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Final Exam Details

● Final exam is Wednesday, December 12 from 
12:15 – 3:15PM in Cubberly Auditorium.

● Covers material up through and including 
Wednesday's lecture.

● Exam focuses primarily on material starting with 
DFAs and NFAs, though there will be at least one 
midterm-style question on the exam.

● If you need to take the final exam at an alternate 
time, please contact us as soon as possible so that 
we can make arrangements.



  

Exam Review

● Two final exam review sessions this weekend:
● Saturday, 2PM – 5PM in Gates 104
● Sunday, 2PM – 5PM in Gates 104

● There is an extra credit practice final exam 
available right now.

● Worth 5 points extra credit if you make an honest 
effort to complete all the problems.

● Due at the time that you take the exam.
● No solutions released; come talk to us during office 

hours or the review session if you have questions!
● Second practice exam will be released on Wednesday 

along with solutions, though not for extra credit.



  

Previously on CS103...



  

NP-Hardness

● A language L is called NP-hard iff for every L' ∈ NP, we 
have L' ≤P L.

● A language in L is called NP-complete iff L is NP-hard and 
L ∈ NP.

● The class NPC is the set of NP-complete problems.

P

      NP NP-Hard
NPC



  

The Tantalizing Truth

Theorem: If any NP-complete language is in
  P, then P = NP.



  

The Tantalizing Truth

      NP

P
NPC

Theorem: If any NP-complete language is not
   in P, then P ≠ NP. 



  

3-CNF

● A propositional formula is in 3-CNF if
● It is in CNF, and
● Every clause has exactly three literals.

● For example:
● (x ∨ y ∨ z) ∧ (¬x ∨ ¬y ∨ z)
● (x ∨ x ∨ x) ∧ (y ∨ ¬y ∨ ¬x) ∧ (x ∨ y ∨ ¬y)
● But not (x ∨ y ∨ z ∨ w) ∧ (x ∨ y)

● The language 3SAT is defined as follows:

3SAT = { ⟨φ⟩ | φ is a satisfiable 3-CNF formula }
● Theorem (Cook-Levin): 3SAT is NP-complete.



  

The Structure of 3CNF

( x ∨ y ∨ ¬z ) ( ¬x ∨ ¬y ∨ z )∧ ∧ ( ¬x ∨ y ∨ ¬z )

Each clause must have 
at least one

true literal in it…



  

The Structure of 3CNF

( x ∨ y ∨ ¬z ) ( ¬x ∨ ¬y ∨ z )∧ ∧ ( ¬x ∨ y ∨ ¬z )

… subject to the constraint that
we never choose a literal

and its negation



  

NP-Completeness

P

      NP

NPC

Theorem: If L ∈ NPC, L ≤P L', and L' ∈ NP,
  then L' ∈ NPC.



  

Structuring NP-Completeness Reductions



  

The Shape of a Reduction

● Polynomial-time reductions work by solving 
one problem with a solver for a different 
problem.

● Most problems in NP have different pieces 
that must be solved simultaneously.

● For example, in 3SAT:
● Each clause must be made true,
● but no literal and its complement may be 

picked.



  

Reductions and Gadgets

● Many reductions used to show NP-
completeness work by using gadgets.

● Each piece of the original problem is 
translated into a “gadget” that handles 
some particular detail of the problem.

● These gadgets are then connected 
together to solve the overall problem.



  

Gadgets in INDSET

( x ∨ y ∨ ¬z ) ( ¬x ∨ ¬y ∨ z )∧ ∧ ( ¬x ∨ y ∨ ¬z )

x

y

¬z ¬x

¬y

z ¬x

y

¬z

Each of these gadgets is designed
to solve one part of the problem:
ensuring each clause is satisfied.



  

Gadgets in INDSET

( x ∨ y ∨ ¬z ) ( ¬x ∨ ¬y ∨ z )∧ ∧ ( ¬x ∨ y ∨ ¬z )

x

y

¬z ¬x

¬y

z ¬x

y

¬z

These connections ensure that the solutions
to each gadget are linked to one another.



  

Gadgets in INDSET

¬x

x

¬x

y

¬y



  

A More Complex Reduction



  

A 3-coloring of a graph is a way of coloring its
nodes one of three colors such that no two connected

nodes have the same color.



  

The 3-Coloring Problem

● The 3-coloring problem is

Given an undirected graph G,
is there a legal 3-coloring of its 

nodes?
● As a formal language:

3COLOR = { ⟨G⟩ | G is an undirected 
graph with a legal 3-coloring. }

● This problem is known to be NP-complete 
by a reduction from 3SAT.



  

3COLOR ∈ NP

● We can prove that 3COLOR ∈ NP by 
designing a polynomial-time 
nondeterministic TM for 3COLOR.

● M = “On input ⟨G⟩:
● Nondeterministically guess an assignment 

of colors to the nodes.
● Deterministically check whether it is a 3-

coloring.
● If so, accept; otherwise reject.”



  

A Note on Terminology

● Although 3COLOR and 3SAT both have “3” in 
their names, the two are very different 
problems.
● 3SAT means “there are three literals in every 

clause.”  However, each literal can take on only 
one of two different values.

● 3COLOR means “every node can take on one of 
three different colors.”

● Key difference:
● In 3SAT variables have two choices of value.
● In 3COLOR nodes have three choices of value.



  

Why Not Two Colors?
● It would seem that 2COLOR (whether a graph 

has a 2-coloring) would be a better fit.
● Every variable has one of two values.
● Every node has one of two values.

● Interestingly, 2COLOR is known to be in P and 
is conjectured not to be NP-complete.
● Though, if you can prove that it is, you've just 

won $1,000,000!



  

From 3SAT to 3COLOR

● In order to reduce 3SAT to 3COLOR, we need 
to somehow make a graph that is 3-colorable 
iff some 3-CNF formula φ is satisfiable.

● Idea: Use a collection of gadgets to solve the 
problem.
● Build a gadget to assign two of the colors the 

labels “true” and “false.”
● Build a gadget to force each variable to be either 

true or false.
● Build a series of gadgets to force those variable 

assignments to satisfy each clause.



  

Gadget One: Assigning Meanings

T F

O
These nodes 
must all have 
different 
colors.

The color assigned to T will be interpreted as “true.”
The color assigned to F will be interpreted as “false.”

We do not associate any special meaning with O.



  

Gadget Two: Forcing a Choice

( x ∨ y ∨ ¬z ) ( ¬x ∨ ¬y ∨ z )∧ ∧ ( ¬x ∨ y ∨ ¬z )

x ¬x y ¬y z ¬z

T F

O



  

Gadget Three: Clause Satisfiability

( x ∨ y ∨ ¬z )

x y ¬zT F

This node is 
colorable iff one 

of the inputs is the 
same color as T



  

Putting It All Together

● Construct the first gadget so we have a 
consistent definition of true and false.

● For each variable v:
● Construct nodes v and ¬v.
● Add an edge between v and ¬v.
● Add an edge between v and O and between ¬v 

and O.

● For each clause C:
● Construct the earlier gadget from C by adding in 

the extra nodes and edges.



  

Putting It All Together

C
1

C
2

… C
n

T F

O

x
1

¬x
1 ... ... x

k
¬x

k



  

Analyzing the Reduction

● How large is the resulting graph?
● We have O(1) nodes to give meaning to “true” 

and “false.”
● Each variable gives O(1) nodes for its true and 

false values.
● Each clause gives O(1) nodes for its colorability 

gadget.
● Collectively, if there are n clauses, there are 

O(n) variables.
● Total size of the graph is O(n).



  

Another NP-Complete Problem



  

Let U be a set of elements (the universe) 
and S ⊆ (℘ U).  An exact covering of U is a 

collection of sets I ⊆ S such that every 
element of U belongs to exactly one set in I.

1, 2, 3, 4, 5, 6U = 

1, 2, 5

2, 3, 4

2, 5

4 1, 5, 6

1, 3, 6, ,

, ,

,

S = 



  

Applications of Exact Covering

1 2 3

4 5 6

7 8 9

C Y M

{ C, 1, 4, 5 }
{ C, 1, 2, 4 }
{ C, 1, 2, 5 }
{ C, 2, 4, 5 }
{ M, 1, 4, 7 }
{ M, 2, 5, 8 }
{ M, 3, 6, 9 }



  

Exact Covering

● Given a universe U and a set S ⊆ (℘ U), the 
exact covering problem is

Does S contain an
exact covering of U?

● As a formal language:

EXACT-COVER = 
             { ⟨U, S⟩ | S ⊆ (℘ U) and
                            S contains an exact
                            covering of U }



  

EXACT-COVER ∈ NPC

● We will prove that EXACT-COVER is NP-
complete.

● To do this, we will show that
● EXACT-COVER ∈ NP, and

● 3COLOR ≤P EXACT-COVER

● Note that we're using the fact that 
3COLOR is NP-complete to establish that 
EXACT-COVER is NP-hard.



  

EXACT-COVER ∈ NP

● Here is a polynomial-time verifier for 
EXACT-COVER:

● V = “On input ⟨U, S, I⟩:
● Verify that every set in S is a subset of U.
● Verify that every set in I is an element of S.
● Verify that every element of U belongs to an 

element of I.
● Verify that every element of U belongs to at most 

one element of I.”



  

3COLOR ≤P EXACT-COVER

● We now reduce 3-colorability to the exact cover 
problem.

● A graph is 3-colorable iff
● Every node is assigned one of three colors, and
● No two nodes connected by an edge are 

assigned the same color.
● We will construct our universe U and sets S 

such that an exact covering
● Assigns every node in G one of three colors, and
● Never assigns two adjacent nodes the same 

color. 
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{ W, RW, RY, RZ }
{ W, GW, GY, GZ }
{ W, BW, BY, BZ }

{ X, RX, RZ }
{ X, GX, GZ }
{ X, BX, BZ }

{ Y, RY, RW, RZ }
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W

Y Z

X { W, RW, RY, RZ }
{ W, GW, GY, GZ }
{ W, BW, BY, BZ }

{ X, RX, RZ }
{ X, GX, GZ }
{ X, BX, BZ }

{ Y, RY, RW, RZ }
{ Y, GY, GW, GZ }
{ Y, BY, BW, BZ }
{ Z, RZ, RW, RY }
{ Z, GZ, GW, GY }
{ Z, BZ, BW, BY }

R
X

Nothing covers this 
element, since X has 
no blue neighbors.

Nothing covers this 
element, since X has 
no blue neighbors.
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X { W, RW, RY, RZ }
{ W, GW, GY, GZ }
{ W, BW, BY, BZ }

{ X, RX, RZ }
{ X, GX, GZ }
{ X, BX, BZ }

{ Y, RY, RW, RZ }
{ Y, GY, GW, GZ }
{ Y, BY, BW, BZ }
{ Z, RZ, RW, RY }
{ Z, GZ, GW, GY }
{ Z, BZ, BW, BY }

G
Z

Two sets cover this 
element, since Z has 
two green neighbors.

Two sets cover this 
element, since Z has 
two green neighbors.
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Correction 1: Filling in Gaps
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{ W, RW, RY, RZ }
{ W, GW, GY, GZ }
{ W, BW, BY, BZ }

{ X, RX, RZ }
{ X, GX, GZ }
{ X, BX, BZ }

{ Y, RY, RW, RZ }
{ Y, GY, GW, GZ }
{ Y, BY, BW, BZ }
{ Z, RZ, RW, RY }
{ Z, GZ, GW, GY }
{ Z, BZ, BW, BY }
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{ RX }
{ RY }
{ RZ }
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{ GX }
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{ GZ }
{ BW }
{ BX }
{ BY }
{ BZ }

Y Z
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{ X, BX, BZ }
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{ Z, BZ, BW, BY }
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{ BX }
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Correction 2: Avoiding Duplicates



  

W

Y Z

X

W

R
WY

G
WY

B
WY

X

Y Z

R
XZ

G
XZ

B
XZ

R
YZ

G
YZ

B
YZ

R
WZ

G
WZ

B
WZ

{ W, RWY, RWZ }
{ W, GWY, GWZ }
{ W, BWY, BWZ }

{ X, RXZ }
{ X, GXZ }
{ X, BXZ }

{ Y, RWY, RYZ }
{ Y, GWY, GYZ }
{ Y, BWY, BYZ }

{ Z, RWZ, RXZ, RYZ }
{ Z, GWZ, GXZ, GYZ }
{ Z, BWZ, BXZ, BYZ }

{ RWY }
{ RWZ }
{ RXZ }
{ RYZ }
{ GWY }
{ GWZ }
{ GXZ }
{ GYZ }
{ BWY }
{ BWZ }
{ BXZ }
{ BYZ }
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{ W, RWY, RWZ }
{ W, GWY, GWZ }
{ W, BWY, BWZ }

{ X, RXZ }
{ X, GXZ }
{ X, BXZ }

{ Y, RWY, RYZ }
{ Y, GWY, GYZ }
{ Y, BWY, BYZ }

{ Z, RWZ, RXZ, RYZ }
{ Z, GWZ, GXZ, GYZ }
{ Z, BWZ, BXZ, BYZ }

{ RWY }
{ RWZ }
{ RXZ }
{ RYZ }
{ GWY }
{ GWZ }
{ GXZ }
{ GYZ }
{ BWY }
{ BWZ }
{ BXZ }
{ BYZ }



  

The Construction

● For each node v in graph G, construct four 
elements in the universe U:
● An element v.

● Elements Rv, Gv, and Bv.

● For each edge {u, v} in graph G, construct 
three elements in the universe U:

● Elements Ruv, Guv, Buv

● Total size of the universe U: O(|V| + |E|).



  

The Construction

● For each node v in graph G, construct a set 
belonging to S containing

● The element v,

● Each Ruv for each edge {u, v} in the graph.

● Repeat the above for colors G and B.

● Add singleton sets containing each individual 
element except for elements corresponding to 
nodes.

● Total size of all sets is O(|V| + |E|)

● Counts each node three times and each edge 
six times.



  

The Story So Far

3COLORINDSET

3SAT

EXACT-COVER



  

Another NP-Complete Problem



  

Given a set S ⊆ ℕ and a natural number k, 
the subset sum problem is to find a subset 

of S whose sum is exactly k.

137, 42, 271, 103, 154, 16, 3

k = 452



  

http://xkcd.com/287/

http://xkcd.com/287/


  

Subset Sum

● Given a set S ⊆ ℕ and a natural number k, the 
subset sum problem is

Is there a subset of S with sum exactly k?
● As a formal language:

SUBSET-SUM = 
             { ⟨S, k⟩ | S ⊆ ℕ, k ∈ ℕ and
                            there is a subset of S with
                            sum exactly k? }



  

SUBSET-SUM ∈ NPC

● We will prove that SUBSET-SUM is NP-
complete.

● To do this, we will show that
● SUBSET-SUM ∈ NP, and

● EXACT-COVER ≤P SUBSET-SUM

● Again, we're using our new NP-complete 
problem to show other languages are 
NP-complete.



  

SUBSET-SUM ∈ NP

● Here is a nondeterministic polynomial-
time algorithm for SUBSET-SUM

● N = “On input ⟨S, k⟩:
● Nondeterministically guess a subset I ⊆ S.
● Deterministically verify whether the sum of 

the elements of I is equal to k.
● If so, accept; otherwise reject.”



  

EXACT-COVER ≤P SUBSET-SUM

● We now reduce exact cover to subset sum.

● The exact cover problem has a solution iff

● Every element of the universe belongs to at 
least one set, and

● Every element of the universe belongs to at 
most one set.

● We will construct our set S and number k such that

● Each number corresponds to a set of elements, 
and

● k corresponds to the universe U.



  

1, 2, 5

2, 3, 4

2, 5

4 1, 5, 6

1, 3, 6, ,

, ,

,
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d
1
d

2
d

3
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d
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d
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1, 2, 3, 4, 5, 6U = 



  

1, 2, 5

2, 3, 4

2, 5

4 1, 5, 6

1, 3, 6, ,

, ,

,

S = 

1, 2, 3, 4, 5, 6U = 

110010 , 010010 , 101001
011100 , 000100 , 100011S' = 

k = 111111



  

The Basic Intuition

● Suppose there are n elements in the 
universe and k different sets.

● Replace each set S with a number that 
is 1 in its ith position if i ∈ S and has a 0 
in its ith position otherwise.

● Set k to a number that is n copies of the 
number 1.



  

A Slight Complexity

● To ensure that the columns don't 
overflow, write the numbers in base 
(B + 1) where B is the total number of 
sets.

● That way, the columns can't overflow 
from one column into the next.



  

The Story So Far

3COLORINDSET

3SAT

EXACT-COVER

SUBSET-SUM



  

Yet Another NP-Complete Problem



  

Given a set S ⊆ ℕ, the partitioning 
problem is to find a way to split S into two 

sets with equal sum.

13, 137, 56, 42, 103, 58, 271



  

Partitioning

● Given a set S ⊆ ℕ, the partitioning problem is

Can S be split into two sets
whose sums are the same?

● As a formal language:

PARTITION = 
             { ⟨S⟩ | S ⊆ ℕ, and there is a way to
                        split S into two sets with
                        the same sum. }



  

PARTITION ∈ NPC

● We will prove that PARTITION is NP-
complete.

● To do this, we will show that
● PARTITION ∈ NP, and

● SUBSET-SUM ≤P PARTITION

● Sense a pattern? ☺



  

PARTITION ∈ NP

● Here is a polynomial-time verifier for 
PARTITION:

● V = “On input ⟨S, S1, S2⟩:

● Check that S1 ∪ S2 = S and that S1 ∩ S2 = Ø.

● Check that the sum of the elements in S1 
equals the sum of the elements in S2.

● If so, accept; otherwise, reject.”



  

SUBSET-SUM ≤P PARTITION

● We now reduce subset sum to partitioning.

● The subset sum has a solution iff

● Some subset of the master set S is equal to k.
● We will construct our new set S' such that

● If a subset of S has total k, we can add in a new 
element to make up the difference to half the 
total sum.



  

137, 42, 271, 103, 154, 16, 3

k = 452

Total of all elements in this set: 726

726 – 452 = 274 

452 – 274 = 178 

137, 42, 271, 103, 154, 16, 3, 178



  

The General Idea

● Add in a new element to the set such 
that a subset with the appropriate sum 
also forms a partition.

● The new element added in might need 
to go in the subset that originally added 
to k, or it might have to go in the 
complement of that set.



  

The Story So Far

3COLORINDSET

3SAT

EXACT-COVER

SUBSET-SUM

PARTITION



  

One Final NP-Complete Problem



  

Given a set J of jobs that take some amount of time 
to complete and k workers, the job scheduling 
problem is to minimize the total time required to 

complete all jobs (called the makespan).



  

Job Scheduling

● Given a set J of jobs of different lengths, a 
number of workers k, and a number t, the job 
scheduling problem is

Can the jobs in J be assigned to the k 
workers such that all jobs are finished 

within t units of time?
● As a formal language:

JOB-SCHEDULING = 
 { ⟨J, k, t⟩ | The jobs in J can be assigned
                  to the k workers so all jobs are
                  completed within t time }



  

JOB-SCHEDULING ∈ NPC

● We will prove that JOB-SCHEDULING is 
NP-complete.

● To do this, we will show that
● JOB-SCHEDULING ∈ NP, and

● PARTITION ≤P JOB-SCHEDULING



  

JOB-SCHEDULING ∈ NP

● Here is a polynomial-time NTM for JOB-
SCHEDULING:

● N = “On input ⟨J, k, t⟩:
● Nondeterministically guess an assignment 

of the jobs in J to the k workers.
● Deterministically find the maximum 

amount of time used by any worker.
● If it is at most t, accept; otherwise, reject.”



  

PARTITION ≤P JOB-SCHEDULING

● We now reduce partitioning to job 
scheduling.

● The reduction is actually 
straightforward:
● Given a set of numbers to partition, create one 

task for each number.
● Have two workers.
● See if the workers can complete the tasks in 

time at most half the total time required to do 
all jobs.



  

PARTITION ≤P JOB-SCHEDULING

2, 3, 4, 5, 10

Total time: 24

                                12 Time Units



  

The Story So Far

3COLORINDSET

3SAT

EXACT-COVER

SUBSET-SUM

PARTITION

JOB-SCHEDULING



  

A Historical Note



  

Richard Karp. “Reducibility Among 
Combinatorial Problems.”  1972



  

Richard Karp. “Reducibility Among 
Combinatorial Problems.”  1972



  

A Feel for NP-Completeness

● We have just seen NP-complete problems 
from
● Formal logic (3SAT)
● Graph theory (3-colorability)
● Set theory (exact cover)
● Number theory (subset sum / partition)
● Operations research (job scheduling)

● You will encounter NP-complete 
problems in the real world.



  

Next Time

● Approximation Algorithms
● Can we approximate NP-hard problems 

within polynomial time?

● P, NP, and Cryptography
● How can we use hard problems to our 

advantage?
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