

Completeness

Final Exam Details

- Final exam is Wednesday, December 12 from 12:15 – 3:15PM in Cubberly Auditorium.
- Covers material up through and including Wednesday's lecture.
- Exam focuses primarily on material starting with DFAs and NFAs, though there will be at least one midterm-style question on the exam.
- If you need to take the final exam at an alternate time, please contact us as soon as possible so that we can make arrangements.

Exam Review

- Two final exam review sessions this weekend:
 - Saturday, 2PM 5PM in Gates 104
 - Sunday, 2PM 5PM in Gates 104
- There is an **extra credit practice final exam** available right now.
 - Worth 5 points extra credit if you make an honest effort to complete all the problems.
 - Due at the time that you take the exam.
 - No solutions released; come talk to us during office hours or the review session if you have questions!
- Second practice exam will be released on Wednesday along with solutions, though not for extra credit.

Previously on CS103...

NP-Hardness

- A language *L* is called **NP-hard** iff for *every* $L' \in \mathbf{NP}$, we have $L' \leq_{P} L$.
- A language in *L* is called **NP-complete** iff *L* is **NP**-hard and $L \in \mathbf{NP}$.
- The class **NPC** is the set of **NP**-complete problems.

The Tantalizing Truth

Theorem: If *any* NP-complete language is in P, then P = NP.

The Tantalizing Truth

Theorem: If *any* NP-complete language is not in P, then $P \neq NP$.

3-CNF

- A propositional formula is in **3-CNF** if
 - It is in CNF, and
 - Every clause has *exactly* three literals.
- For example:
 - $(x \lor y \lor z) \land (\neg x \lor \neg y \lor z)$
 - $(x \lor x \lor x) \land (y \lor \neg y \lor \neg x) \land (x \lor y \lor \neg y)$
 - But not $(x \lor y \lor z \lor w) \land (x \lor y)$
- The language **3SAT** is defined as follows: **3SAT = { (\phi) | \phi is a satisfiable 3-CNF formula }**
- Theorem (Cook-Levin): 3SAT is NP-complete.

The Structure of 3CNF

NP-Completeness Theorem: If $L \in NPC$, $L \leq_{P} L'$, and $L' \in NP$, then $L' \in NPC$.

Structuring NP-Completeness Reductions

The Shape of a Reduction

- Polynomial-time reductions work by solving one problem with a solver for a different problem.
- Most problems in **NP** have different pieces that must be solved simultaneously.
- For example, in 3SAT:
 - Each clause must be made true,
 - but no literal and its complement may be picked.

Reductions and Gadgets

- Many reductions used to show NPcompleteness work by using gadgets.
- Each piece of the original problem is translated into a "gadget" that handles some particular detail of the problem.
- These gadgets are then connected together to solve the overall problem.

Gadgets in INDSET

Each of these gadgets is designed to solve one part of the problem: ensuring each clause is satisfied.

Gadgets in INDSET

These connections ensure that the solutions to each gadget are linked to one another.

A More Complex Reduction

A **3-coloring** of a graph is a way of coloring its nodes one of three colors such that no two connected nodes have the same color.

The 3-Coloring Problem

• The **3-coloring problem** is

Given an undirected graph G, is there a legal 3-coloring of its nodes?

• As a formal language:

3COLOR = { (G) | G is an undirected graph with a legal 3-coloring. }

• This problem is known to be **NP**-complete by a reduction from 3SAT.

$3COLOR \in \mathbf{NP}$

- We can prove that $3COLOR \in NP$ by designing a polynomial-time nondeterministic TM for 3COLOR.
- M = "On input $\langle G \rangle$:
 - **Nondeterministically** guess an assignment of colors to the nodes.
 - **Deterministically** check whether it is a 3-coloring.
 - If so, accept; otherwise reject."

A Note on Terminology

- Although 3COLOR and 3SAT both have "3" in their names, the two are very different problems.
 - 3SAT means "there are three literals in every clause." However, each literal can take on only one of two different values.
 - 3COLOR means "every node can take on one of three different colors."
- Key difference:
 - In 3SAT variables have two choices of value.
 - In 3COLOR nodes have three choices of value.

Why Not Two Colors?

- It would seem that 2COLOR (whether a graph has a 2-coloring) would be a better fit.
 - Every variable has one of two values.
 - Every node has one of two values.
- Interestingly, 2COLOR is known to be in **P** and is conjectured not to be **NP**-complete.
 - Though, if you can prove that it is, you've just won \$1,000,000!

From 3SAT to 3COLOR

- In order to reduce 3SAT to 3COLOR, we need to somehow make a graph that is 3-colorable iff some 3-CNF formula ϕ is satisfiable.
- **Idea**: Use a collection of gadgets to solve the problem.
 - Build a gadget to assign two of the colors the labels "true" and "false."
 - Build a gadget to force each variable to be either true or false.
 - Build a series of gadgets to force those variable assignments to satisfy each clause.

Gadget One: Assigning Meanings

The color assigned to T will be interpreted as "true." The color assigned to F will be interpreted as "false." We do not associate any special meaning with O.

Gadget Two: Forcing a Choice

 $(x V y V \neg z) \land (\neg x V \neg y V z) \land (\neg x V y V \neg z)$

Gadget Three: Clause Satisfiability

Putting It All Together

- Construct the first gadget so we have a consistent definition of true and false.
- For each variable *v*:
 - Construct nodes v and $\neg v$.
 - Add an edge between v and $\neg v$.
 - Add an edge between v and O and between $\neg v$ and O.
- For each clause *C*:
 - Construct the earlier gadget from *C* by adding in the extra nodes and edges.

Analyzing the Reduction

- How large is the resulting graph?
- We have O(1) nodes to give meaning to "true" and "false."
- Each variable gives O(1) nodes for its true and false values.
- Each clause gives O(1) nodes for its colorability gadget.
- Collectively, if there are n clauses, there are O(n) variables.
- Total size of the graph is O(n).

Another NP-Complete Problem

U = {**1**, **2**, **3**, **4**, **5**, **6**}

$S = \left\{ \begin{cases} 1, 2, 5 \\ 1, 2, 5 \\ 2, 3, 4 \\ 1, 4 \end{cases}, \begin{cases} 1, 3, 6 \\ 1, 5,$

Let U be a set of elements (the **universe**) and $S \subseteq \wp(U)$. An **exact covering** of U is a collection of sets $I \subseteq S$ such that every element of U belongs to exactly one set in I.

Applications of Exact Covering

{ C, 1, 4, 5 } { C, 1, 2, 4 } { C, 1, 2, 5 } { C, 2, 4, 5 } { M, 1, 4, 7 } { M, 2, 5, 8 } { M, 3, 6, 9 }

Exact Covering

• Given a universe U and a set $S\subseteq \wp(U),$ the exact covering problem is

Does S contain an exact covering of U?

• As a formal language:

EXACT-COVER = $\{ (U, S) \mid S \subseteq \wp(U) \text{ and } S \text{ contains an exact } C \text{ covering of } U \}$

$EXACT-COVER \in \mathbf{NPC}$

- We will prove that *EXACT-COVER* is **NP**-complete.
- To do this, we will show that
 - *EXACT-COVER* \in **NP**, and
 - $3COLOR \leq_{P} EXACT-COVER$
- Note that we're using the fact that *3COLOR* is **NP**-complete to establish that *EXACT-COVER* is **NP**-hard.

$EXACT-COVER \in \mathbf{NP}$

- Here is a polynomial-time verifier for *EXACT-COVER*:
- V ="On input $\langle U, S, I \rangle$:
 - Verify that every set in S is a subset of U.
 - Verify that every set in I is an element of S.
 - Verify that every element of *U* belongs to an element of *I*.
 - Verify that every element of U belongs to at most one element of I."
$3COLOR \leq_{P} EXACT-COVER$

- We now reduce 3-colorability to the exact cover problem.
- A graph is 3-colorable iff
 - Every node is assigned one of three colors, and
 - No two nodes connected by an edge are assigned the same color.
- We will construct our universe U and sets ${\cal S}$ such that an exact covering
 - Assigns every node in G one of three colors, and
 - Never assigns two adjacent nodes the same color.

 $\{ W, R_w, R_y, R_z \}$ $\{ W, G_{W}, G_{Y}, G_{Z} \}$ $\{ W, B_w, B_v, B_z \}$ $\{X, R_x, R_z\}$ $\{ X, G_x, G_z \}$ $\{X, B_x, B_z\}$ $\{ Y, R_{Y}, R_{W}, R_{Z} \}$ $\{ Y, G_{Y}, G_{W}, G_{Z} \}$ $\{ Y, B_{Y}, B_{W}, B_{Z} \}$ $\{ Z, R_{Z}, R_{W}, R_{Y} \}$ $\{ Z, G_{Z}, G_{W}, G_{V} \}$ $\{ Z, B_{Z}, B_{W}, B_{V} \}$

 $\{W, R_w, R_v, R_z\}$ $\{ W, G_{W}, G_{Y}, G_{Z} \}$ $\{ W, B_w, B_v, B_7 \}$ $\{ X, R_x, R_7 \}$ $\{ X, G_x, G_z \}$ $\{X, B_x, B_z\}$ $\{ Y, R_{y}, R_{w}, R_{7} \}$ $\{ Y, G_y, G_w, G_z \}$ $\{ Y, B_{Y}, B_{W}, B_{Z} \}$ $\{ Z, R_{Z}, R_{W}, R_{Y} \}$ $\{ Z, G_{Z}, G_{W}, G_{V} \}$ $\{ Z, B_7, B_w, B_y \}$

 $\{W, R_w, R_v, R_z\}$ $\{ W, G_{W}, G_{Y}, G_{7} \}$ $\{ W, B_w, B_y, B_z \}$ $\{X, R_x, R_z\}$ $\{ X, G_x, G_z \}$ $\{X, B_x, B_7\}$ $\{ Y, R_{y}, R_{w}, R_{7} \}$ $\{ Y, G_{Y}, G_{W}, G_{Z} \}$ $\{ Y, B_{Y}, B_{W}, B_{Z} \}$ $\{ Z, R_{7}, R_{W}, R_{Y} \}$ $\{ Z, G_{Z}, G_{W}, G_{V} \}$ $\{ Z, B_7, B_w, B_y \}$

 $\{W, R_w, R_y, R_z\}$ $\{ W, G_{W}, G_{Y}, G_{7} \}$ $\{ W, B_w, B_y, B_z \}$ $\{X, R_x, R_7\}$ $\{X, G_x, G_z\}$ $\{X, B_x, B_7\}$ $\{ Y, R_v, R_w, R_z \}$ $\{ Y, G_y, G_w, G_z \}$ $\{ Y, B_{Y}, B_{W}, B_{Z} \}$ $\{ Z, R_{Z}, R_{W}, R_{Y} \}$ $\{ Z, G_{Z}, G_{W}, G_{V} \}$ $\{ Z, B_7, B_w, B_y \}$

Correction 1: Filling in Gaps

 $\{ W, R_{W}, R_{V}, R_{7} \}$ $\{ R_w \}$ $\{ W, G_{W}, G_{Y}, G_{7} \}$ $\{ R_{\rm x} \}$ $\{ W, B_w, B_v, B_z \}$ $\{ R_v \}$ $\{ X, R_{x}, R_{7} \}$ $\{ R_{7} \}$ $\{X, G_{x}, G_{7}\}$ $\{ G_w \}$ $\{X, B_{x}, B_{7}\}$ $\{ G_x \}$ $\{ Y, R_{y}, R_{w}, R_{7} \}$ $\{ G_{v} \}$ $\{ Y, G_{Y}, G_{W}, G_{Z} \}$ $\{ G_{7} \}$ $\{ Y, B_v, B_w, B_z \}$ { B_w } $\{ Z, R_{7}, R_{W}, R_{V} \}$ $\{B_x\}$ $\{ Z, G_{Z'}, G_{W'}, G_{V'} \}$ $\{B_{y}\}$ $\{ Z, B_7, B_w, B_v \}$ $\{B_{z}\}$

 $\{ W, R_w, R_y, R_z \}$ $\{ \mathbf{R}_{w} \}$ { W, G_w , G_y , G_z } $\{R_x\}$ $\{ W, B_w, B_y, B_z \}$ $\{R_{y}\}$ $\{X, R_x, R_z\}$ $\{ R_{7} \}$ $\{X, G_x, G_z\}$ $\{ \mathbf{G}_{\mathrm{W}} \}$ $\{X, B_x, B_7\}$ $\{ G_x \}$ $\{ Y, R_{y}, R_{w}, R_{7} \}$ $\{ G_v \}$ $\{ Y, G_{Y}, G_{W}, G_{Z} \}$ $\{\mathbf{G}_{7}\}$ $\{ Y, B_v, B_w, B_z \}$ $\{B_w\}$ $\{ Z, R_7, R_w, R_v \}$ $\{B_x\}$ $\{B_{y}\}$ $\{ Z, G_{Z}, G_{W}, G_{Y} \}$ $\{ Z, B_{Z}, B_{W}, B_{V} \}$ $\{B_7\}$

Correction 2: Avoiding Duplicates

 $\{ R_{WY} \}$ $\{ W, R_{WY}, R_{WZ} \}$ $\{ W, G_{WY}, G_{WZ} \}$ $\{ R_{wz} \}$ $\{ W, B_{WY}, B_{WZ} \}$ $\{R_{xz}\}$ { X, R_{x7} } $\{ R_{yz} \}$ $\{ G_{_{WY}} \}$ { X, G_{x7} } { X, B_{x7} } $\{ G_{WZ} \}$ $\{ G_{_{XZ}} \}$ $\{ Y, R_{WY}, R_{YZ} \}$ $\{ Y, G_{WY}, G_{YZ} \}$ $\{ G_{yz} \}$ $\{ Y, B_{WY}, B_{YZ} \} \{ B_{WY} \}$ $\{ Z, R_{WZ}, R_{XZ}, R_{YZ} \} \{ B_{WZ} \}$ $\{ Z, G_{WZ}, G_{XZ}, G_{YZ} \} \{ B_{XZ} \}$ $\{ Z, B_{W7}, B_{Y7}, B_{Y7} \} \{ B_{Y7} \}$

 $\{ R_{WY} \}$ $\{ W, R_{WY}, R_{W7} \}$ $\{ W, G_{WV}, G_{WZ} \}$ $\{R_{w7}\}$ $\{ W, B_{WY}, B_{WZ} \}$ $\{ R_{x7} \}$ $\{X, R_{xz}\}$ $\{R_{yz}\}$ { X, G_{x7} } $\{ G_{WY} \}$ { X, B_{x7} } $\{ G_{WZ} \}$ $\{ Y, R_{WY}, R_{YZ} \} \{ G_{XZ} \}$ $\{ Y, G_{WY}, G_{Y7} \}$ $\{ G_{v_7} \}$ $\{ Y, B_{WY}, B_{YZ} \} \{ B_{WY} \}$ $\{ Z, R_{WZ}, R_{XZ}, R_{YZ} \} \{ B_{WZ} \}$ $\{ Z, G_{W7}, G_{X7}, G_{Y7} \} \{ B_{X7} \}$ $\{ Z, B_{w7}, B_{x7}, B_{y7} \} \{ B_{y7} \}$

The Construction

- For each node v in graph G, construct four elements in the universe U:
 - An element *v*.
 - Elements R_{ν} , G_{ν} , and B_{ν} .
- For each edge $\{u, v\}$ in graph G, construct three elements in the universe U:
 - Elements R_{uv} , G_{uv} , B_{uv}
- Total size of the universe U: O(|V| + |E|).

The Construction

- For each node v in graph G, construct a set belonging to S containing
 - The element *v*,
 - Each R_{uv} for each edge $\{u, v\}$ in the graph.
- Repeat the above for colors G and B.
- Add singleton sets containing each individual element except for elements corresponding to nodes.
- Total size of all sets is O(|V| + |E|)
 - Counts each node three times and each edge six times.

The Story So Far

Another NP-Complete Problem

{ 137, 42, 271, 103, 154, 16, 3 }

k = 452

Given a set $S \subseteq \mathbb{N}$ and a natural number k, the **subset sum problem** is to find a subset of S whose sum is exactly k.

MY HOBBY: EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS

http://xkcd.com/287/

Subset Sum

• Given a set $S \subseteq \mathbb{N}$ and a natural number k, the subset sum problem is

Is there a subset of S with sum exactly k?

• As a formal language:

SUBSET-SUM =
 $\{ \langle S, k \rangle \mid S \subseteq \mathbb{N}, k \in \mathbb{N} \text{ and}$
there is a subset of S with
sum exactly k? }

$SUBSET-SUM \in \mathbf{NPC}$

- We will prove that *SUBSET-SUM* is **NP**-complete.
- To do this, we will show that
 - $SUBSET-SUM \in \mathbf{NP}$, and
 - $EXACT-COVER \leq_{P} SUBSET-SUM$
- Again, we're using our new NP-complete problem to show other languages are NP-complete.

$SUBSET-SUM \in \mathbf{NP}$

- Here is a nondeterministic polynomialtime algorithm for *SUBSET-SUM*
- N ="On input $\langle S, k \rangle$:
 - Nondeterministically guess a subset $I \subseteq S$.
 - **Deterministically** verify whether the sum of the elements of *I* is equal to *k*.
 - If so, accept; otherwise reject."

$EXACT\text{-}COVER \leq_{P} SUBSET\text{-}SUM$

- We now reduce exact cover to subset sum.
- The exact cover problem has a solution iff
 - Every element of the universe belongs to at least one set, and
 - Every element of the universe belongs to at most one set.
- We will construct our set S and number k such that
 - Each number corresponds to a set of elements, and
 - *k* corresponds to the universe *U*.

 $S = \left\{ \begin{array}{c} \left\{ 1, 2, 5 \right\}, \left\{ 2, 5 \right\}, \left\{ 1, 3, 6 \right\}, \\ \left\{ 2, 3, 4 \right\}, \left\{ 4 \right\}, \left\{ 1, 5, 6 \right\} \end{array} \right\} \right\}$

 $\mathbf{S} = \left\{ \begin{array}{c} \left\{ 1, 2, 5 \right\}, \left\{ 2, 5 \right\}, \left\{ 1, 3, 6 \right\}, \\ \left\{ 2, 3, 4 \right\}, \left\{ 4 \right\}, \left\{ 1, 5, 6 \right\} \end{array} \right\} \right\}$

U = { **1**, **2**, **3**, **4**, **5**, **6** }

 $\mathbf{S'} = \left\{ \begin{array}{cccc} 110010 & , & 010010 & , & 101001 \\ 011100 & , & 000100 & , & 100011 \end{array} \right\}$

k = 111111

The Basic Intuition

- Suppose there are *n* elements in the universe and *k* different sets.
- Replace each set S with a number that is 1 in its *i*th position if $i \in S$ and has a 0 in its *i*th position otherwise.
- Set *k* to a number that is *n* copies of the number 1.

A Slight Complexity

- To ensure that the columns don't overflow, write the numbers in base (*B* + 1) where *B* is the total number of sets.
- That way, the columns can't overflow from one column into the next.

Yet Another NP-Complete Problem

Given a set $S \subseteq \mathbb{N}$, the **partitioning problem** is to find a way to split S into two sets with equal sum.

Partitioning

- Given a set $S \subseteq \mathbb{N}$, the partitioning problem is

Can S be split into two sets whose sums are the same?

• As a formal language:

PARTITION = $\{ \langle S \rangle \mid S \subseteq \mathbb{N}, \text{ and there is a way to}$ split S into two sets withthe same sum. $\}$

$PARTITION \in \mathbf{NPC}$

- We will prove that *PARTITION* is **NP**-complete.
- To do this, we will show that
 - *PARTITION* \in **NP**, and
 - $SUBSET-SUM \leq_{P} PARTITION$
- Sense a pattern? ©

$PARTITION \in \mathbf{NP}$

- Here is a polynomial-time verifier for *PARTITION*:
- V ="On input $\langle S, S_1, S_2 \rangle$:
 - Check that $S_1 \cup S_2 = S$ and that $S_1 \cap S_2 = \emptyset$.
 - Check that the sum of the elements in S_1 equals the sum of the elements in S_2 .
 - If so, accept; otherwise, reject."

$SUBSET-SUM \leq_{P} PARTITION$

- We now reduce subset sum to partitioning.
- The subset sum has a solution iff
 - Some subset of the master set S is equal to k.
- We will construct our new set S' such that
 - If a subset of *S* has total *k*, we can add in a new element to make up the difference to half the total sum.

$\left\{\begin{array}{c}137, 42, 271, 103, 154, 16, 3\\ k = 452\end{array}\right\}$

Total of all elements in this set: 726

726 - 452 = 274

452 - 274 = 178

137, 42, 271, 103, 154, 16, 3, 178

The General Idea

- Add in a new element to the set such that a subset with the appropriate sum also forms a partition.
- The new element added in might need to go in the subset that originally added to *k*, or it might have to go in the complement of that set.

One Final **NP**-Complete Problem

Given a set *J* of jobs that take some amount of time to complete and *k* workers, the **job scheduling** problem is to minimize the total time required to complete all jobs (called the **makespan**).

Job Scheduling

• Given a set *J* of jobs of different lengths, a number of workers *k*, and a number *t*, the job scheduling problem is

Can the jobs in J be assigned to the k workers such that all jobs are finished within t units of time?

• As a formal language:

JOB-SCHEDULING =
{ (J, k, t) | The jobs in J can be assigned
 to the k workers so all jobs are
 completed within t time }

JOB- $SCHEDULING \in \mathbf{NPC}$

- We will prove that *JOB-SCHEDULING* is **NP**-complete.
- To do this, we will show that
 - JOB- $SCHEDULING \in \mathbf{NP}$, and
 - $PARTITION \leq_{P} JOB\text{-}SCHEDULING$

$JOB\text{-}SCHEDULING \in \mathbf{NP}$

- Here is a polynomial-time NTM for *JOB*-*SCHEDULING*:
- N ="On input $\langle J, k, t \rangle$:
 - Nondeterministically guess an assignment of the jobs in *J* to the *k* workers.
 - **Deterministically** find the maximum amount of time used by any worker.
 - If it is at most *t*, accept; otherwise, reject."

$PARTITION \leq_{P} JOB\text{-}SCHEDULING$

- We now reduce partitioning to job scheduling.
- The reduction is actually straightforward:
 - Given a set of numbers to partition, create one task for each number.
 - Have two workers.
 - See if the workers can complete the tasks in time at most half the total time required to do all jobs.

$PARTITION \leq_{P} JOB\text{-}SCHEDULING$

A Historical Note

Richard Karp. "Reducibility Among Combinatorial Problems." 1972

Richard Karp. "Reducibility Among Combinatorial Problems." 1972

A Feel for **NP**-Completeness

- We have just seen $\mathbf{NP}\text{-}\mathrm{complete}$ problems from
 - Formal logic (3SAT)
 - Graph theory (3-colorability)
 - Set theory (exact cover)
 - Number theory (subset sum / partition)
 - Operations research (job scheduling)
- You will encounter NP-complete problems in the real world.

Next Time

- Approximation Algorithms
 - Can we *approximate* **NP**-hard problems within polynomial time?

• P, NP, and Cryptography

• How can we use hard problems to our advantage?