

Completeness

Announcements

- Friday Four Square!
- Today at 4:15PM, outside Gates.
- Problem Set 8 due right now.
- Problem Set 9 out, due next Friday at 2:15PM.
- Explore P, NP, and their connection.
- Did you lose a phone in my office?

Previously on CS103...

NTIME

- The time complexity of a nondeterministic Turing machine is the length of the longest execution path of that NTM on a string of length n.
- The class NTIME $(f(n))$ consists of all decision problems that can be decided in time $\mathrm{O}(f(n))$ by a single-tape NTM.

The Complexity Class NP

- The complexity class NP (nondeterministic polynomial time) contains all problems that can be solved in polynomial time by a single-tape NTM.
- Formally:

$$
\mathbf{N P}=\bigcup_{k=0}^{\infty} \operatorname{NTIME}\left(n^{k}\right)
$$

- Equivalently: A language is in NP iff there is a polynomial-time verifier for it.

A Problem in NP

- A graph coloring is a way of assigning colors to nodes in an undirected graph such that no two nodes joined by an edge have the same color.
- Applications in compilers, cell phone towers, etc.
- Question: Can graph G be colored with at most k colors?
- $M=$ "On input $\langle G, k, C\rangle$, where C is an alleged coloring:
- Deterministically check whether C is a legal k-coloring of G.
- If so, accept; if not, reject."

Proving Languages are in NP

- Build a polynomial-time NTM for L.
- Build an NTM for the language L.
- Prove that it runs in nondeterministic time $O\left(n^{k}\right)$.
- Build a polynomial-time verifier for L.
- Build a TM that verifies a string, given a certificate.
- Prove that it runs in deterministic time $\mathrm{O}\left(n^{k}\right)$.
- Reduce L to a language in NP.
- Show how a polynomial-time verifier or polynomial-time NTM for some language L^{\prime} can be used to decide L.

Polynomial-Time Reductions

- Suppose that we know that $B \in \mathbf{N P}$.
- Suppose that $A \leq_{\mathrm{P}} B$.
- Then $A \in \mathbf{N P}$.

Length of w : \mathbf{n}

Time required: $\mathbf{O}\left(\mathbf{n}^{k}\right) \quad$ Length of $f(w): \mathbf{O}\left(\mathbf{n}^{\mathrm{k}}\right)$

Nondeterministic time required: $O\left(\mathrm{n}^{\mathrm{kr}}\right)$

The

Most Important Question
in
Theoretical Computer Science

What is the connection between \mathbf{P} and $\mathbf{N P}$?

$$
\begin{aligned}
\mathbf{P} & =\bigcup_{k=0}^{\infty} \operatorname{TIME}\left(n^{k}\right) \\
\mathbf{N P} & =\bigcup_{k=0}^{\infty} \operatorname{NTIME}\left(n^{k}\right)
\end{aligned}
$$

$\operatorname{TIME}\left(n^{k}\right) \subseteq \operatorname{NTIME}\left(n^{k}\right)$
$\mathbf{P} \subseteq \mathbf{N P}$

Does $\mathbf{P}=\mathbf{N P}$?

$\mathbf{P} \stackrel{2}{=} \mathbf{N} \mathbf{P}$

- The question of $\mathbf{P} \stackrel{?}{=} \mathbf{N P}$ is the most important question in theoretical computer science.
- With the verifier definition of NP, one way of phrasing this question is

If a problem can be verified efficiently, can it be solved efficiently?

- An answer either way will give fundamental insights into the nature of computation.

Why This Matters

- The following problems are known to be efficiently verifiable, but have no known efficient solutions:
- Determining whether an electrical grid can be built to link up some number of houses for some price (Steiner tree problem).
- Determining whether a simple DNA strand exists that multiple gene sequences could be a part of (shortest common supersequence).
- Determining the best way to assign hardware resources in a compiler (optimal register allocation).
- Determining the best way to distribute tasks to multiple workers to minimize completion time (job scheduling).
- And many more.
- If $\mathbf{P}=\mathbf{N P}$, all of these problems have efficient solutions.
- If $\mathbf{P} \neq \mathbf{N P}$, none of these problems have efficient solutions.

Why This Matters

- If $\mathbf{P}=\mathbf{N P}$:
- A huge number of seemingly difficult problems could be solved efficiently.
- Our capacity to solve many problems will scale well with the size of the problems we want to solve.
- If $\mathbf{P} \neq \mathbf{N P}$:
- Enormous computational power would be required to solve many seemingly easy tasks.
- Our capacity to solve problems will fail to keep up with our curiosity.

What We Know

- Resolving $\mathbf{P} \stackrel{?}{=}$ NP has proven extremely difficult.
- In the past 35 years:
- Not a single correct proof either way has been found.
- Many types of proofs have been shown to be insufficiently powerful to determine whether $\mathbf{P}=\mathbf{N P}$.
- It is commonly believed that $\mathbf{P} \neq \mathbf{N P}$, but no one knows for sure.
- Interesting read: Interviews with leading thinkers about $\mathbf{P} \stackrel{?}{=} \mathbf{N P}$:
- http://web.ing.puc.cl/~jabaier/iic2212/poll-1.pdf

The Million-Dollar Question ChALLENGE ACCEPTED

The Clay Mathematics Institute has offered a $\mathbf{\$ 1 , 0 0 0 , 0 0 0}$ prize to anyone who proves or disproves $\mathbf{P}=\mathbf{N P}$.

NP-Completeness

Polynomial-Time Reductions

- If $L_{1} \leq_{\mathrm{P}} L_{2}$ and $L_{2} \in \mathbf{P}$, then $L_{1} \in \mathbf{P}$.
- If $L_{1} \leq_{\mathrm{p}} L_{2}$ and $L_{2} \in \mathbf{N P}$, then $L_{1} \in \mathbf{N P}$.

NP-Hardness

- A language L is called NP-hard iff for every $L^{\prime} \in \mathbf{N P}$, we have $L^{\prime} \leq_{\mathrm{p}} L$.
- A language in L is called NP-complete iff L is NP-hard and $L \in \mathbf{N P}$.
- The class NPC is the set of NP-complete problems.

The Tantalizing Truth

Theorem: If any NP-complete language is in \mathbf{P}, then $\mathbf{P}=\mathbf{N P}$.
Proof: If $L \in \mathbf{N P C}$ and $L \in \mathbf{P}$, we know for any $L^{\prime} \in \mathbf{N P}$ that $L^{\prime} \leq_{\mathrm{p}} L$, because L is NP-complete. Since $L^{\prime} \leq_{\mathrm{P}} L$ and $L \in \mathbf{P}$, this means that $L^{\prime} \in \mathbf{P}$ as well. Since our choice of L^{\prime} was arbitrary, any language $L^{\prime} \in \mathbf{N P}$ satisfies $L^{\prime} \in \mathbf{P}$, so $\mathbf{N P} \subseteq \mathbf{P}$. Since $\mathbf{P} \subseteq \mathbf{N P}$, this means $\mathbf{P}=\mathbf{N P}$.

The Tantalizing Truth

Theorem: If any NP-complete language is not in \mathbf{P}, then $\mathbf{P} \neq \mathbf{N P}$.
Proof: If $L \in \mathbf{N P C}$, then $L \in \mathbf{N P}$. Thus if $L \notin \mathbf{P}$, then $L \in \mathbf{N P}-\mathbf{P}$. This means that $\mathbf{N P}-\mathbf{P} \neq \varnothing$, so $\mathbf{P} \neq \mathbf{N P}$.

A Feel for NP-Completeness

- If a problem is NP-complete, then under the (commonly-held) assumption that $\mathbf{P} \neq \mathbf{N P}$, there cannot be an efficient algorithm for it.
- In a sense, NP-complete problems are the hardest problems in NP.
- All known NP-complete problems are enormously hard to solve:
- All known algorithms for NP-complete problems run in worst-case exponential time.
- Most algorithms for NP-complete problems are infeasible for reasonably-sized inputs.

What Problems are NP-Complete?

- NP-complete problems give a promising approach for resolving $\mathbf{P} \stackrel{?}{=} \mathbf{N P}$:
- If any NPC problem is in \mathbf{P}, then $\mathbf{P}=\mathbf{N P}$.
- If any NPC problem is not in \mathbf{P}, then $\mathbf{P} \neq \mathbf{N P}$.
- However, we haven't shown that any problems are NP-complete in the first place!
- How do we even know they exist?

Satisfiability

- A propositional logic formula φ is called satisfiable if there is some assignment to its variables that makes it evaluate to true.
- An assignment of true and false to the variables of φ that makes it evaluate to true is called a satisfying assignment.
- Similar terms:
- φ is tautological if it is always true.
- φ is satisfiable if it can be made true.
- φ is unsatisfiable if it is always false.

SAT

- The boolean satisfiability problem (SAT) is the following:

Given a propositional logic formula φ, is φ satisfiable?

- Formally:

$$
\begin{aligned}
& \text { SAT }=\{\langle\varphi\rangle \mid \varphi \text { is a satisfiable PL } \\
& \text { formula \} }
\end{aligned}
$$

Theorem (Cook-Levin): SAT is NP-complete.

Sketch of the Proof

- We need to show that every single language in NP has a polynomial-time reduction to SAT.
- To do so, we will use the fact that every language in NP has a polynomial-time NTM.
- We can build a SAT formula that encodes the rules for how that NTM operates.
- If there is some set of choices where the NTM accepts, our formula will be satisfiable.
- If there are no choices we can make where the NTM accepts, our formula will be unsatisfiable.

Polynomial-Time NTMs

- Recall: The runtime of an NTM on a string w is the height of its computation tree on w.
- If an NTM runs in polynomial time, there is some polynomial $p(n)$ such that no execution of the NTM on a string w takes more than $p(|w|)$ time on any branch.
- This means the NTM never uses more than $p(|w|)$ tape on any branch of its computation on w.

State

\section*{| 0 | 1 | 0 | 1 |
| :--- | :--- | :--- | :--- |}

q_{0}

q_{2}

O_{3}

$\Theta_{a c C}$

Proving Cook-Levin

- Build a PL formula that encodes the following idea:
- Machine M begins with w written on its tape, followed by blanks.
- Each step of the computation legally follows from the previous step.
- The machine ends in an accepting state.
- This formula is satisfiable iff there is some series of choices M can make such that M accepts w.
- This formula has size polynomial in $|w|$.
- See Sipser for Details.

A Simpler NP-Complete Problem

Literals and Clauses

- A literal in propositional logic is a variable or its negation:
- X
- $\neg y$
- But not $x \wedge y$.
- A clause is a many-way OR (disjunction) of literals.
- $\neg \chi \vee y \vee \neg z$
- X
- But not $x \vee \neg(y \vee z)$

Conjunctive Normal Form

- A propositional logic formula φ is in conjunctive normal form (CNF) if it is the many-way AND (conjunction) of clauses.
- ($x \vee y \vee z) \wedge(\neg x \vee \neg y) \wedge(x \vee y \vee z \vee \neg w)$
- $x \vee z$
- But not $(x \vee(y \wedge z)) \vee(x \vee y)$
- Only legal operators are \neg, v, \wedge.
- No nesting allowed.

The Structure of CNF

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

Each clause must have

$$
\begin{aligned}
& \text { at least one } \\
& \text { true literal in it. }
\end{aligned}
$$

The Structure of CNF

We should pick at least one true literal from each clause

The Structure of CNF

$(\underbrace{x \vee y \vee \neg z) \wedge(\underbrace{\neg x \vee \neg y \vee z}) \wedge(\underbrace{\neg x \vee y \vee \neg z})) ~}_{\Delta}$
... subject to the constraint that
we never choose a literal
and its negation

3-CNF

- A propositional formula is in 3-CNF if
- It is in CNF, and
- Every clause has exactly three literals.
- For example:
- ($x \vee y \vee z) \wedge(\neg x \vee \neg y \vee z)$
- ($x \vee x \vee x) \wedge(y \vee \neg y \vee \neg x) \wedge(x \vee y \vee \neg y)$
- But not ($x \vee y \vee z \vee w) \wedge(x \vee y)$
- The language 3SAT is defined as follows:

3SAT $=\{\langle\varphi\rangle \mid \varphi$ is a satisfiable 3-CNF formula \}

Theorem (Cook-Levin): 3SAT is NP-Complete

Using the Cook-Levin Theorem

- When discussing decidability, we used the fact that $\mathrm{A}_{\mathrm{TM}} \notin \mathbf{R}$ as a starting point for finding other undecidable languages.
- Idea: Reduce A_{TM} to some other language.
- When discussing NP-completeness, we will use the fact that 3SAT \in NPC as a starting point for finding other NPC languages.
- Idea: Reduce 3SAT to some other language.

NP-Completeness

- Theorem: If $L \in \mathbf{N P C}, L \leq_{\mathrm{p}} L^{\prime}$, and $L^{\prime} \in \mathbf{N P}$, then $L^{\prime} \in \mathbf{N P C}$.
- Proof: Consider any language $X \in \mathbf{N P}$. Since $L \in \mathbf{N P C}$, we know that $X \leq_{p} L$. Since $L \leq_{p} L^{\prime}$, we have $X \leq_{p} L^{\prime}$. Since our choice of X was arbitrary, this means L^{\prime} is $\mathbf{N P}$-hard. Since L^{\prime} is NP-hard and $L^{\prime} \in \mathbf{N P}$, we have $L^{\prime} \in$ NPC. \square

Be Careful!

- To prove that some language L is NP-complete, show that $L \in \mathbf{N P}$, then reduce some known NP-complete problem to L.
- Do not reduce L to a known NP-complete problem.
- We already knew you could do this; every NP problems is reducible to any NP-complete problem!

So what other problems are NP-complete?

An independent set in an undirected graph is a set of vertices that have no edges between them

The Independent Set Problem

- Given an undirected graph G and a natural number n, the independent set problem is

Does G contain an independent set of size at least n ?

- As a formal language:

INDSET $=\{\langle G, n\rangle \mid G$ is an undirected graph with an independent set of size at least $\boldsymbol{n}\}$

$I N D S E T \in \mathbf{N P}$

- The independent set problem is in NP.
- Here is a polynomial-time verifier that checks whether S is an n-element independent set:
- $V=$ "On input $\langle G, n, S\rangle$:
- If $|S|<n$, reject.
- For each edge in G, if both endpoints are in S, reject.
- Otherwise, accept."

INDSET \in NPC

- The INDSET problem is NP-complete.
- To prove this, we will find a polynomialtime reduction from 3SAT to INDSET.
- Goal: Given a 3CNF formula φ, construct a graph G and number n such that φ is satisfiable iff G has an independent set of size n.
- How can we accomplish this?

The Structure of 3CNF

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

Each clause must have
at least one
true literal in it.

From 3SAT to INDSET

- To convert a 3SAT instance φ to an INDSET instance, we need a graph G and number n such that an independent set of size at least n in G
- gives us a way to choose which literal in each clause of φ should be true,
- doesn't simultaneously choose a literal and its negation, and
- has size polynomially large in the length of the formula φ.

From 3SAT to INDSET

$(x \vee y v \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

Any independent set in this graph chooses exactly one literal from each clause to be true.

From 3SAT to INDSET

We need a way to ensure we never pick a literal and its negation.

From 3SAT to INDSET

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

No independent set in this graph can choose two nodes labeled \boldsymbol{x} and $\boldsymbol{\neg \boldsymbol { x }}$.

From 3SAT to INDSET

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

From 3SAT to INDSET

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

From 3SAT to INDSET

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

If this graph has an independent set of size three, the original formula is satisfiable.

From 3SAT to INDSET

$x=$ false,$y=$ true, $z=$ false.
$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y \vee \neg z)$

If the original formula is satisfiable, this graph has an independent set of size three.

From 3SAT to INDSET

- Let $\varphi=C_{1} \wedge C_{2} \wedge \ldots \wedge C_{n}$ be a 3-CNF formula.
- Construct the graph G as follows:
- For each clause $C_{i}=x_{1} \vee x_{2} \vee x_{3}$, where x_{1}, x_{2}, and x_{3} are literals, add three new nodes into G with edges connecting them.
- For each pair of nodes v_{i} and $\neg v_{\mathrm{i}}$, where v_{i} is some variable, add an edge connecting ν_{i} and $\neg \nu_{\mathrm{i}}$. (Note that there are multiple copies of these nodes)
- Claim One: This reduction can be computed in polynomial time.
- Claim: G has an independent set of size $n \operatorname{iff} \varphi$ is satisfiable.

Lemma: This reduction can be computed in polynomial time.

Proof: Suppose that the original 3-CNF formula φ has n clauses, each of which has three literals. Then we construct 3n nodes in our graph. Each clause contributes 3 edges, so there are $\mathrm{O}(n)$ edges added from clauses. For each pair of nodes representing opposite literals, we introduce one edge. Since there are $O\left(n^{2}\right)$ pairs of literals, this introduces at most $\mathrm{O}\left(n^{2}\right)$ new edges. This gives a graph with $\mathrm{O}(n)$ nodes and $O\left(n^{2}\right)$ edges. Each node and edge can be constructed in polynomial time, so overall this reduction can be computed in polynomial time, as required.

Lemma: If the graph G has an independent set of size n (where n is the number of clauses in φ), then φ is satisfiable.
Proof: Suppose G has an independent set of size n, call if S. No two nodes in S can correspond to v and $\neg v$ for any variable v, because there is an edge between all nodes with this property. Thus for each variable v, either there is a node in S with label v, or there is a node in S with label $\neg v$, or no node in S has either label. In the first case, set v to true; in the second case, set v to false; in the third case, choose a value for v arbitrarily. We claim that this gives a satisfying assignment for φ.
To see this, we show that each clause C in φ is satisfied. By construction, no two nodes in S can come from nodes added by C, because each has an edge to the other. Since there are n nodes in S and n clauses in φ, for any clause in φ some node corresponding to a literal from that clause is in S. If that node has the form x, then C contains x, and since we set x to true, C is satisfied. If that node has the form $\neg x$, then C contains $\neg \chi$, and since we set x to false, C is satisfied. Thus all clauses in φ are satisfied, so φ is satisfied by this assignment.

Lemma: If φ is satisfiable and has n clauses, then G has an independent set of size n.

Proof: Suppose that φ is satisfiable and consider any satisfying assignment for it. Thus under that assignment, for each clause C, there is some literal that evaluates to true. For each clause C, choose some literal that evaluates to true and add the corresponding node in G to a set S. Then S has size n, since it contains one node per clause.

We claim moreover that S is an independent set in G. To see this, note that there are two types of edges in G : edges between nodes representing literals in the same clause, and edges between variables and their negations. No two nodes joined by edges within a clause are in S, because we explicitly picked one node per clause. Moreover, no two nodes joined by edges between opposite literals are in S, because in a satisfying assignment both of the two could not be true. Thus no nodes in S are joined by edges, so S is an independent set.

Putting it All Together

Theorem: INDSET is NP-complete.
Proof: We know that INDSET \in NP, because we constructed a polynomial-time verifier for it. So all we need to show is that every problem in NP is polynomial-time reducible to INDSET.

To do this, we use the polynomial-time reduction from 3SAT to INDSET that we just gave. As we proved, $\varphi \in$ 3SAT iff $\langle\mathrm{G}, \mathrm{n}\rangle \in \operatorname{INDSET}$, and this reduction can be computed in polynomial time. Thus 3SAT is polynomial-time reducible to INDSET, so INDSET is NP-complete.

Next Time

- More NP-Completeness
- A sampler of other NP-complete problems.
- Problems from disaster relief, route planning, etc.

