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Applied Complexity Theory

● Complexity theory has enormous 
practical relevance across various 
domains in CS.

● In this lecture, we'll explore three of 
them:
● Hardness of approximation.
● Commitment schemes.
● Zero-knowledge proofs.



  

Approximation Algorithms



  

Decision vs. Function Problems

● All of the problems we have encountered this quarter 
are decision problems with yes/no answers.

● Many interesting questions do not have yes/no 
answers:
● What is 1 + 1?
● How many steps does it take this TM to halt on this 

string?
● Which seat can I take?

● These questions are called function problems and 
require some object to be found.



  

NP-Hard Function Problems

● Some function problems are NP-hard: there is a 
polynomial-time reduction from any problem in 
NP to those problems.

● Examples:
● What is the largest independent set in a graph?
● What is the length of the longest path in a graph?
● What is the minimum number of colors required to 

color a graph?
● A polynomial-time solver for any of these could 

be used to build a polynomial-time decider for 
any problem in NP.



  

NP-Hard Function Problems

● The maximum independent set 
problem (called MAX-INDSET) is

Given a graph G, find an independent
set S in G of the largest possible size.

● MAX-INDSET is NP-hard by a reduction 
from independent set:
● M = “On input ⟨G, k⟩:

– Find a maximum independent set in G, call it S.
– If |S| ≥ k, accept; otherwise, reject.”



  

NP-Hard Function Problems

● Because they can be used to solve any 
problem in NP, NP-hard function 
problems are believed to be 
computationally infeasible.
● If any NP-hard function problem has a 

polynomial-time solution, then P = NP.
● Since the P = NP question is still open, no 

NP-hard function problems are known to 
have polynomial-time solutions.



  

Approximation Algorithms

● An approximation algorithm is an algorithm for 
yielding a solution that is “close” to the correct 
solution to a problem.

● The definition of “close” depends on the problem:
● Maximum independent set: Find an independent set 

that is not “much smaller” than the maximum 
independent set.

● Longest path: Find a long path that is not “much 
smaller” than the longest path.

● Graph coloring: Find a coloring of the graph that 
does not use “many more” colors than the optimal 
coloring.



  

How Good is an Approximation?

● Approximation algorithms are only useful if 
there is some connection between the 
approximate answer and the real answer.

● We say that an approximation algorithm is a
k-approximation if its answer is always within 
a factor of k of the optimal solution.
● A 2-approximation to the graph coloring 

problem always finds a coloring that uses at 
most twice the optimal number of colors.

● A 2/3-approximation to the longest path 
problem always finds a path that is at least 2/3 
as long as the optimal path.



  

Why Approximations Matter

● Recall from last time: the job scheduling problem is 
NP-hard:

Given a set of tasks and a set of workers to
perform the tasks, how do you distribute tasks
to workers to minimize the total time required 

(assuming the workers work in parallel?)

● Although finding an optimal solution is NP-hard, there 
are polynomial-time algorithms for finding 
4/3-approximate solutions.

● If we just need a “good enough” answer, the NP-
hardness of job scheduling is not a deterrent to its use.



  

A Hamiltonian cycle in an undirected graph G is
a simple cycle that visits every node in G.



  

Hamiltonian Cycles

● The undirected Hamiltonian cycle problem is

Given an undirected graph G,
does G contain a Hamiltonian cycle?

● As a formal language:

UHAMCYCLE = { ⟨G⟩ | G is an undirected graph 
containing a Hamiltonian cycle }

● Important fact: UHAMCYCLE is NP-complete.
● Reduction from UHAMPATH.
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Given a complete, undirected, weighted graph G, 
the traveling salesman problem (TSP) is to find 

a Hamiltonian cycle in G of least total cost.

Cost: 39

(This is the optimal solution)



  

TSP, Formally

● Given as input
● A complete, undirected graph G, and
● a set of edge weights, which are positive 

integers,

the TSP is to find a Hamiltonian cycle in 
G with least total weight.

● Note that since G is complete, there has 
to be at least one Hamiltonian cycle.  The 
challenge is finding the least-cost cycle.



  

TSP

● There are many variations on TSP:
● Directed versus undirected graphs.
● Complete versus incomplete graphs.
● Finding a path versus finding a cycle.
● Nonnegative weights versus arbitrary weights.

● All of these problems are known to be NP-
hard.

● The best-known algorithms have horrible 
runtimes: O(n22n).



  

TSP is NP-Hard

● To show that TSP is NP-hard, we reduce the 
undirected Hamiltonian cycle problem to TSP.

Cost 1

Cost 2

If there is a Hamiltonian cycle in the original 
graph, there is a TSP solution of cost n in the 
new graph (where n is the number of nodes)

If there is no Hamiltonian cycle, the TSP 
solution has cost at least n + 1.



  

Answering TSP

● TSP has great practical importance, and 
we want to be able to answer it.
● Determining the shortest subway routes to 

link stations in a ring.
● Determining the fastest way to move a 

mechanical drill so it can drill in the 
appropriate locations.

● Because TSP is NP-hard, obtaining an 
exact answer is impractically hard.

● Can we approximate it?



  

Approximating TSP

● An approximation algorithm to TSP is a 
k-approximation if it finds a Hamiltonian cycle 
whose cost is at most k times the optimal 
solution.
● If the optimal solution has cost 10, a 2-approximation 

would return a Hamiltonian cycle of cost between 10 
and 20, inclusive.

● If the optimal solution has cost 10, a 3-approximation 
would return a Hamiltonian cycle of cost between 10 
and 30, inclusive.

● For what values of k is there an efficient
k-approximation to TSP?



  

Theorem: If P ≠ NP, then there is no
polynomial-time k-approximation to TSP

for any natural number k.



  

Hardness of Approximation

● The proof that TSP is hard to approximate is 
based on a beautiful construction:

If we could obtain a k-approximation to
TSP in polynomial-time, we would have a 

polynomial-time algorithm for 
UHAMCYCLE.

● Since UHAMCYCLE is NP-complete, this is a 
contradiction if P ≠ NP.



  

The Construction

● Proof Sketch: Suppose, for the sake of 
contradiction, that there is a k-approximation 
to TSP for some k.

Cost 1  

Cost kn + 1

If the original graph of n nodes 
has a Hamiltonian cycle, the 

TSP solution has cost n.

The k-approximation algorithm 
thus must hand back a 

Hamiltonian cycle of cost at 
most kn.

What if we made the cost of 
the red edges so large that any 
solution using them must cost 

more than this?



  

The Construction

● Proof Sketch: Suppose, for the sake of 
contradiction, that there is a k-approximation 
to TSP for some k.

Cost 1  

Cost kn + 1

If the k-approximation hands 
back a solution of cost at most 

kn, the original graph has a 
Hamiltonian cycle.

If the k-approximation hands 
back a solution of cost at least 

kn + 1, the original graph has no 
Hamiltonian cycles.



  

What Just Happened?

Cost of a “yes” 
answer.

Cost of the 
best possible 
“no” answer.

k times the cost 
of a “yes” 
answer.Cost of 

optimal TSP 
solution



  

What Just Happened?

● Create an enormous gap between the 
TSP answer for “yes” and “no” instances 
of the Hamiltonian cycle problem.

● Make the gap so large that the worst 
possible k-approximate answer to a “yes” 
instance is distinguishable from the best 
possible “no” instance.

● Decide whether there is a Hamiltonian 
cycle by measuring this difference.



  

The PCP Theorem



  

Approximating 3SAT

● 3SAT is a canonical NP-complete 
problems.

● What would it mean to approximate a 
3SAT answer?



  

Approximating 3SAT

● The MAX-3SAT problem is

Given a 3CNF formula φ, find a satisfying 
assignment the maximizes the number of 

satisfied clauses.
● Idea: If we can satisfy the entire formula, then 

MAX-3SAT finds a satisfying assignment.  If not, 
MAX-3SAT finds the “best” assignment that it can.

● There is a known randomized 7/8-approximation 
algorithm for MAX-3SAT.

● Is it possible to do better?



  

The 3-CNF Value

● If φ is a 3-CNF formula, the value of φ 
(denoted val(φ)) is the fraction of the 
clauses of φ that can be simultaneously 
satisfied by any assignment.

● If φ is satisfiable, val(φ) = 1.
● All of the clauses are satisfiable.

● If φ is unsatisfiable, val(φ) < 1.
● Some (but not all) clauses can be satisfied.



  

The PCP Theorem

For any language L ∈ NP,

    There exists a poly-time reduction f from L to MAX-3SAT so 

        For any string w:

         If w ∈ L, then val(f(w)) = 1.

         If w ∉ L, then val(f(w)) < 7/8.

If the original answer 
is “yes,” the 3-CNF 
formula is satisfiable.

If the original answer is 
“no,” fewer than 7/8 of 

the clauses can be 
satisfied.



  

What Does This Mean?

● Our proof that (unless P = NP) TSP cannot be 
efficiently approximated works by building up a 
gap between “yes” answers and “no” answers.

● The PCP theorem states that any problem in NP 
can be reduced to MAX-3SAT such that

● All of the clauses are satisfiable if the original 
answer is “yes.”

● Fewer than 7/8 of the clauses are satisfiable if the 
answer is “no.”



  

Theorem: If P ≠ NP, then for any 
r ≥ 7/8, there is no polynomial-time

r-approximation to MAX-3SAT.



  

MAX-3SAT is Inapproximable

Fraction of 
Satisfiable 
Clauses

7/8

Fraction satisfiable in a “yes” 
answer

Fraction satisfiable in a “no” 
answer

r times the fraction 
satisfiable in a “yes” answer

Theorem: If P ≠ NP, then 
for any r ≥ 7/8, there is no 

polynomial-time
r-approximation to MAX-

3SAT.



  

Effects on Approximability

● Assuming P ≠ NP, there is a limit to how well 
we can approximate 3SAT.

● Look at our reduction from 3SAT to INDSET:

( x ∨ y ∨ ¬z ) ( ¬x ∨ ¬y ∨ z )∧ ∧ ( ¬x ∨ y ∨ ¬z )

x

y

¬z ¬x

¬y

z ¬x

y

¬z



  

Effects on Approximability

● Many reductions preserve the size of some 
difficult-to-approximate quantity.

● Assuming if P ≠ NP:
● Because MAX-3SAT is not efficiently 7/8-

approximable, MAX-INDSET is not efficiently 7/8-
approximable either.

● Because MAX-INDSET is not efficiently 7/8-
approximable, MAX-SETPACK is not efficiently 7/8-
approximable.

● Not all reductions have this property; some NP-
hard problems can be efficiently approximated to 
very high precision.



  

Proving the PCP Theorem



  



  



  

Summary of Approximability

● While many NP-hard problems can be 
efficiently approximated, certain NP-hard 
problems cannot unless P = NP.

● Efficiently approximating some NP-hard 
problems too well would solve NP-
complete problems.

● The PCP theorem states that the gap 
between yes and no answers can be so 
large that approximating the solution 
would essentially solve the problem.



  

NP-Completeness and Cryptography



  

Cryptography

● Cryptography is the study of sending and 
receiving messages securely.

● Studies questions like
● How can I send a message to you such that no 

one else can decode that message?
● How can I convince you that I know something 

without revealing what that something is?
● How can we exchange secret information while 

people are watching?
● Strong practical relevance and huge 

theoretical underpinnings.



  

Commitment Scheme

● A commitment scheme is a 
cryptographic protocol that allows 
someone to
● commit to making some choice (without 

revealing what that choice is), and later
● reveal what that choice was later on.

● Think about the “guess the number 
game.”

● Lots of practical applications; we'll see 
one in a minute.



  

One-Way Functions

● A one-way function is a function f : Σ* → Σ* 
with the following properties:
● |f(x)| = |x| (the function always maps input 

strings to output strings of the same length).
● Given x ∈ Σ*, f(x) can be computed in 

polynomial time.
● Given y ∈ Σ*, there is no polynomial-time 

algorithm for finding some x ∈ Σ* such that 
f(x) = y.

● In other words, it is easy to evaluate the 
function, but difficult to invert the function.



  

One-Way Functions and Commitments

● Given a one-way injective function f, it is easy to 
build a commitment scheme:
● To commit to a choice x, compute f(x) and share it 

with everyone.
● To reveal a commitment, reveal x.  We can verify the 

commitment by computing f(x).
● (There are some other details here I'm glossing over; 

take CS255 for a more thorough construction.)
● Given just f(x), there is no efficient algorithm for 

recovering x.



  

Do one-way functions exist?



  

   Theorem: If a one-way function f exists,
                     then P ≠ NP.



  

One-Way Functions

● Theorem: If a one-way function f exists, 
then P ≠ NP.

● To prove this, we can do the following:
● Construct a language L based on the 

behavior of f.
● Show L ∈ NP.
● Show L ∉ P.



  

One-Way Functions

● Suppose f : Σ* → Σ* is a one-way function.

● Consider the language Lf:

Lf = { ⟨y, w⟩ | ∃x ∈ Σ*. f(wx) = y }

● In other words, w can be extended into a string 
that maps to y.

● Lf ∈ NP, since we could build a polynomial-time 
verifier for it.
● (How?)



  

Lf = { ⟨y, w⟩ | ∃x ∈ Σ*. f(wx) = y }

● Suppose that Lf ∈ P.

● Then given y, we can find an x where f(x) = y in 
polynomial time.

Polynomial-Time
Decider for L

f

⟨100101,011000⟩
Yes

No

100101011001
x f(x)



  

Why This Matters

● Many building blocks in cryptography 
have not been proven to exist.

● Sometimes, their existence implies 
P ≠ NP.

● These are not purely theoretical 
complexity classes!



  

Zero-Knowledge Proofs



  

Bob (Bank customer) Eric (Evil bank employee)

Hi!  I'm Bob!  I'd
like to withdraw
money from my

account!

Sure!  But in order to
prove that you're Bob,
you need to give me

your password!



  

Bob (Bank customer) Eric (Evil bank employee)

Sure!  It's
ILIKEMONEY

Okay Bob!  Here's
your money!



  

Eric (Evil bank employee)

Hi!  I'm Bob!  I'd
like to withdraw
money from my

account!

Sure!  But in order to
prove that you're Bob,
you need to give me

your password!

Alice (Bank employee)



  

Eric (Evil bank employee)

Sure!  It's
ILIKEMONEY

Okay Bob!  Here's
your money!

Alice (Bank employee)



  

Authentication

● In many cases, someone needs to 
authenticate by proving that they are 
who they claim to be.

● Passwords are a common solution, but 
are seriously flawed.

● Is there a better way to do this?



  

Zero-Knowledge Proofs

● A zero-knowledge proof is a system in which one 
party (the prover) can convince a second party 
(the verifier) that the prover has some knowledge 
without the verifier ever learning that knowledge.

● In other words:
● The verifier wants to check that the prover knows 

something.
● The prover convinces the verifier beyond a 

reasonable doubt that they do indeed know 
something.

● At the end, the verifier has not learned any 
information.



  

Zero-Knowledge Proofs and Passwords

● Zero-Knowledge proofs can be used as a 
nifty replacement for passwords.

● To log in to a system, you (the prover) 
can convince that system (the verifier) 
that you are who you claim to be.

● In doing so, the verifier could not 
impersonate you later on.



  

How can you possibly build a zero-
knowledge proof system?



  

Where's Waldo?

Source: http://www.findwaldo.com/maps/gluttons/gluttons_small.jpg

http://www.findwaldo.com/maps/gluttons/gluttons_small.jpg


  

Zero-Knowledge Proofs of Waldo

● Suppose that I know with certainty 
where Waldo is.

● I want to convince you that I know his 
location without revealing his position.

● This is a zero-knowledge proof for 
“Where's Waldo?”

● How might I do this?



  



  



  



  

Zero-Knowledge Proofs of Waldo

● If I know where Waldo is, I can position 
the book under the cardboard so that you 
can see Waldo, but not where he is 
relative to the rest of the picture.

● You only learn that I know where Waldo 
is, but you already knew that!

● If I don't know where Waldo is, you will 
discover this very quickly!



  

A More Elaborate Zero-Knowledge Proof



  

3-Colorability

● Recall: An undirected graph G is called
3-colorable iff each of its nodes can be 
colored one of three colors such that no two 
nodes of the same color are connected by an 
edge.

● 3COLOR is the language of all 3-colorable 
graphs.

● Recall: 3COLOR is NP-complete.



  

3-Colorability

● Since 3COLOR is NP-complete, it is 
believed that there is no efficient algorithm 
for finding a 3-coloring for an arbitrary 
graph.

● However, it is easy to verify that a 3-
colorable graph is indeed 3-colorable if you 
already know the coloring.

● Could we build a zero-knowledge proof from 
this?



  

Zero-Knowledge and 3COLOR

● Idea: Assign each person a random graph 
that is known to be 3-colorable.

● Tell each person how to 3-color that graph.
● To authenticate, the prover convinces the 

verifier that they can 3-color the graph, but 
does so without revealing the coloring.
● Details in a minute.



  

Bob (Bank
customer)

Eric (Evil bank
employee)

Hi!  I'm Bob!  I'd
like to withdraw
money from my

account!

Sure!  But first you
must prove that you

are Bob.



  

Bob (Bank
customer)

Eric (Evil bank
employee)

If you really are Bob,
you should be able to

3-color this graph.



  

Bob (Bank
customer)

Eric (Evil bank
employee)

? ?

???

?
Key insight one: 
Bob can commit 
to the colors of 
the nodes without 
actually revealing 
those colors.

Key insight one: 
Bob can commit 
to the colors of 
the nodes without 
actually revealing 
those colors.



  

Bob (Bank
customer)

Eric (Evil bank
employee)

? ?

???

?

What colors are
these nodes?



  

Bob (Bank
customer)

Eric (Evil bank
employee)

?

??

?

What colors are
these nodes?



  

Bob (Bank
customer)

Eric (Evil bank
employee)

?

??

? If Bob doesn't know how 
to 3-color the graph, 
there's a chance that 
these nodes will be the 

same color.  In that case, 
Eric knows Bob is lying.

If Eric repeats this a few 
times and the colors are 
always different, Eric can 
be confident that Bob 

really knows the coloring.

If Bob doesn't know how 
to 3-color the graph, 
there's a chance that 
these nodes will be the 

same color.  In that case, 
Eric knows Bob is lying.

If Eric repeats this a few 
times and the colors are 
always different, Eric can 
be confident that Bob 

really knows the coloring.



  

Bob (Bank
customer)

Eric (Evil bank
employee)

? ?

???

?

What colors are
these nodes?



  

Bob (Bank
customer)

Eric (Evil bank
employee)

?

??

?



  

Bob (Bank
customer)

Eric (Evil bank
employee)

? ?

???

?

What colors are
these nodes?



  

Bob (Bank
customer)

Eric (Evil bank
employee)

? ?

??



  

Bob (Bank
customer)

Eric (Evil bank
employee)

Uh oh!  Eric now knows 
the complete coloring!

How can we address this?

Uh oh!  Eric now knows 
the complete coloring!

How can we address this?



  

Legal 3-Colorings



  

Bob (Bank
customer)

Eric (Evil bank
employee)

Hi!  I'm Bob!  I'd
like to withdraw
money from my

account!

Sure!  But first you
must prove that you

are Bob.



  

Bob (Bank
customer)

Eric (Evil bank
employee)

If you really are Bob,
you should be able to

3-color this graph.



  

Bob (Bank
customer)

Eric (Evil bank
employee)



  

Bob (Bank
customer)

Eric (Evil bank
employee)

? ?

???

?



  

Bob (Bank
customer)

Eric (Evil bank
employee)

?

??

?

What colors are
these nodes?



  

Bob (Bank
customer)

Eric (Evil bank
employee)



  

Bob (Bank
customer)

Eric (Evil bank
employee)



  

Bob (Bank
customer)

Eric (Evil bank
employee)

?

??

?

What colors are
these nodes?



  

Bob (Bank
customer)

Eric (Evil bank
employee)



  

Bob (Bank
customer)

Eric (Evil bank
employee)



  

Bob (Bank
customer)

Eric (Evil bank
employee)

?

??

?

What colors are
these nodes?



  

Bob (Bank
customer)

Eric (Evil bank
employee)

?

??

?



  

Bob (Bank
customer)

Eric (Evil bank
employee)



  

Bob (Bank
customer)

Eric (Evil bank
employee)



  

Bob (Bank
customer)

Eric (Evil bank
employee)

? ?

???

?



  

Bob (Bank
customer)

Eric (Evil bank
employee)

? ?

??
What colors are
these nodes?



  

Bob (Bank
customer)

Eric (Evil bank
employee)

Okay Bob!  Here's
your money!



  

Alice (Bank
employee)

Hi!  I'm Bob!  I'd
like to withdraw
money from my

account!

Sure!  But first you
must prove that you

are Bob.

Eric (Evil bank
employee)



  

If you really are Bob,
you should be able to

3-color this graph.

Alice (Bank
employee)

Eric (Evil bank
employee)



  

Alice (Bank
employee)

Eric (Evil bank
employee)



  

? ?

???

?

Alice (Bank
employee)

Eric (Evil bank
employee)



  

?

??

?

Alice (Bank
employee)

Eric (Evil bank
employee)



  

Alice (Bank
employee)

Eric (Evil bank
employee)



  

Alice (Bank
employee)

Eric (Evil bank
employee)



  

Alice (Bank
employee)

Eric (Evil bank
employee)

? ?

?

?



  

Alice (Bank
employee)

Eric (Evil bank
employee)

? ?

?

?

You are a lying liar
who lies!

Grrr!  Aaargh!



  

Why This Works

● At each step, Eric (the verifier) will see one of two 
things:

● Two nodes of the same color connected by an edge 
(so Bob (the prover) is definitely lying).

● Two nodes of different colors connected by an edge.  
Eric already knew that this would have to happen in 
a 3-coloring, and can't use the specific colors to 
reconstruct a 3-coloring of the graph.

● After a “large number” of rounds, Eric can 
conclude, with extremely high probability, that Bob 
is not lying.

● No matter how long Eric does this, he will never 
learn Bob's coloring.



  

Why This Matters

● This whole scheme is wrapped up in P 
and NP.
● Searching for a commitment scheme led us 

to one-way functions.  If a one-way function 
exists, then P ≠ NP.

● Building a zero-knowledge proof required us 
to use a NP-complete problem:
– NP-completeness probably means “impossible to 

solve efficiently.”
– Membership in NP means “efficiently verifiable.”



  

Summary

● Some NP-complete problems cannot even be 
approximated by a polynomial-time algorithm 
(unless P = NP).

● The PCP theorem shows that many fundamental 
NP-complete problems are hard to approximate 
(assuming P ≠ NP).

● Cryptography makes extensive use of hard 
problems as building blocks for secure 
communication.

● Zero-knowledge proofs and commitment 
schemes are intimately connected with P and NP, 
but use hard problems to build secure systems.



  

Next Time

● The Big Picture
● How does everything fit together?

● Where to Go from Here
● What's next in theoretical computer science?
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