

Topics in Complexity

Please evaluate this
course on Axess!

Your feedback really
does make a difference.

Applied Complexity Theory

● Complexity theory has enormous
practical relevance across various
domains in CS.

● In this lecture, we'll explore three of
them:
● Hardness of approximation.
● Commitment schemes.
● Zero-knowledge proofs.

Approximation Algorithms

Decision vs. Function Problems

● All of the problems we have encountered this quarter
are decision problems with yes/no answers.

● Many interesting questions do not have yes/no
answers:
● What is 1 + 1?
● How many steps does it take this TM to halt on this

string?
● Which seat can I take?

● These questions are called function problems and
require some object to be found.

NP-Hard Function Problems

● Some function problems are NP-hard: there is a
polynomial-time reduction from any problem in
NP to those problems.

● Examples:
● What is the largest independent set in a graph?
● What is the length of the longest path in a graph?
● What is the minimum number of colors required to

color a graph?
● A polynomial-time solver for any of these could

be used to build a polynomial-time decider for
any problem in NP.

NP-Hard Function Problems

● The maximum independent set
problem (called MAX-INDSET) is

Given a graph G, find an independent
set S in G of the largest possible size.

● MAX-INDSET is NP-hard by a reduction
from independent set:
● M = “On input ⟨G, k⟩:

– Find a maximum independent set in G, call it S.
– If |S| ≥ k, accept; otherwise, reject.”

NP-Hard Function Problems

● Because they can be used to solve any
problem in NP, NP-hard function
problems are believed to be
computationally infeasible.
● If any NP-hard function problem has a

polynomial-time solution, then P = NP.
● Since the P = NP question is still open, no

NP-hard function problems are known to
have polynomial-time solutions.

Approximation Algorithms

● An approximation algorithm is an algorithm for
yielding a solution that is “close” to the correct
solution to a problem.

● The definition of “close” depends on the problem:
● Maximum independent set: Find an independent set

that is not “much smaller” than the maximum
independent set.

● Longest path: Find a long path that is not “much
smaller” than the longest path.

● Graph coloring: Find a coloring of the graph that
does not use “many more” colors than the optimal
coloring.

How Good is an Approximation?

● Approximation algorithms are only useful if
there is some connection between the
approximate answer and the real answer.

● We say that an approximation algorithm is a
k-approximation if its answer is always within
a factor of k of the optimal solution.
● A 2-approximation to the graph coloring

problem always finds a coloring that uses at
most twice the optimal number of colors.

● A 2/3-approximation to the longest path
problem always finds a path that is at least 2/3
as long as the optimal path.

Why Approximations Matter

● Recall from last time: the job scheduling problem is
NP-hard:

Given a set of tasks and a set of workers to
perform the tasks, how do you distribute tasks
to workers to minimize the total time required

(assuming the workers work in parallel?)

● Although finding an optimal solution is NP-hard, there
are polynomial-time algorithms for finding
4/3-approximate solutions.

● If we just need a “good enough” answer, the NP-
hardness of job scheduling is not a deterrent to its use.

A Hamiltonian cycle in an undirected graph G is
a simple cycle that visits every node in G.

Hamiltonian Cycles

● The undirected Hamiltonian cycle problem is

Given an undirected graph G,
does G contain a Hamiltonian cycle?

● As a formal language:

UHAMCYCLE = { ⟨G⟩ | G is an undirected graph
containing a Hamiltonian cycle }

● Important fact: UHAMCYCLE is NP-complete.
● Reduction from UHAMPATH.

10

11

15

 6

8 14

Given a complete, undirected, weighted graph G,
the traveling salesman problem (TSP) is to find

a Hamiltonian cycle in G of least total cost.

Cost: 39

(This is the optimal solution)

TSP, Formally

● Given as input
● A complete, undirected graph G, and
● a set of edge weights, which are positive

integers,

the TSP is to find a Hamiltonian cycle in
G with least total weight.

● Note that since G is complete, there has
to be at least one Hamiltonian cycle. The
challenge is finding the least-cost cycle.

TSP

● There are many variations on TSP:
● Directed versus undirected graphs.
● Complete versus incomplete graphs.
● Finding a path versus finding a cycle.
● Nonnegative weights versus arbitrary weights.

● All of these problems are known to be NP-
hard.

● The best-known algorithms have horrible
runtimes: O(n22n).

TSP is NP-Hard

● To show that TSP is NP-hard, we reduce the
undirected Hamiltonian cycle problem to TSP.

Cost 1

Cost 2

If there is a Hamiltonian cycle in the original
graph, there is a TSP solution of cost n in the
new graph (where n is the number of nodes)

If there is no Hamiltonian cycle, the TSP
solution has cost at least n + 1.

Answering TSP

● TSP has great practical importance, and
we want to be able to answer it.
● Determining the shortest subway routes to

link stations in a ring.
● Determining the fastest way to move a

mechanical drill so it can drill in the
appropriate locations.

● Because TSP is NP-hard, obtaining an
exact answer is impractically hard.

● Can we approximate it?

Approximating TSP

● An approximation algorithm to TSP is a
k-approximation if it finds a Hamiltonian cycle
whose cost is at most k times the optimal
solution.
● If the optimal solution has cost 10, a 2-approximation

would return a Hamiltonian cycle of cost between 10
and 20, inclusive.

● If the optimal solution has cost 10, a 3-approximation
would return a Hamiltonian cycle of cost between 10
and 30, inclusive.

● For what values of k is there an efficient
k-approximation to TSP?

Theorem: If P ≠ NP, then there is no
polynomial-time k-approximation to TSP

for any natural number k.

Hardness of Approximation

● The proof that TSP is hard to approximate is
based on a beautiful construction:

If we could obtain a k-approximation to
TSP in polynomial-time, we would have a

polynomial-time algorithm for
UHAMCYCLE.

● Since UHAMCYCLE is NP-complete, this is a
contradiction if P ≠ NP.

The Construction

● Proof Sketch: Suppose, for the sake of
contradiction, that there is a k-approximation
to TSP for some k.

Cost 1

Cost kn + 1

If the original graph of n nodes
has a Hamiltonian cycle, the

TSP solution has cost n.

The k-approximation algorithm
thus must hand back a

Hamiltonian cycle of cost at
most kn.

What if we made the cost of
the red edges so large that any
solution using them must cost

more than this?

The Construction

● Proof Sketch: Suppose, for the sake of
contradiction, that there is a k-approximation
to TSP for some k.

Cost 1

Cost kn + 1

If the k-approximation hands
back a solution of cost at most

kn, the original graph has a
Hamiltonian cycle.

If the k-approximation hands
back a solution of cost at least

kn + 1, the original graph has no
Hamiltonian cycles.

What Just Happened?

Cost of a “yes”
answer.

Cost of the
best possible
“no” answer.

k times the cost
of a “yes”
answer.Cost of

optimal TSP
solution

What Just Happened?

● Create an enormous gap between the
TSP answer for “yes” and “no” instances
of the Hamiltonian cycle problem.

● Make the gap so large that the worst
possible k-approximate answer to a “yes”
instance is distinguishable from the best
possible “no” instance.

● Decide whether there is a Hamiltonian
cycle by measuring this difference.

The PCP Theorem

Approximating 3SAT

● 3SAT is a canonical NP-complete
problems.

● What would it mean to approximate a
3SAT answer?

Approximating 3SAT

● The MAX-3SAT problem is

Given a 3CNF formula φ, find a satisfying
assignment the maximizes the number of

satisfied clauses.
● Idea: If we can satisfy the entire formula, then

MAX-3SAT finds a satisfying assignment. If not,
MAX-3SAT finds the “best” assignment that it can.

● There is a known randomized 7/8-approximation
algorithm for MAX-3SAT.

● Is it possible to do better?

The 3-CNF Value

● If φ is a 3-CNF formula, the value of φ
(denoted val(φ)) is the fraction of the
clauses of φ that can be simultaneously
satisfied by any assignment.

● If φ is satisfiable, val(φ) = 1.
● All of the clauses are satisfiable.

● If φ is unsatisfiable, val(φ) < 1.
● Some (but not all) clauses can be satisfied.

The PCP Theorem

For any language L ∈ NP,

 There exists a poly-time reduction f from L to MAX-3SAT so

 For any string w:

 If w ∈ L, then val(f(w)) = 1.

 If w ∉ L, then val(f(w)) < 7/8.

If the original answer
is “yes,” the 3-CNF
formula is satisfiable.

If the original answer is
“no,” fewer than 7/8 of

the clauses can be
satisfied.

What Does This Mean?

● Our proof that (unless P = NP) TSP cannot be
efficiently approximated works by building up a
gap between “yes” answers and “no” answers.

● The PCP theorem states that any problem in NP
can be reduced to MAX-3SAT such that

● All of the clauses are satisfiable if the original
answer is “yes.”

● Fewer than 7/8 of the clauses are satisfiable if the
answer is “no.”

Theorem: If P ≠ NP, then for any
r ≥ 7/8, there is no polynomial-time

r-approximation to MAX-3SAT.

MAX-3SAT is Inapproximable

Fraction of
Satisfiable
Clauses

7/8

Fraction satisfiable in a “yes”
answer

Fraction satisfiable in a “no”
answer

r times the fraction
satisfiable in a “yes” answer

Theorem: If P ≠ NP, then
for any r ≥ 7/8, there is no

polynomial-time
r-approximation to MAX-

3SAT.

Effects on Approximability

● Assuming P ≠ NP, there is a limit to how well
we can approximate 3SAT.

● Look at our reduction from 3SAT to INDSET:

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

x

y

¬z ¬x

¬y

z ¬x

y

¬z

Effects on Approximability

● Many reductions preserve the size of some
difficult-to-approximate quantity.

● Assuming if P ≠ NP:
● Because MAX-3SAT is not efficiently 7/8-

approximable, MAX-INDSET is not efficiently 7/8-
approximable either.

● Because MAX-INDSET is not efficiently 7/8-
approximable, MAX-SETPACK is not efficiently 7/8-
approximable.

● Not all reductions have this property; some NP-
hard problems can be efficiently approximated to
very high precision.

Proving the PCP Theorem

Summary of Approximability

● While many NP-hard problems can be
efficiently approximated, certain NP-hard
problems cannot unless P = NP.

● Efficiently approximating some NP-hard
problems too well would solve NP-
complete problems.

● The PCP theorem states that the gap
between yes and no answers can be so
large that approximating the solution
would essentially solve the problem.

NP-Completeness and Cryptography

Cryptography

● Cryptography is the study of sending and
receiving messages securely.

● Studies questions like
● How can I send a message to you such that no

one else can decode that message?
● How can I convince you that I know something

without revealing what that something is?
● How can we exchange secret information while

people are watching?
● Strong practical relevance and huge

theoretical underpinnings.

Commitment Scheme

● A commitment scheme is a
cryptographic protocol that allows
someone to
● commit to making some choice (without

revealing what that choice is), and later
● reveal what that choice was later on.

● Think about the “guess the number
game.”

● Lots of practical applications; we'll see
one in a minute.

One-Way Functions

● A one-way function is a function f : Σ* → Σ*
with the following properties:
● |f(x)| = |x| (the function always maps input

strings to output strings of the same length).
● Given x ∈ Σ*, f(x) can be computed in

polynomial time.
● Given y ∈ Σ*, there is no polynomial-time

algorithm for finding some x ∈ Σ* such that
f(x) = y.

● In other words, it is easy to evaluate the
function, but difficult to invert the function.

One-Way Functions and Commitments

● Given a one-way injective function f, it is easy to
build a commitment scheme:
● To commit to a choice x, compute f(x) and share it

with everyone.
● To reveal a commitment, reveal x. We can verify the

commitment by computing f(x).
● (There are some other details here I'm glossing over;

take CS255 for a more thorough construction.)
● Given just f(x), there is no efficient algorithm for

recovering x.

Do one-way functions exist?

 Theorem: If a one-way function f exists,
 then P ≠ NP.

One-Way Functions

● Theorem: If a one-way function f exists,
then P ≠ NP.

● To prove this, we can do the following:
● Construct a language L based on the

behavior of f.
● Show L ∈ NP.
● Show L ∉ P.

One-Way Functions

● Suppose f : Σ* → Σ* is a one-way function.

● Consider the language Lf:

Lf = { ⟨y, w⟩ | ∃x ∈ Σ*. f(wx) = y }

● In other words, w can be extended into a string
that maps to y.

● Lf ∈ NP, since we could build a polynomial-time
verifier for it.
● (How?)

Lf = { ⟨y, w⟩ | ∃x ∈ Σ*. f(wx) = y }

● Suppose that Lf ∈ P.

● Then given y, we can find an x where f(x) = y in
polynomial time.

Polynomial-Time
Decider for L

f

⟨100101,011000⟩
Yes

No

100101011001
x f(x)

Why This Matters

● Many building blocks in cryptography
have not been proven to exist.

● Sometimes, their existence implies
P ≠ NP.

● These are not purely theoretical
complexity classes!

Zero-Knowledge Proofs

Bob (Bank customer) Eric (Evil bank employee)

Hi! I'm Bob! I'd
like to withdraw
money from my

account!

Sure! But in order to
prove that you're Bob,
you need to give me

your password!

Bob (Bank customer) Eric (Evil bank employee)

Sure! It's
ILIKEMONEY

Okay Bob! Here's
your money!

Eric (Evil bank employee)

Hi! I'm Bob! I'd
like to withdraw
money from my

account!

Sure! But in order to
prove that you're Bob,
you need to give me

your password!

Alice (Bank employee)

Eric (Evil bank employee)

Sure! It's
ILIKEMONEY

Okay Bob! Here's
your money!

Alice (Bank employee)

Authentication

● In many cases, someone needs to
authenticate by proving that they are
who they claim to be.

● Passwords are a common solution, but
are seriously flawed.

● Is there a better way to do this?

Zero-Knowledge Proofs

● A zero-knowledge proof is a system in which one
party (the prover) can convince a second party
(the verifier) that the prover has some knowledge
without the verifier ever learning that knowledge.

● In other words:
● The verifier wants to check that the prover knows

something.
● The prover convinces the verifier beyond a

reasonable doubt that they do indeed know
something.

● At the end, the verifier has not learned any
information.

Zero-Knowledge Proofs and Passwords

● Zero-Knowledge proofs can be used as a
nifty replacement for passwords.

● To log in to a system, you (the prover)
can convince that system (the verifier)
that you are who you claim to be.

● In doing so, the verifier could not
impersonate you later on.

How can you possibly build a zero-
knowledge proof system?

Where's Waldo?

Source: http://www.findwaldo.com/maps/gluttons/gluttons_small.jpg

http://www.findwaldo.com/maps/gluttons/gluttons_small.jpg

Zero-Knowledge Proofs of Waldo

● Suppose that I know with certainty
where Waldo is.

● I want to convince you that I know his
location without revealing his position.

● This is a zero-knowledge proof for
“Where's Waldo?”

● How might I do this?

Zero-Knowledge Proofs of Waldo

● If I know where Waldo is, I can position
the book under the cardboard so that you
can see Waldo, but not where he is
relative to the rest of the picture.

● You only learn that I know where Waldo
is, but you already knew that!

● If I don't know where Waldo is, you will
discover this very quickly!

A More Elaborate Zero-Knowledge Proof

3-Colorability

● Recall: An undirected graph G is called
3-colorable iff each of its nodes can be
colored one of three colors such that no two
nodes of the same color are connected by an
edge.

● 3COLOR is the language of all 3-colorable
graphs.

● Recall: 3COLOR is NP-complete.

3-Colorability

● Since 3COLOR is NP-complete, it is
believed that there is no efficient algorithm
for finding a 3-coloring for an arbitrary
graph.

● However, it is easy to verify that a 3-
colorable graph is indeed 3-colorable if you
already know the coloring.

● Could we build a zero-knowledge proof from
this?

Zero-Knowledge and 3COLOR

● Idea: Assign each person a random graph
that is known to be 3-colorable.

● Tell each person how to 3-color that graph.
● To authenticate, the prover convinces the

verifier that they can 3-color the graph, but
does so without revealing the coloring.
● Details in a minute.

Bob (Bank
customer)

Eric (Evil bank
employee)

Hi! I'm Bob! I'd
like to withdraw
money from my

account!

Sure! But first you
must prove that you

are Bob.

Bob (Bank
customer)

Eric (Evil bank
employee)

If you really are Bob,
you should be able to

3-color this graph.

Bob (Bank
customer)

Eric (Evil bank
employee)

? ?

???

?
Key insight one:
Bob can commit
to the colors of
the nodes without
actually revealing
those colors.

Key insight one:
Bob can commit
to the colors of
the nodes without
actually revealing
those colors.

Bob (Bank
customer)

Eric (Evil bank
employee)

? ?

???

?

What colors are
these nodes?

Bob (Bank
customer)

Eric (Evil bank
employee)

?

??

?

What colors are
these nodes?

Bob (Bank
customer)

Eric (Evil bank
employee)

?

??

? If Bob doesn't know how
to 3-color the graph,
there's a chance that
these nodes will be the

same color. In that case,
Eric knows Bob is lying.

If Eric repeats this a few
times and the colors are
always different, Eric can
be confident that Bob

really knows the coloring.

If Bob doesn't know how
to 3-color the graph,
there's a chance that
these nodes will be the

same color. In that case,
Eric knows Bob is lying.

If Eric repeats this a few
times and the colors are
always different, Eric can
be confident that Bob

really knows the coloring.

Bob (Bank
customer)

Eric (Evil bank
employee)

? ?

???

?

What colors are
these nodes?

Bob (Bank
customer)

Eric (Evil bank
employee)

?

??

?

Bob (Bank
customer)

Eric (Evil bank
employee)

? ?

???

?

What colors are
these nodes?

Bob (Bank
customer)

Eric (Evil bank
employee)

? ?

??

Bob (Bank
customer)

Eric (Evil bank
employee)

Uh oh! Eric now knows
the complete coloring!

How can we address this?

Uh oh! Eric now knows
the complete coloring!

How can we address this?

Legal 3-Colorings

Bob (Bank
customer)

Eric (Evil bank
employee)

Hi! I'm Bob! I'd
like to withdraw
money from my

account!

Sure! But first you
must prove that you

are Bob.

Bob (Bank
customer)

Eric (Evil bank
employee)

If you really are Bob,
you should be able to

3-color this graph.

Bob (Bank
customer)

Eric (Evil bank
employee)

Bob (Bank
customer)

Eric (Evil bank
employee)

? ?

???

?

Bob (Bank
customer)

Eric (Evil bank
employee)

?

??

?

What colors are
these nodes?

Bob (Bank
customer)

Eric (Evil bank
employee)

Bob (Bank
customer)

Eric (Evil bank
employee)

Bob (Bank
customer)

Eric (Evil bank
employee)

?

??

?

What colors are
these nodes?

Bob (Bank
customer)

Eric (Evil bank
employee)

Bob (Bank
customer)

Eric (Evil bank
employee)

Bob (Bank
customer)

Eric (Evil bank
employee)

?

??

?

What colors are
these nodes?

Bob (Bank
customer)

Eric (Evil bank
employee)

?

??

?

Bob (Bank
customer)

Eric (Evil bank
employee)

Bob (Bank
customer)

Eric (Evil bank
employee)

Bob (Bank
customer)

Eric (Evil bank
employee)

? ?

???

?

Bob (Bank
customer)

Eric (Evil bank
employee)

? ?

??
What colors are
these nodes?

Bob (Bank
customer)

Eric (Evil bank
employee)

Okay Bob! Here's
your money!

Alice (Bank
employee)

Hi! I'm Bob! I'd
like to withdraw
money from my

account!

Sure! But first you
must prove that you

are Bob.

Eric (Evil bank
employee)

If you really are Bob,
you should be able to

3-color this graph.

Alice (Bank
employee)

Eric (Evil bank
employee)

Alice (Bank
employee)

Eric (Evil bank
employee)

? ?

???

?

Alice (Bank
employee)

Eric (Evil bank
employee)

?

??

?

Alice (Bank
employee)

Eric (Evil bank
employee)

Alice (Bank
employee)

Eric (Evil bank
employee)

Alice (Bank
employee)

Eric (Evil bank
employee)

Alice (Bank
employee)

Eric (Evil bank
employee)

? ?

?

?

Alice (Bank
employee)

Eric (Evil bank
employee)

? ?

?

?

You are a lying liar
who lies!

Grrr! Aaargh!

Why This Works

● At each step, Eric (the verifier) will see one of two
things:

● Two nodes of the same color connected by an edge
(so Bob (the prover) is definitely lying).

● Two nodes of different colors connected by an edge.
Eric already knew that this would have to happen in
a 3-coloring, and can't use the specific colors to
reconstruct a 3-coloring of the graph.

● After a “large number” of rounds, Eric can
conclude, with extremely high probability, that Bob
is not lying.

● No matter how long Eric does this, he will never
learn Bob's coloring.

Why This Matters

● This whole scheme is wrapped up in P
and NP.
● Searching for a commitment scheme led us

to one-way functions. If a one-way function
exists, then P ≠ NP.

● Building a zero-knowledge proof required us
to use a NP-complete problem:
– NP-completeness probably means “impossible to

solve efficiently.”
– Membership in NP means “efficiently verifiable.”

Summary

● Some NP-complete problems cannot even be
approximated by a polynomial-time algorithm
(unless P = NP).

● The PCP theorem shows that many fundamental
NP-complete problems are hard to approximate
(assuming P ≠ NP).

● Cryptography makes extensive use of hard
problems as building blocks for secure
communication.

● Zero-knowledge proofs and commitment
schemes are intimately connected with P and NP,
but use hard problems to build secure systems.

Next Time

● The Big Picture
● How does everything fit together?

● Where to Go from Here
● What's next in theoretical computer science?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111

