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Announcements

● Friday Four Square!
● Today at 4:15PM, outside Gates.

● Problem Set 8 due right now.
● Problem Set 9 out, due next Friday at 

2:15PM.
● Explore P, NP, and their connection.

● Did you lose a phone in my office?



  

Previously on CS103...



  

NTIME

● The time complexity of a nondeterministic Turing 
machine is the length of the longest execution path of 
that NTM on a string of length n.

● The class NTIME(f(n)) consists of all decision
problems that can be decided in time
O(f(n)) by a single-tape NTM.



  

The Complexity Class NP

● The complexity class NP 
(nondeterministic polynomial time) 
contains all problems that can be solved 
in polynomial time by a single-tape NTM.

● Formally:

● Equivalently: A language is in NP iff 
there is a polynomial-time verifier for it.

∪∞            NTIME(nk)NP =
k = 0



  

A Problem in NP

● A graph coloring is a way of assigning colors to 
nodes in an undirected graph such that no two 
nodes joined by an edge have the same color.

● Applications in compilers, cell phone towers, etc.

● Question: Can graph G be colored with at most k 
colors?

● M = “On input ⟨G, k, C⟩, where C is an alleged 
coloring:

● Deterministically check
whether C is a legal
k-coloring of G.

● If so, accept; if not, reject.”



  

Proving Languages are in NP

● Build a polynomial-time NTM for L.
● Build an NTM for the language L.
● Prove that it runs in nondeterministic time O(nk).

● Build a polynomial-time verifier for L.
● Build a TM that verifies a string, given a certificate.
● Prove that it runs in deterministic time O(nk).

● Reduce L to a language in NP.
● Show how a polynomial-time verifier or polynomial-time 

NTM for some language L' can be used to decide L.
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Polynomial-Time Reductions
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● Suppose that we know that B ∈ NP.

● Suppose that A ≤P B.
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Polynomial-Time Reductions

A

Solvable in
 O(nkr) by NTM

B

Solvable in
O(nr) by NTM

A reduces to B

B decides A

Length of w: n Time required: O(nk)
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● Suppose that we know that B ∈ NP.

● Suppose that A ≤P B.

● Then A ∈ NP.

Length of f(w): O(nk)



  

Trust me, these reductions matter.

We'll see why in a few minutes.



  

The
 

Most Important Question
 

in
 

Theoretical Computer Science



  

What is the connection between P and NP?
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Does P = NP?



  

P  ≟ NP

● The question of P ≟ NP is the most important 
question in theoretical computer science.

● With the verifier definition of NP, one way of 
phrasing this question is

If a problem can be verified efficiently,
can it be solved efficiently?

● An answer either way will give fundamental 
insights into the nature of computation.



  

Why This Matters

● The following problems are known to be efficiently 
verifiable, but have no known efficient solutions:

● Determining whether an electrical grid can be built to link up 
some number of houses for some price (Steiner tree problem).

● Determining whether a simple DNA strand exists that multiple 
gene sequences could be a part of (shortest common 
supersequence).

● Determining the best way to assign hardware resources in a 
compiler (optimal register allocation).

● Determining the best way to distribute tasks to multiple 
workers to minimize completion time (job scheduling).

● And many more.

● If P = NP, all of these problems have efficient solutions.

● If P ≠ NP, none of these problems have efficient solutions.



  

Why This Matters

● If P = NP:
● A huge number of seemingly difficult problems 

could be solved efficiently.
● Our capacity to solve many problems will scale 

well with the size of the problems we want to 
solve.

● If P ≠ NP:
● Enormous computational power would be 

required to solve many seemingly easy tasks.
● Our capacity to solve problems will fail to keep up 

with our curiosity.



  

What We Know

● Resolving P  ≟ NP has proven extremely difficult.
● In the past 35 years:

● Not a single correct proof either way has been found.
● Many types of proofs have been shown to be insufficiently 

powerful to determine whether P = NP.
● It is commonly believed that P ≠ NP, but no one knows 

for sure.

● Interesting read: Interviews with leading thinkers 
about P  ≟ NP:
● http://web.ing.puc.cl/~jabaier/iic2212/poll-1.pdf

http://web.ing.puc.cl/~jabaier/iic2212/poll-1.pdf


  

The Million-Dollar Question

The Clay Mathematics Institute has 
offered a $1,000,000 prize to anyone who 

proves or disproves P = NP.
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NP-Hardness

● A language L is called NP-hard iff for every L' ∈ NP, we 
have L' ≤P L.

A language in L is called NP-complete iff L is NP-hard and 
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The class NPC is the set of NP-complete problems.
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The Tantalizing Truth

Theorem: If any NP-complete language is in P, then P = NP.

Proof: If L ∈ NPC and L ∈ P, we know for any L' ∈ NP that
            L' ≤P L, because L is NP-complete.  Since L' ≤P L and
            L ∈ P, this means that L' ∈ P as well.  Since our choice of
            L' was arbitrary, any language L' ∈ NP satisfies L' ∈ P, so
            NP ⊆ P. Since P ⊆ NP, this means P = NP. ■
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The Tantalizing Truth
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Theorem: If any NP-complete language is not in P, then P ≠ NP.

Proof: If L ∈ NPC, then L ∈ NP.  Thus if L ∉ P, then L ∈ NP – P. 
            This means that NP – P ≠ Ø, so P ≠ NP. ■ 



  

A Feel for NP-Completeness

● If a problem is NP-complete, then under the 
(commonly-held) assumption that P ≠ NP, 
there cannot be an efficient algorithm for it.

● In a sense, NP-complete problems are the 
hardest problems in NP.

● All known NP-complete problems are 
enormously hard to solve:
● All known algorithms for NP-complete problems 

run in worst-case exponential time.
● Most algorithms for NP-complete problems are 

infeasible for reasonably-sized inputs.



  

What Problems are NP-Complete?

● NP-complete problems give a promising 
approach for resolving P ≟ NP:
● If any NPC problem is in P, then P = NP.
● If any NPC problem is not in P, then P ≠ NP.

● However, we haven't shown that any 
problems are NP-complete in the first place!

● How do we even know they exist?



  

Satisfiability

● A propositional logic formula φ is called 
satisfiable if there is some assignment to its 
variables that makes it evaluate to true.

● An assignment of true and false to the 
variables of φ that makes it evaluate to true 
is called a satisfying assignment.

● Similar terms:
● φ is tautological if it is always true.
● φ is satisfiable if it can be made true.
● φ is unsatisfiable if it is always false.



  

SAT

● The boolean satisfiability problem 
(SAT) is the following:

Given a propositional logic
formula φ, is φ satisfiable?

● Formally:

SAT = { ⟨φ⟩ | φ is a satisfiable PL 
formula }



  

Theorem (Cook-Levin): SAT is NP-complete.



  

Sketch of the Proof

● We need to show that every single language in NP 
has a polynomial-time reduction to SAT.

● To do so, we will use the fact that every language in 
NP has a polynomial-time NTM.

● We can build a SAT formula that encodes the rules 
for how that NTM operates.

● If there is some set of choices where the NTM 
accepts, our formula will be satisfiable.

● If there are no choices we can make where the NTM 
accepts, our formula will be unsatisfiable.



  

Polynomial-Time NTMs

● Recall: The runtime of an NTM on a string w is the 
height of its computation tree on w.

● If an NTM runs in polynomial time, there is some 
polynomial p(n) such that no execution of
the NTM on a string w takes more than
p(|w|) time on any branch.

● This means the NTM never uses more
than p(|w|) tape on any branch of its
computation on w.
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Proving Cook-Levin

● Build a PL formula that encodes the following idea:
● Machine M begins with w written on its tape, 

followed by blanks.
● Each step of the computation legally follows from 

the previous step.
● The machine ends in an accepting state.

● This formula is satisfiable iff there is some series 
of choices M can make such that M accepts w.

● This formula has size polynomial in |w|.

● See Sipser for Details.



  

A Simpler NP-Complete Problem



  

Literals and Clauses
● A literal in propositional logic is a 

variable or its negation:
● x
● ¬y
● But not x ∧ y.

● A clause is a many-way OR (disjunction) 
of literals.
● ¬x ∨ y ∨ ¬z
● x
● But not x ∨ ¬(y ∨ z)



  

Conjunctive Normal Form

● A propositional logic formula φ is in 
conjunctive normal form (CNF) if it is 
the many-way AND (conjunction) of 
clauses.
● (x ∨ y ∨ z) ∧ (¬x ∨ ¬y) ∧ (x ∨ y ∨ z ∨ ¬w)
● x ∨ z
● But not (x ∨ (y ∧ z)) ∨ (x ∨ y)

● Only legal operators are ¬, ∨, ∧.
● No nesting allowed.



  

The Structure of CNF

( x ∨ y ∨ ¬z ) ( ¬x ∨ ¬y ∨ z )∧ ∧ ( ¬x ∨ y ∨ ¬z )

Each clause must have 
at least one

true literal in it.



  

The Structure of CNF

( x ∨ y ∨ ¬z ) ( ¬x ∨ ¬y ∨ z )∧ ∧ ( ¬x ∨ y ∨ ¬z )

We should pick at least one
true literal from each clause



  

The Structure of CNF

( x ∨ y ∨ ¬z ) ( ¬x ∨ ¬y ∨ z )∧ ∧ ( ¬x ∨ y ∨ ¬z )

… subject to the constraint that
we never choose a literal

and its negation



  

3-CNF

● A propositional formula is in 3-CNF if
● It is in CNF, and
● Every clause has exactly three literals.

● For example:
● (x ∨ y ∨ z) ∧ (¬x ∨ ¬y ∨ z)
● (x ∨ x ∨ x) ∧ (y ∨ ¬y ∨ ¬x) ∧ (x ∨ y ∨ ¬y)
● But not (x ∨ y ∨ z ∨ w) ∧ (x ∨ y)

● The language 3SAT is defined as follows:

3SAT = { ⟨φ⟩ | φ is a satisfiable 3-CNF 
formula }



  

Theorem (Cook-Levin): 3SAT is NP-Complete



  

Using the Cook-Levin Theorem

● When discussing decidability, we used 
the fact that ATM ∉ R as a starting point 
for finding other undecidable languages.
● Idea: Reduce ATM to some other language.

● When discussing NP-completeness, we 
will use the fact that 3SAT ∈ NPC as a 
starting point for finding other NPC 
languages.
● Idea: Reduce 3SAT to some other language.



  

NP-Completeness
● Theorem: If L ∈ NPC, L ≤P L', and L' ∈ NP, then L' ∈ NPC.

● Proof: Consider any language X ∈ NP.  Since L ∈ NPC,
     we know that X ≤P L.  Since L ≤P L', we have X ≤P L'. 
     Since our choice of X was arbitrary, this means L' is
     NP-hard.  Since L' is NP-hard and L' ∈ NP, we have
     L' ∈ NPC. ■
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● To prove that some language L is NP-complete, show 
that L ∈ NP, then reduce some known NP-complete 
problem to L.

● Do not reduce L to a known NP-complete problem.
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So what other problems are NP-complete?



  

An independent set in an undirected graph
is a set of vertices that have no edges between them
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The Independent Set Problem

● Given an undirected graph G and a 
natural number n, the independent set 
problem is

Does G contain an independent set
of size at least n?

● As a formal language:

INDSET = { ⟨G, n⟩ | G is an 
undirected graph with an 

independent set of size at least n }



  

INDSET ∈ NP

● The independent set problem is in NP.
● Here is a polynomial-time verifier that 

checks whether S is an n-element 
independent set:
● V = “On input ⟨G, n, S⟩:

– If |S| < n, reject.
– For each edge in G, if both endpoints are in S, 

reject.
– Otherwise, accept.”



  

INDSET ∈ NPC

● The INDSET problem is NP-complete.
● To prove this, we will find a polynomial-

time reduction from 3SAT to INDSET.
● Goal: Given a 3CNF formula φ, construct 

a graph G and number n such that φ is 
satisfiable iff G has an independent set of 
size n.

● How can we accomplish this?



  

The Structure of 3CNF
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The Structure of 3CNF

( x ∨ y ∨ ¬z ) ( ¬x ∨ ¬y ∨ z )∧ ∧ ( ¬x ∨ y ∨ ¬z )

Each clause must have 
at least one

true literal in it.
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The Structure of 3CNF
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We should pick at least one
true literal from each clause
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The Structure of 3CNF

( x ∨ y ∨ ¬z ) ( ¬x ∨ ¬y ∨ z )∧ ∧ ( ¬x ∨ y ∨ ¬z )

… subject to the constraint that
we never choose a literal

and its negation



  

From 3SAT to INDSET

● To convert a 3SAT instance φ to an INDSET 
instance, we need a graph G and number n 
such that an independent set of size at least n 
in G
● gives us a way to choose which literal in each 

clause of φ should be true,
● doesn't simultaneously choose a literal and its 

negation, and
● has size polynomially large in the length of the 

formula φ.



  

From 3SAT to INDSET

( x ∨ y ∨ ¬z ) ( ¬x ∨ ¬y ∨ z )∧ ∧ ( ¬x ∨ y ∨ ¬z )
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From 3SAT to INDSET

( x ∨ y ∨ ¬z ) ( ¬x ∨ ¬y ∨ z )∧ ∧ ( ¬x ∨ y ∨ ¬z )
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y

¬z

Any independent set in this graph 
chooses exactly one literal from 

each clause to be true.
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From 3SAT to INDSET

( x ∨ y ∨ ¬z ) ( ¬x ∨ ¬y ∨ z )∧ ∧ ( ¬x ∨ y ∨ ¬z )

x

y

¬z ¬x

¬y
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We need a way to ensure we never 
pick a literal and its negation.
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No independent set in this graph can 
choose two nodes labeled x and ¬x.
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If this graph has an independent set of
size three, the original formula is satisfiable.
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From 3SAT to INDSET
● Let φ = C1 ∧ C2 ∧ … ∧ Cn be a 3-CNF formula.

● Construct the graph G as follows:
● For each clause Ci = x1 ∨ x2 ∨ x3, where x1, x2, and x3 

are literals, add three new nodes into G with edges 
connecting them.

● For each pair of nodes vi and ¬vi, where vi is some 
variable, add an edge connecting vi and ¬vi.  (Note 
that there are multiple copies of these nodes)

● Claim One: This reduction can be computed in 
polynomial time.

● Claim: G has an independent set of size n iff φ is 
satisfiable.



  

Lemma: This reduction can be computed in
polynomial time.

Proof: Suppose that the original 3-CNF formula φ
has n clauses, each of which has three literals. 
Then we construct 3n nodes in our graph. 
Each clause contributes 3 edges, so there are
O(n) edges added from clauses.  For each pair
of nodes representing opposite literals, we
introduce one edge.  Since there are O(n2)
pairs of literals, this introduces at most O(n2)
new edges.  This gives a graph with O(n) nodes
and O(n2) edges.  Each node and edge can be
constructed in polynomial time, so overall this
reduction can be computed in polynomial time,
as required. ■
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Lemma: If the graph G has an independent set of size n (where 
n is the number of clauses in φ), then φ is satisfiable.
 

Proof: Suppose G has an independent set of size n, call if S.  No
two nodes in S can correspond to v and ¬v for any variable
v, because there is an edge between all nodes with this
property.  Thus for each variable v, either there is a node in
S with label v, or there is a node in S with label ¬v, or no
node in S has either label.  In the first case, set v to true; in
the second case, set v to false; in the third case, choose a
value for v arbitrarily.  We claim that this gives a satisfying
assignment for φ.

 

To see this, we show that each clause C in φ is satisfied.  By
construction, no two nodes in S can come from nodes added
by C, because each has an edge to the other.  Since there
are n nodes in S and n clauses in φ, for any clause in φ some
node corresponding to a literal from that clause is in S.  If
that node has the form x, then C contains x, and since we
set x to true, C is satisfied.  If that node has the form ¬x,
then C contains ¬x, and since we set x to false, C is
satisfied.  Thus all clauses in φ are satisfied, so φ is satisfied
by this assignment. ■



  

Lemma: If φ is satisfiable and has n clauses, then G has an 
independent set of size n.

Proof: Suppose that φ is satisfiable and consider any satisfying
assignment for it.  Thus under that assignment, for each
clause C, there is some literal that evaluates to true.  For
each clause C, choose some literal that evaluates to true
and add the corresponding node in G to a set S.  Then S has
size n, since it contains one node per clause.

We claim moreover that S is an independent set in G.  To see
this, note that there are two types of edges in G: edges
between nodes representing literals in the same clause, and
edges between variables and their negations.  No two nodes
joined by edges within a clause are in S, because we
explicitly picked one node per clause.  Moreover, no two
nodes joined by edges between opposite literals are in S,
because in a satisfying assignment both of the two could not
be true.  Thus no nodes in S are joined by edges, so S is an
independent set. ■



  

Putting it All Together

Theorem: INDSET is NP-complete.
 

Proof: We know that INDSET ∈ NP, because we
constructed a polynomial-time verifier for it.  So
all we need to show is that every problem in NP is
polynomial-time reducible to INDSET.

 

To do this, we use the polynomial-time reduction
from 3SAT to INDSET that we just gave.  As we
proved, φ ∈ 3SAT iff ⟨G, n⟩ ∈ INDSET, and this
reduction can be computed in polynomial time. 
Thus 3SAT is polynomial-time reducible to
INDSET, so INDSET is NP-complete. ■
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Next Time

● More NP-Completeness
● A sampler of other NP-complete problems.
● Problems from disaster relief, route 

planning, etc.
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