everything.

Can we at least verify or refute everything?

LD ≤ REGULARTM

LD ≤ REGULARTM

co-RE RE

R

CFL

DCFL

REG

Wow. That's pretty deep.

So... what can we do efficiently?

PP

NPN P

So... how are you two related again?

No clue.

But what do we know about them?

P

 NP NP-Hard
NPC

What other mysteries remain in
theoretical computer science?

A Whole World of Theory Awaits!

Theory is all about exploring,
experimenting, and discovering.

We've barely scratched the surface of
theoretical computer science.

Theory is all about exploring,
experimenting, and discovering.

We've barely scratched the surface of
theoretical computer science.

Where to Go From Here

A
pplied

T
heoret ical

A
pplied

T
heoret ical

CS154
● Intro to Automata and Complexity

Theory
● An in-depth treatment of automata,

computability, and complexity.
● Emphasis on theoretical results in

automata theory and complexity.
● Launching point for more advanced

courses (CS254, CS354)

A
pplied

T
heoret ical

CS258
● Intro to Programming Language

Theory
● Explore questions of computability in

terms of recursion and recursive
functions.

● Excellent complement to the material in
this course; highly recommended.

● Offered every other year; consider
checking it out!

A
pplied

T
heoret ical

CS109
● Intro to Probability for Computer

Scientists
● Learn to embrace randomness.
● Use your newly acquired proof skills in

an entirely different domain.
● See how computers can use statistics to

learn patterns.

A
pplied

T
heoret ical

CS255
● Intro to Cryptography
● Use hard problems to your advantage!
● Explore NP-hardness and its relation to

cryptography.
● See how to design secure systems out of

hard problems.

A
pplied

T
heoret ical

CS161
● Design and Analysis of Algorithms
● Learn how to approach new problems

and solve them efficiently.
● Learn how to deal with NP-hardness in

the real world.
● Learn how to ace job interviews

A
pplied

T
heoret ical

CS143
● Compilers
● Watch automata, grammars,

undecidability, and NP-completeness
come to life by building a complete
working compiler from scratch.

● See just how much firepower you can get
from all this material.

A
pplied

T
heoret ical

CS107
● Computer Organization and Systems
● You don't need to be a theoretician to

love computer science!
● If you want to learn how the machine

works under the hood, look no further.

There are more
problems to solve than
there are programs to

solve them.

Where We've Been
● Given this hard theoretical limit, what can

we compute?
– What are the hardest problems we can solve?
– How powerful of a computer do we need to solve

these problems?
– Of what we can compute, what can we compute
efficiently?

● What tools do we need to reason about this?
– How do we build mathematical models of

computation?
– How can we reason about these models?

What We've Covered
● Sets

● Graphs

● Proof Techniques

● Relations

● Functions

● Cardinality

● Induction

● Logic

● Pigeonhole Principle

● Trees

● DFAs

● NFAs

● Regular Expressions

● CFGs

● PDAs

● Pumping Lemmas

● Turing Machines

● R, RE, and co-RE

● Unsolvable Problems

● Reductions

● Time Complexity

● P

● NP

● NP-Completeness

My Email Address:

htiek@cs.stanford.edu

mailto:htiek@cs.stanford.edu

Final Thoughts

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91

