

NPN P
Completeness

More

Final Exam Details

● Final exam is Wednesday, December 12 from
12:15 – 3:15PM in Cubberly Auditorium.

● Covers material up through and including
Wednesday's lecture.

● Exam focuses primarily on material starting with
DFAs and NFAs, though there will be at least one
midterm-style question on the exam.

● If you need to take the final exam at an alternate
time, please contact us as soon as possible so that
we can make arrangements.

Exam Review

● Two final exam review sessions this weekend:
● Saturday, 2PM – 5PM in Gates 104
● Sunday, 2PM – 5PM in Gates 104

● There is an extra credit practice final exam
available right now.

● Worth 5 points extra credit if you make an honest
effort to complete all the problems.

● Due at the time that you take the exam.
● No solutions released; come talk to us during office

hours or the review session if you have questions!
● Second practice exam will be released on Wednesday

along with solutions, though not for extra credit.

Previously on CS103...

NP-Hardness

● A language L is called NP-hard iff for every L' ∈ NP, we
have L' ≤P L.

● A language in L is called NP-complete iff L is NP-hard and
L ∈ NP.

● The class NPC is the set of NP-complete problems.

P

 NP NP-Hard
NPC

The Tantalizing Truth

Theorem: If any NP-complete language is in
 P, then P = NP.

The Tantalizing Truth

 NP

P
NPC

Theorem: If any NP-complete language is not
 in P, then P ≠ NP.

3-CNF

● A propositional formula is in 3-CNF if
● It is in CNF, and
● Every clause has exactly three literals.

● For example:
● (x ∨ y ∨ z) ∧ (¬x ∨ ¬y ∨ z)
● (x ∨ x ∨ x) ∧ (y ∨ ¬y ∨ ¬x) ∧ (x ∨ y ∨ ¬y)
● But not (x ∨ y ∨ z ∨ w) ∧ (x ∨ y)

● The language 3SAT is defined as follows:

3SAT = { ⟨φ⟩ | φ is a satisfiable 3-CNF formula }
● Theorem (Cook-Levin): 3SAT is NP-complete.

The Structure of 3CNF

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

Each clause must have
at least one

true literal in it…

The Structure of 3CNF

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

… subject to the constraint that
we never choose a literal

and its negation

NP-Completeness

P

 NP

NPC

Theorem: If L ∈ NPC, L ≤P L', and L' ∈ NP,
 then L' ∈ NPC.

Structuring NP-Completeness Reductions

The Shape of a Reduction

● Polynomial-time reductions work by solving
one problem with a solver for a different
problem.

● Most problems in NP have different pieces
that must be solved simultaneously.

● For example, in 3SAT:
● Each clause must be made true,
● but no literal and its complement may be

picked.

Reductions and Gadgets

● Many reductions used to show NP-
completeness work by using gadgets.

● Each piece of the original problem is
translated into a “gadget” that handles
some particular detail of the problem.

● These gadgets are then connected
together to solve the overall problem.

Gadgets in INDSET

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

x

y

¬z ¬x

¬y

z ¬x

y

¬z

Each of these gadgets is designed
to solve one part of the problem:
ensuring each clause is satisfied.

Gadgets in INDSET

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

x

y

¬z ¬x

¬y

z ¬x

y

¬z

These connections ensure that the solutions
to each gadget are linked to one another.

Gadgets in INDSET

¬x

x

¬x

y

¬y

A More Complex Reduction

A 3-coloring of a graph is a way of coloring its
nodes one of three colors such that no two connected

nodes have the same color.

The 3-Coloring Problem

● The 3-coloring problem is

Given an undirected graph G,
is there a legal 3-coloring of its

nodes?
● As a formal language:

3COLOR = { ⟨G⟩ | G is an undirected
graph with a legal 3-coloring. }

● This problem is known to be NP-complete
by a reduction from 3SAT.

3COLOR ∈ NP

● We can prove that 3COLOR ∈ NP by
designing a polynomial-time
nondeterministic TM for 3COLOR.

● M = “On input ⟨G⟩:
● Nondeterministically guess an assignment

of colors to the nodes.
● Deterministically check whether it is a 3-

coloring.
● If so, accept; otherwise reject.”

A Note on Terminology

● Although 3COLOR and 3SAT both have “3” in
their names, the two are very different
problems.
● 3SAT means “there are three literals in every

clause.” However, each literal can take on only
one of two different values.

● 3COLOR means “every node can take on one of
three different colors.”

● Key difference:
● In 3SAT variables have two choices of value.
● In 3COLOR nodes have three choices of value.

Why Not Two Colors?
● It would seem that 2COLOR (whether a graph

has a 2-coloring) would be a better fit.
● Every variable has one of two values.
● Every node has one of two values.

● Interestingly, 2COLOR is known to be in P and
is conjectured not to be NP-complete.
● Though, if you can prove that it is, you've just

won $1,000,000!

From 3SAT to 3COLOR

● In order to reduce 3SAT to 3COLOR, we need
to somehow make a graph that is 3-colorable
iff some 3-CNF formula φ is satisfiable.

● Idea: Use a collection of gadgets to solve the
problem.
● Build a gadget to assign two of the colors the

labels “true” and “false.”
● Build a gadget to force each variable to be either

true or false.
● Build a series of gadgets to force those variable

assignments to satisfy each clause.

Gadget One: Assigning Meanings

T F

O
These nodes
must all have
different
colors.

The color assigned to T will be interpreted as “true.”
The color assigned to F will be interpreted as “false.”

We do not associate any special meaning with O.

Gadget Two: Forcing a Choice

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

x ¬x y ¬y z ¬z

T F

O

Gadget Three: Clause Satisfiability

(x ∨ y ∨ ¬z)

x y ¬zT F

This node is
colorable iff one

of the inputs is the
same color as T

Putting It All Together

● Construct the first gadget so we have a
consistent definition of true and false.

● For each variable v:
● Construct nodes v and ¬v.
● Add an edge between v and ¬v.
● Add an edge between v and O and between ¬v

and O.

● For each clause C:
● Construct the earlier gadget from C by adding in

the extra nodes and edges.

Putting It All Together

C
1

C
2

… C
n

T F

O

x
1

¬x
1 x

k
¬x

k

Analyzing the Reduction

● How large is the resulting graph?
● We have O(1) nodes to give meaning to “true”

and “false.”
● Each variable gives O(1) nodes for its true and

false values.
● Each clause gives O(1) nodes for its colorability

gadget.
● Collectively, if there are n clauses, there are

O(n) variables.
● Total size of the graph is O(n).

Another NP-Complete Problem

Let U be a set of elements (the universe)
and S ⊆ (℘ U). An exact covering of U is a

collection of sets I ⊆ S such that every
element of U belongs to exactly one set in I.

1, 2, 3, 4, 5, 6U =

1, 2, 5

2, 3, 4

2, 5

4 1, 5, 6

1, 3, 6, ,

, ,

,

S =

Applications of Exact Covering

1 2 3

4 5 6

7 8 9

C Y M

{ C, 1, 4, 5 }
{ C, 1, 2, 4 }
{ C, 1, 2, 5 }
{ C, 2, 4, 5 }
{ M, 1, 4, 7 }
{ M, 2, 5, 8 }
{ M, 3, 6, 9 }

Exact Covering

● Given a universe U and a set S ⊆ (℘ U), the
exact covering problem is

Does S contain an
exact covering of U?

● As a formal language:

EXACT-COVER =
 { ⟨U, S⟩ | S ⊆ (℘ U) and
 S contains an exact
 covering of U }

EXACT-COVER ∈ NPC

● We will prove that EXACT-COVER is NP-
complete.

● To do this, we will show that
● EXACT-COVER ∈ NP, and

● 3COLOR ≤P EXACT-COVER

● Note that we're using the fact that
3COLOR is NP-complete to establish that
EXACT-COVER is NP-hard.

EXACT-COVER ∈ NP

● Here is a polynomial-time verifier for
EXACT-COVER:

● V = “On input ⟨U, S, I⟩:
● Verify that every set in S is a subset of U.
● Verify that every set in I is an element of S.
● Verify that every element of U belongs to an

element of I.
● Verify that every element of U belongs to at most

one element of I.”

3COLOR ≤P EXACT-COVER

● We now reduce 3-colorability to the exact cover
problem.

● A graph is 3-colorable iff
● Every node is assigned one of three colors, and
● No two nodes connected by an edge are

assigned the same color.
● We will construct our universe U and sets S

such that an exact covering
● Assigns every node in G one of three colors, and
● Never assigns two adjacent nodes the same

color.

W

Y Z

X

W

R
W

G
W

B
W

{ W, RW, RY, RZ }
{ W, GW, GY, GZ }
{ W, BW, BY, BZ }

{ X, RX, RZ }
{ X, GX, GZ }
{ X, BX, BZ }

{ Y, RY, RW, RZ }
{ Y, GY, GW, GZ }
{ Y, BY, BW, BZ }
{ Z, RZ, RW, RY }
{ Z, GZ, GW, GY }
{ Z, BZ, BW, BY }

X

R
X

G
X

B
X

Y

R
Y G

Y

B
Y

Z

R
ZG

Z

B
Z

W

Y Z

X

W

R
W

G
W

B
W

{ W, RW, RY, RZ }
{ W, GW, GY, GZ }
{ W, BW, BY, BZ }

{ X, RX, RZ }
{ X, GX, GZ }
{ X, BX, BZ }

{ Y, RY, RW, RZ }
{ Y, GY, GW, GZ }
{ Y, BY, BW, BZ }
{ Z, RZ, RW, RY }
{ Z, GZ, GW, GY }
{ Z, BZ, BW, BY }

X

R
X

G
X

B
X

Y

R
Y G

Y

B
Y

Z

R
ZG

Z

B
Z

W

Y Z

X { W, RW, RY, RZ }
{ W, GW, GY, GZ }
{ W, BW, BY, BZ }

{ X, RX, RZ }
{ X, GX, GZ }
{ X, BX, BZ }

{ Y, RY, RW, RZ }
{ Y, GY, GW, GZ }
{ Y, BY, BW, BZ }
{ Z, RZ, RW, RY }
{ Z, GZ, GW, GY }
{ Z, BZ, BW, BY }

R
X

Nothing covers this
element, since X has
no blue neighbors.

Nothing covers this
element, since X has
no blue neighbors.

W

R
W

G
W

B
W X

G
X

B
X

Y

R
Y G

Y

B
Y

Z

R
ZG

Z

B
Z

W

R
W

G
W

B
W X

R
X

G
X

B
X

Y

R
Y G

Y

B
Y

Z

R
ZG

Z

B
Z

W

Y Z

X { W, RW, RY, RZ }
{ W, GW, GY, GZ }
{ W, BW, BY, BZ }

{ X, RX, RZ }
{ X, GX, GZ }
{ X, BX, BZ }

{ Y, RY, RW, RZ }
{ Y, GY, GW, GZ }
{ Y, BY, BW, BZ }
{ Z, RZ, RW, RY }
{ Z, GZ, GW, GY }
{ Z, BZ, BW, BY }

G
Z

Two sets cover this
element, since Z has
two green neighbors.

Two sets cover this
element, since Z has
two green neighbors.

W

R
W

G
W

B
W X

R
X

G
X

B
X

Y

R
Y G

Y

B
Y

Z

R
Z

B
Z

W

R
W

G
W

B
W X

R
X

G
X

B
X

Y

R
Y G

Y

B
Y

Z

R
ZG

Z

B
Z

Correction 1: Filling in Gaps

W

Y Z

X

W

R
W

G
W

B
W

{ W, RW, RY, RZ }
{ W, GW, GY, GZ }
{ W, BW, BY, BZ }

{ X, RX, RZ }
{ X, GX, GZ }
{ X, BX, BZ }

{ Y, RY, RW, RZ }
{ Y, GY, GW, GZ }
{ Y, BY, BW, BZ }
{ Z, RZ, RW, RY }
{ Z, GZ, GW, GY }
{ Z, BZ, BW, BY }

X

R
X

G
X

B
X

Y

R
Y G

Y

B
Y

Z

R
ZG

Z

B
Z

{ RW }
{ RX }
{ RY }
{ RZ }
{ GW }
{ GX }
{ GY }
{ GZ }
{ BW }
{ BX }
{ BY }
{ BZ }

Y Z

W

Y Z

X { W, RW, RY, RZ }
{ W, GW, GY, GZ }
{ W, BW, BY, BZ }

{ X, RX, RZ }
{ X, GX, GZ }
{ X, BX, BZ }

{ Y, RY, RW, RZ }
{ Y, GY, GW, GZ }
{ Y, BY, BW, BZ }
{ Z, RZ, RW, RY }
{ Z, GZ, GW, GY }
{ Z, BZ, BW, BY }

{ RW }
{ RX }
{ RY }
{ RZ }
{ GW }
{ GX }
{ GY }
{ GZ }
{ BW }
{ BX }
{ BY }
{ BZ }

Y Z

W

R
W

G
W

B
W X

R
X

G
X

B
X

Y

R
Y G

Y

B
Y

Z

R
ZG

Z

B
Z

W

R
W

G
W

B
W

B
X

Y

R
Y G

Y

B
Y

Z

R
ZG

Z

B
Z

Correction 2: Avoiding Duplicates

W

Y Z

X

W

R
WY

G
WY

B
WY

X

Y Z

R
XZ

G
XZ

B
XZ

R
YZ

G
YZ

B
YZ

R
WZ

G
WZ

B
WZ

{ W, RWY, RWZ }
{ W, GWY, GWZ }
{ W, BWY, BWZ }

{ X, RXZ }
{ X, GXZ }
{ X, BXZ }

{ Y, RWY, RYZ }
{ Y, GWY, GYZ }
{ Y, BWY, BYZ }

{ Z, RWZ, RXZ, RYZ }
{ Z, GWZ, GXZ, GYZ }
{ Z, BWZ, BXZ, BYZ }

{ RWY }
{ RWZ }
{ RXZ }
{ RYZ }
{ GWY }
{ GWZ }
{ GXZ }
{ GYZ }
{ BWY }
{ BWZ }
{ BXZ }
{ BYZ }

W

Y Z

X

W

R
WY

G
WY

B
WY

X

Y Z

R
XZ

G
XZ

B
XZ

R
YZ

G
YZ

B
YZ

R
WZ

G
WZ

B
WZ

{ W, RWY, RWZ }
{ W, GWY, GWZ }
{ W, BWY, BWZ }

{ X, RXZ }
{ X, GXZ }
{ X, BXZ }

{ Y, RWY, RYZ }
{ Y, GWY, GYZ }
{ Y, BWY, BYZ }

{ Z, RWZ, RXZ, RYZ }
{ Z, GWZ, GXZ, GYZ }
{ Z, BWZ, BXZ, BYZ }

{ RWY }
{ RWZ }
{ RXZ }
{ RYZ }
{ GWY }
{ GWZ }
{ GXZ }
{ GYZ }
{ BWY }
{ BWZ }
{ BXZ }
{ BYZ }

The Construction

● For each node v in graph G, construct four
elements in the universe U:
● An element v.

● Elements Rv, Gv, and Bv.

● For each edge {u, v} in graph G, construct
three elements in the universe U:

● Elements Ruv, Guv, Buv

● Total size of the universe U: O(|V| + |E|).

The Construction

● For each node v in graph G, construct a set
belonging to S containing

● The element v,

● Each Ruv for each edge {u, v} in the graph.

● Repeat the above for colors G and B.

● Add singleton sets containing each individual
element except for elements corresponding to
nodes.

● Total size of all sets is O(|V| + |E|)

● Counts each node three times and each edge
six times.

The Story So Far

3COLORINDSET

3SAT

EXACT-COVER

Another NP-Complete Problem

Given a set S ⊆ ℕ and a natural number k,
the subset sum problem is to find a subset

of S whose sum is exactly k.

137, 42, 271, 103, 154, 16, 3

k = 452

http://xkcd.com/287/

http://xkcd.com/287/

Subset Sum

● Given a set S ⊆ ℕ and a natural number k, the
subset sum problem is

Is there a subset of S with sum exactly k?
● As a formal language:

SUBSET-SUM =
 { ⟨S, k⟩ | S ⊆ ℕ, k ∈ ℕ and
 there is a subset of S with
 sum exactly k? }

SUBSET-SUM ∈ NPC

● We will prove that SUBSET-SUM is NP-
complete.

● To do this, we will show that
● SUBSET-SUM ∈ NP, and

● EXACT-COVER ≤P SUBSET-SUM

● Again, we're using our new NP-complete
problem to show other languages are
NP-complete.

SUBSET-SUM ∈ NP

● Here is a nondeterministic polynomial-
time algorithm for SUBSET-SUM

● N = “On input ⟨S, k⟩:
● Nondeterministically guess a subset I ⊆ S.
● Deterministically verify whether the sum of

the elements of I is equal to k.
● If so, accept; otherwise reject.”

EXACT-COVER ≤P SUBSET-SUM

● We now reduce exact cover to subset sum.

● The exact cover problem has a solution iff

● Every element of the universe belongs to at
least one set, and

● Every element of the universe belongs to at
most one set.

● We will construct our set S and number k such that

● Each number corresponds to a set of elements,
and

● k corresponds to the universe U.

1, 2, 5

2, 3, 4

2, 5

4 1, 5, 6

1, 3, 6, ,

, ,

,

S =

d
1
d

2
d

3
d

4
d

5
d

6

1, 2, 3, 4, 5, 6U =

1, 2, 5

2, 3, 4

2, 5

4 1, 5, 6

1, 3, 6, ,

, ,

,

S =

1, 2, 3, 4, 5, 6U =

110010 , 010010 , 101001
011100 , 000100 , 100011S' =

k = 111111

The Basic Intuition

● Suppose there are n elements in the
universe and k different sets.

● Replace each set S with a number that
is 1 in its ith position if i ∈ S and has a 0
in its ith position otherwise.

● Set k to a number that is n copies of the
number 1.

A Slight Complexity

● To ensure that the columns don't
overflow, write the numbers in base
(B + 1) where B is the total number of
sets.

● That way, the columns can't overflow
from one column into the next.

The Story So Far

3COLORINDSET

3SAT

EXACT-COVER

SUBSET-SUM

Yet Another NP-Complete Problem

Given a set S ⊆ ℕ, the partitioning
problem is to find a way to split S into two

sets with equal sum.

13, 137, 56, 42, 103, 58, 271

Partitioning

● Given a set S ⊆ ℕ, the partitioning problem is

Can S be split into two sets
whose sums are the same?

● As a formal language:

PARTITION =
 { ⟨S⟩ | S ⊆ ℕ, and there is a way to
 split S into two sets with
 the same sum. }

PARTITION ∈ NPC

● We will prove that PARTITION is NP-
complete.

● To do this, we will show that
● PARTITION ∈ NP, and

● SUBSET-SUM ≤P PARTITION

● Sense a pattern? ☺

PARTITION ∈ NP

● Here is a polynomial-time verifier for
PARTITION:

● V = “On input ⟨S, S1, S2⟩:

● Check that S1 ∪ S2 = S and that S1 ∩ S2 = Ø.

● Check that the sum of the elements in S1
equals the sum of the elements in S2.

● If so, accept; otherwise, reject.”

SUBSET-SUM ≤P PARTITION

● We now reduce subset sum to partitioning.

● The subset sum has a solution iff

● Some subset of the master set S is equal to k.
● We will construct our new set S' such that

● If a subset of S has total k, we can add in a new
element to make up the difference to half the
total sum.

137, 42, 271, 103, 154, 16, 3

k = 452

Total of all elements in this set: 726

726 – 452 = 274

452 – 274 = 178

137, 42, 271, 103, 154, 16, 3, 178

The General Idea

● Add in a new element to the set such
that a subset with the appropriate sum
also forms a partition.

● The new element added in might need
to go in the subset that originally added
to k, or it might have to go in the
complement of that set.

The Story So Far

3COLORINDSET

3SAT

EXACT-COVER

SUBSET-SUM

PARTITION

One Final NP-Complete Problem

Given a set J of jobs that take some amount of time
to complete and k workers, the job scheduling
problem is to minimize the total time required to

complete all jobs (called the makespan).

Job Scheduling

● Given a set J of jobs of different lengths, a
number of workers k, and a number t, the job
scheduling problem is

Can the jobs in J be assigned to the k
workers such that all jobs are finished

within t units of time?
● As a formal language:

JOB-SCHEDULING =
 { ⟨J, k, t⟩ | The jobs in J can be assigned
 to the k workers so all jobs are
 completed within t time }

JOB-SCHEDULING ∈ NPC

● We will prove that JOB-SCHEDULING is
NP-complete.

● To do this, we will show that
● JOB-SCHEDULING ∈ NP, and

● PARTITION ≤P JOB-SCHEDULING

JOB-SCHEDULING ∈ NP

● Here is a polynomial-time NTM for JOB-
SCHEDULING:

● N = “On input ⟨J, k, t⟩:
● Nondeterministically guess an assignment

of the jobs in J to the k workers.
● Deterministically find the maximum

amount of time used by any worker.
● If it is at most t, accept; otherwise, reject.”

PARTITION ≤P JOB-SCHEDULING

● We now reduce partitioning to job
scheduling.

● The reduction is actually
straightforward:
● Given a set of numbers to partition, create one

task for each number.
● Have two workers.
● See if the workers can complete the tasks in

time at most half the total time required to do
all jobs.

PARTITION ≤P JOB-SCHEDULING

2, 3, 4, 5, 10

Total time: 24

 12 Time Units

The Story So Far

3COLORINDSET

3SAT

EXACT-COVER

SUBSET-SUM

PARTITION

JOB-SCHEDULING

A Historical Note

Richard Karp. “Reducibility Among
Combinatorial Problems.” 1972

Richard Karp. “Reducibility Among
Combinatorial Problems.” 1972

A Feel for NP-Completeness

● We have just seen NP-complete problems
from
● Formal logic (3SAT)
● Graph theory (3-colorability)
● Set theory (exact cover)
● Number theory (subset sum / partition)
● Operations research (job scheduling)

● You will encounter NP-complete
problems in the real world.

Next Time

● Approximation Algorithms
● Can we approximate NP-hard problems

within polynomial time?

● P, NP, and Cryptography
● How can we use hard problems to our

advantage?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84

