

NPN P
Completeness

Announcements

● Friday Four Square!
● Today at 4:15PM, outside Gates.

● Problem Set 8 due right now.
● Problem Set 9 out, due next Friday at

2:15PM.
● Explore P, NP, and their connection.

● Did you lose a phone in my office?

Previously on CS103...

NTIME

● The time complexity of a nondeterministic Turing
machine is the length of the longest execution path of
that NTM on a string of length n.

● The class NTIME(f(n)) consists of all decision
problems that can be decided in time
O(f(n)) by a single-tape NTM.

The Complexity Class NP

● The complexity class NP
(nondeterministic polynomial time)
contains all problems that can be solved
in polynomial time by a single-tape NTM.

● Formally:

● Equivalently: A language is in NP iff
there is a polynomial-time verifier for it.

∪∞ NTIME(nk)NP =
k = 0

A Problem in NP

● A graph coloring is a way of assigning colors to
nodes in an undirected graph such that no two
nodes joined by an edge have the same color.

● Applications in compilers, cell phone towers, etc.

● Question: Can graph G be colored with at most k
colors?

● M = “On input ⟨G, k, C⟩, where C is an alleged
coloring:

● Deterministically check
whether C is a legal
k-coloring of G.

● If so, accept; if not, reject.”

Proving Languages are in NP

● Build a polynomial-time NTM for L.
● Build an NTM for the language L.
● Prove that it runs in nondeterministic time O(nk).

● Build a polynomial-time verifier for L.
● Build a TM that verifies a string, given a certificate.
● Prove that it runs in deterministic time O(nk).

● Reduce L to a language in NP.
● Show how a polynomial-time verifier or polynomial-time

NTM for some language L' can be used to decide L.

Proving Languages are in NP

Build a polynomial-time NTM for L.

Build an NTM for the language L.

Prove that it runs in nondeterministic time O(nk).

Build a polynomial-time verifier for L.

Build a TM that verifies a string, given a certificate.

Prove that it runs in deterministic time O(nk).

● Reduce L to a language in NP.
● Show how a polynomial-time verifier or polynomial-time

NTM for some language L' can be used to decide L.

Polynomial-Time Reductions

A

Solvable?

● Suppose that we know that B ∈ NP.

● Suppose that A ≤P B.

Polynomial-Time Reductions

A

Solvable?

B

Solvable in
O(nr) by NTM

● Suppose that we know that B ∈ NP.

● Suppose that A ≤P B.

Polynomial-Time Reductions

A

Solvable?

B

Solvable in
O(nr) by NTM

Length of w: n

● Suppose that we know that B ∈ NP.

● Suppose that A ≤P B.

Polynomial-Time Reductions

A

Solvable?

B

Solvable in
O(nr) by NTM

A reduces to B

Length of w: n

● Suppose that we know that B ∈ NP.

● Suppose that A ≤P B.

Polynomial-Time Reductions

A

Solvable?

B

Solvable in
O(nr) by NTM

A reduces to B

Length of w: n Time required: O(nk)

● Suppose that we know that B ∈ NP.

● Suppose that A ≤P B.

Polynomial-Time Reductions

A

Solvable?

B

Solvable in
O(nr) by NTM

A reduces to B

Length of w: n Time required: O(nk) Length of f(w): O(nk)

● Suppose that we know that B ∈ NP.

● Suppose that A ≤P B.

Polynomial-Time Reductions

A

Solvable?

B

Solvable in
O(nr) by NTM

A reduces to B

B decides A

Length of w: n Time required: O(nk)

● Suppose that we know that B ∈ NP.

● Suppose that A ≤P B.

Length of f(w): O(nk)

Polynomial-Time Reductions

A

Solvable?

B

Solvable in
O(nr) by NTM

A reduces to B

B decides A

Length of w: n Time required: O(nk)

Nondeterministic time
required: O(nkr)

● Suppose that we know that B ∈ NP.

● Suppose that A ≤P B.

Length of f(w): O(nk)

Polynomial-Time Reductions

A

Solvable in
 O(nkr) by NTM

B

Solvable in
O(nr) by NTM

A reduces to B

B decides A

Length of w: n Time required: O(nk)

Nondeterministic time
required: O(nkr)

● Suppose that we know that B ∈ NP.

● Suppose that A ≤P B.

Length of f(w): O(nk)

Polynomial-Time Reductions

A

Solvable in
 O(nkr) by NTM

B

Solvable in
O(nr) by NTM

A reduces to B

B decides A

Length of w: n Time required: O(nk)

Nondeterministic time
required: O(nkr)

● Suppose that we know that B ∈ NP.

● Suppose that A ≤P B.

● Then A ∈ NP.

Length of f(w): O(nk)

Trust me, these reductions matter.

We'll see why in a few minutes.

The

Most Important Question

in

Theoretical Computer Science

What is the connection between P and NP?

∪∞ NTIME(nk)NP =
k = 0

∪∞ NTIME(nk)NP =
k = 0

TIME(nk) NTIME(n⊆ k)

P NP⊆

∪∞ NTIME(nk)NP =
k = 0

∪∞ NTIME(nk)NP =
k = 0

TIME(nk) NTIME(⊆ nk)

P NP⊆

∪∞ NTIME(nk)NP =
k = 0

∪∞ NTIME(nk)NP =
k = 0

TIME(nk) NTIME(⊆ nk)

P ⊆ NP

P NP

Which Picture is Correct?

P NP

Which Picture is Correct?

Does P = NP?

P ≟ NP

● The question of P ≟ NP is the most important
question in theoretical computer science.

● With the verifier definition of NP, one way of
phrasing this question is

If a problem can be verified efficiently,
can it be solved efficiently?

● An answer either way will give fundamental
insights into the nature of computation.

Why This Matters

● The following problems are known to be efficiently
verifiable, but have no known efficient solutions:

● Determining whether an electrical grid can be built to link up
some number of houses for some price (Steiner tree problem).

● Determining whether a simple DNA strand exists that multiple
gene sequences could be a part of (shortest common
supersequence).

● Determining the best way to assign hardware resources in a
compiler (optimal register allocation).

● Determining the best way to distribute tasks to multiple
workers to minimize completion time (job scheduling).

● And many more.

● If P = NP, all of these problems have efficient solutions.

● If P ≠ NP, none of these problems have efficient solutions.

Why This Matters

● If P = NP:
● A huge number of seemingly difficult problems

could be solved efficiently.
● Our capacity to solve many problems will scale

well with the size of the problems we want to
solve.

● If P ≠ NP:
● Enormous computational power would be

required to solve many seemingly easy tasks.
● Our capacity to solve problems will fail to keep up

with our curiosity.

What We Know

● Resolving P ≟ NP has proven extremely difficult.
● In the past 35 years:

● Not a single correct proof either way has been found.
● Many types of proofs have been shown to be insufficiently

powerful to determine whether P = NP.
● It is commonly believed that P ≠ NP, but no one knows

for sure.

● Interesting read: Interviews with leading thinkers
about P ≟ NP:
● http://web.ing.puc.cl/~jabaier/iic2212/poll-1.pdf

http://web.ing.puc.cl/~jabaier/iic2212/poll-1.pdf

The Million-Dollar Question

The Clay Mathematics Institute has
offered a $1,000,000 prize to anyone who

proves or disproves P = NP.

The Million-Dollar Question

The Clay Mathematics Institute has
offered a $1,000,000 prize to anyone who

proves or disproves P = NP.

NP-Completeness

Polynomial-Time Reductions

● If L1 ≤P L2 and L2 ∈ P, then L1 ∈ P.

If L1 ≤P L2 and L2 ∈ NP, then L1 ∈ NP.

P

Polynomial-Time Reductions

● If L1 ≤P L2 and L2 ∈ P, then L1 ∈ P.

If L1 ≤P L2 and L2 ∈ NP, then L1 ∈ NP.

P

Polynomial-Time Reductions

● If L1 ≤P L2 and L2 ∈ P, then L1 ∈ P.

If L1 ≤P L2 and L2 ∈ NP, then L1 ∈ NP.

P

Polynomial-Time Reductions

● If L1 ≤P L2 and L2 ∈ P, then L1 ∈ P.

● If L1 ≤P L2 and L2 ∈ NP, then L1 ∈ NP.

P

Polynomial-Time Reductions

● If L1 ≤P L2 and L2 ∈ P, then L1 ∈ P.

● If L1 ≤P L2 and L2 ∈ NP, then L1 ∈ NP.

 NPP

Polynomial-Time Reductions

● If L1 ≤P L2 and L2 ∈ P, then L1 ∈ P.

● If L1 ≤P L2 and L2 ∈ NP, then L1 ∈ NP.

 NPP

Polynomial-Time Reductions

● If L1 ≤P L2 and L2 ∈ P, then L1 ∈ P.

● If L1 ≤P L2 and L2 ∈ NP, then L1 ∈ NP.

 NPP

NP-Hardness

● A language L is called NP-hard iff for every L' ∈ NP, we
have L' ≤P L.

A language in L is called NP-complete iff L is NP-hard and
L ∈ NP.

The class NPC is the set of NP-complete problems.

P

 NP

NP-Hardness

● A language L is called NP-hard iff for every L' ∈ NP, we
have L' ≤P L.

A language in L is called NP-complete iff L is NP-hard and
L ∈ NP.

The class NPC is the set of NP-complete problems.

P

 NP NP-Hard

NP-Hardness

● A language L is called NP-hard iff for every L' ∈ NP, we
have L' ≤P L.

A language in L is called NP-complete iff L is NP-hard and
L ∈ NP.

The class NPC is the set of NP-complete problems.

P

 NP NP-Hard

NP-Hardness

● A language L is called NP-hard iff for every L' ∈ NP, we
have L' ≤P L.

A language in L is called NP-complete iff L is NP-hard and
L ∈ NP.

The class NPC is the set of NP-complete problems.

P

 NP NP-Hard

What's in here?What's in here?

NP-Hardness

● A language L is called NP-hard iff for every L' ∈ NP, we
have L' ≤P L.

● A language in L is called NP-complete iff L is NP-hard and
L ∈ NP.

● The class NPC is the set of NP-complete problems.

P

 NP NP-Hard

NP-Hardness

● A language L is called NP-hard iff for every L' ∈ NP, we
have L' ≤P L.

● A language in L is called NP-complete iff L is NP-hard and
L ∈ NP.

● The class NPC is the set of NP-complete problems.

P

 NP NP-Hard
NPC

The Tantalizing Truth

Theorem: If any NP-complete language is in P, then P = NP.

Proof: If L ∈ NPC and L ∈ P, we know for any L' ∈ NP that
 L' ≤P L, because L is NP-complete. Since L' ≤P L and
 L ∈ P, this means that L' ∈ P as well. Since our choice of
 L' was arbitrary, any language L' ∈ NP satisfies L' ∈ P, so
 NP ⊆ P. Since P ⊆ NP, this means P = NP. ■

The Tantalizing Truth

Theorem: If any NP-complete language is in P, then P = NP.

Proof: If L ∈ NPC and L ∈ P, we know for any L' ∈ NP that
 L' ≤P L, because L is NP-complete. Since L' ≤P L and
 L ∈ P, this means that L' ∈ P as well. Since our choice of
 L' was arbitrary, any language L' ∈ NP satisfies L' ∈ P, so
 NP ⊆ P. Since P ⊆ NP, this means P = NP. ■

The Tantalizing Truth

Theorem: If any NP-complete language is in P, then P = NP.

Proof: If L ∈ NPC and L ∈ P, we know for any L' ∈ NP that
 L' ≤P L, because L is NP-complete. Since L' ≤P L and
 L ∈ P, this means that L' ∈ P as well. Since our choice of
 L' was arbitrary, any language L' ∈ NP satisfies L' ∈ P, so
 NP ⊆ P. Since P ⊆ NP, this means P = NP. ■

The Tantalizing Truth

Theorem: If any NP-complete language is in P, then P = NP.

Proof: If L ∈ NPC and L ∈ P, we know for any L' ∈ NP that
 L' ≤P L, because L is NP-complete. Since L' ≤P L and
 L ∈ P, this means that L' ∈ P as well. Since our choice of
 L' was arbitrary, any language L' ∈ NP satisfies L' ∈ P, so
 NP ⊆ P. Since P ⊆ NP, this means P = NP. ■

The Tantalizing Truth

Theorem: If any NP-complete language is in P, then P = NP.

Proof: If L ∈ NPC and L ∈ P, we know for any L' ∈ NP that
 L' ≤P L, because L is NP-complete. Since L' ≤P L and
 L ∈ P, this means that L' ∈ P as well. Since our choice of
 L' was arbitrary, any language L' ∈ NP satisfies L' ∈ P, so
 NP ⊆ P. Since P ⊆ NP, this means P = NP. ■

The Tantalizing Truth

Theorem: If any NP-complete language is in P, then P = NP.

Proof: If L ∈ NPC and L ∈ P, we know for any L' ∈ NP that
 L' ≤P L, because L is NP-complete. Since L' ≤P L and
 L ∈ P, this means that L' ∈ P as well. Since our choice of
 L' was arbitrary, any language L' ∈ NP satisfies L' ∈ P, so
 NP ⊆ P. Since P ⊆ NP, this means P = NP. ■

The Tantalizing Truth

 NP
P

NPC
P

Theorem: If any NP-complete language is in P, then P = NP.

Proof: If L ∈ NPC and L ∈ P, we know for any L' ∈ NP that
 L' ≤P L, because L is NP-complete. Since L' ≤P L and
 L ∈ P, this means that L' ∈ P as well. Since our choice of
 L' was arbitrary, any language L' ∈ NP satisfies L' ∈ P, so
 NP ⊆ P. Since P ⊆ NP, this means P = NP. ■

The Tantalizing Truth

 NP
P

NPC

Theorem: If any NP-complete language is in P, then P = NP.

Proof: If L ∈ NPC and L ∈ P, we know for any L' ∈ NP that
 L' ≤P L, because L is NP-complete. Since L' ≤P L and
 L ∈ P, this means that L' ∈ P as well. Since our choice of
 L' was arbitrary, any language L' ∈ NP satisfies L' ∈ P, so
 NP ⊆ P. Since P ⊆ NP, this means P = NP. ■

The Tantalizing Truth

Theorem: If any NP-complete language is in P, then P = NP.

Proof: If L ∈ NPC and L ∈ P, we know for any L' ∈ NP that
 L' ≤P L, because L is NP-complete. Since L' ≤P L and
 L ∈ P, this means that L' ∈ P as well. Since our choice of
 L' was arbitrary, any language L' ∈ NP satisfies L' ∈ P, so
 NP ⊆ P. Since P ⊆ NP, this means P = NP. ■

 NP
P

NPC

The Tantalizing Truth

 P = NP

Theorem: If any NP-complete language is in P, then P = NP.

Proof: If L ∈ NPC and L ∈ P, we know for any L' ∈ NP that
 L' ≤P L, because L is NP-complete. Since L' ≤P L and
 L ∈ P, this means that L' ∈ P as well. Since our choice of
 L' was arbitrary, any language L' ∈ NP satisfies L' ∈ P, so
 NP ⊆ P. Since P ⊆ NP, this means P = NP. ■

The Tantalizing Truth

 NP

P
NPC

Theorem: If any NP-complete language is not in P, then P ≠ NP.

Proof: If L ∈ NPC, then L ∈ NP. Thus if L ∉ P, then L ∈ NP – P.
 This means that NP – P ≠ Ø, so P ≠ NP. ■

A Feel for NP-Completeness

● If a problem is NP-complete, then under the
(commonly-held) assumption that P ≠ NP,
there cannot be an efficient algorithm for it.

● In a sense, NP-complete problems are the
hardest problems in NP.

● All known NP-complete problems are
enormously hard to solve:
● All known algorithms for NP-complete problems

run in worst-case exponential time.
● Most algorithms for NP-complete problems are

infeasible for reasonably-sized inputs.

What Problems are NP-Complete?

● NP-complete problems give a promising
approach for resolving P ≟ NP:
● If any NPC problem is in P, then P = NP.
● If any NPC problem is not in P, then P ≠ NP.

● However, we haven't shown that any
problems are NP-complete in the first place!

● How do we even know they exist?

Satisfiability

● A propositional logic formula φ is called
satisfiable if there is some assignment to its
variables that makes it evaluate to true.

● An assignment of true and false to the
variables of φ that makes it evaluate to true
is called a satisfying assignment.

● Similar terms:
● φ is tautological if it is always true.
● φ is satisfiable if it can be made true.
● φ is unsatisfiable if it is always false.

SAT

● The boolean satisfiability problem
(SAT) is the following:

Given a propositional logic
formula φ, is φ satisfiable?

● Formally:

SAT = { ⟨φ⟩ | φ is a satisfiable PL
formula }

Theorem (Cook-Levin): SAT is NP-complete.

Sketch of the Proof

● We need to show that every single language in NP
has a polynomial-time reduction to SAT.

● To do so, we will use the fact that every language in
NP has a polynomial-time NTM.

● We can build a SAT formula that encodes the rules
for how that NTM operates.

● If there is some set of choices where the NTM
accepts, our formula will be satisfiable.

● If there are no choices we can make where the NTM
accepts, our formula will be unsatisfiable.

Polynomial-Time NTMs

● Recall: The runtime of an NTM on a string w is the
height of its computation tree on w.

● If an NTM runs in polynomial time, there is some
polynomial p(n) such that no execution of
the NTM on a string w takes more than
p(|w|) time on any branch.

● This means the NTM never uses more
than p(|w|) tape on any branch of its
computation on w.

0 1 0 1

1 1 0 1

1 0 0 1

1 0 0 1

1 1 0 1

State

q0

q2

q4

q3

qacc

0 1 0 1

1 1 0 1

1 0 0 1

1 0 0 1

1 1 0 1

State

q0

q2

q4

q3

qacc

0 1 0 1

1 1 0 1

1 0 0 1

1 0 0 1

1 1 0 1

State

q0

q2

q4

q3

qacc

0 1 0 1

1 1 0 1

1 0 0 1

1 0 0 1

1 1 0 1

State

q0

q2

q4

q3

qacc

0 1 0 1

1 1 0 1

1 0 0 1

1 0 0 1

1 1 0 1

State

q0

q2

q4

q3

qacc

0 1 0 1

1 1 0 1

1 0 0 1

1 0 0 1

1 1 0 1

State

q0

q2

q4

q3

qacc

0 1 0 1

1 1 0 1

1 0 0 1

1 0 0 1

1 1 0 1

State

q0

q2

q4

q3

qacc

Proving Cook-Levin

● Build a PL formula that encodes the following idea:
● Machine M begins with w written on its tape,

followed by blanks.
● Each step of the computation legally follows from

the previous step.
● The machine ends in an accepting state.

● This formula is satisfiable iff there is some series
of choices M can make such that M accepts w.

● This formula has size polynomial in |w|.

● See Sipser for Details.

A Simpler NP-Complete Problem

Literals and Clauses
● A literal in propositional logic is a

variable or its negation:
● x
● ¬y
● But not x ∧ y.

● A clause is a many-way OR (disjunction)
of literals.
● ¬x ∨ y ∨ ¬z
● x
● But not x ∨ ¬(y ∨ z)

Conjunctive Normal Form

● A propositional logic formula φ is in
conjunctive normal form (CNF) if it is
the many-way AND (conjunction) of
clauses.
● (x ∨ y ∨ z) ∧ (¬x ∨ ¬y) ∧ (x ∨ y ∨ z ∨ ¬w)
● x ∨ z
● But not (x ∨ (y ∧ z)) ∨ (x ∨ y)

● Only legal operators are ¬, ∨, ∧.
● No nesting allowed.

The Structure of CNF

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

Each clause must have
at least one

true literal in it.

The Structure of CNF

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

We should pick at least one
true literal from each clause

The Structure of CNF

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

… subject to the constraint that
we never choose a literal

and its negation

3-CNF

● A propositional formula is in 3-CNF if
● It is in CNF, and
● Every clause has exactly three literals.

● For example:
● (x ∨ y ∨ z) ∧ (¬x ∨ ¬y ∨ z)
● (x ∨ x ∨ x) ∧ (y ∨ ¬y ∨ ¬x) ∧ (x ∨ y ∨ ¬y)
● But not (x ∨ y ∨ z ∨ w) ∧ (x ∨ y)

● The language 3SAT is defined as follows:

3SAT = { ⟨φ⟩ | φ is a satisfiable 3-CNF
formula }

Theorem (Cook-Levin): 3SAT is NP-Complete

Using the Cook-Levin Theorem

● When discussing decidability, we used
the fact that ATM ∉ R as a starting point
for finding other undecidable languages.
● Idea: Reduce ATM to some other language.

● When discussing NP-completeness, we
will use the fact that 3SAT ∈ NPC as a
starting point for finding other NPC
languages.
● Idea: Reduce 3SAT to some other language.

NP-Completeness
● Theorem: If L ∈ NPC, L ≤P L', and L' ∈ NP, then L' ∈ NPC.

● Proof: Consider any language X ∈ NP. Since L ∈ NPC,
 we know that X ≤P L. Since L ≤P L', we have X ≤P L'.
 Since our choice of X was arbitrary, this means L' is
 NP-hard. Since L' is NP-hard and L' ∈ NP, we have
 L' ∈ NPC. ■

NP-Completeness

P

 NP

NPC

● Theorem: If L ∈ NPC, L ≤P L', and L' ∈ NP, then L' ∈ NPC.

● Proof: Consider any language X ∈ NP. Since L ∈ NPC,
 we know that X ≤P L. Since L ≤P L', we have X ≤P L'.
 Since our choice of X was arbitrary, this means L' is
 NP-hard. Since L' is NP-hard and L' ∈ NP, we have
 L' ∈ NPC. ■

NP-Completeness

P

 NP

NPC

● Theorem: If L ∈ NPC, L ≤P L', and L' ∈ NP, then L' ∈ NPC.

● Proof: Consider any language X ∈ NP. Since L ∈ NPC,
 we know that X ≤P L. Since L ≤P L', we have X ≤P L'.
 Since our choice of X was arbitrary, this means L' is
 NP-hard. Since L' is NP-hard and L' ∈ NP, we have
 L' ∈ NPC. ■

NP-Completeness

P

 NP

NPC

● Theorem: If L ∈ NPC, L ≤P L', and L' ∈ NP, then L' ∈ NPC.

● Proof: Consider any language X ∈ NP. Since L ∈ NPC,
 we know that X ≤P L. Since L ≤P L', we have X ≤P L'.
 Since our choice of X was arbitrary, this means L' is
 NP-hard. Since L' is NP-hard and L' ∈ NP, we have
 L' ∈ NPC. ■

NP-Completeness

P

 NP

NPC

● Theorem: If L ∈ NPC, L ≤P L', and L' ∈ NP, then L' ∈ NPC.

● Proof: Consider any language X ∈ NP. Since L ∈ NPC,
 we know that X ≤P L. Since L ≤P L', we have X ≤P L'.
 Since our choice of X was arbitrary, this means L' is
 NP-hard. Since L' is NP-hard and L' ∈ NP, we have
 L' ∈ NPC. ■

Be Careful!

● To prove that some language L is NP-complete, show
that L ∈ NP, then reduce some known NP-complete
problem to L.

● Do not reduce L to a known NP-complete problem.

● We already knew you could do this; every NP problems is
reducible to any NP-complete problem!

P

 NP

NPC

Be Careful!

● To prove that some language L is NP-complete, show
that L ∈ NP, then reduce some known NP-complete
problem to L.

● Do not reduce L to a known NP-complete problem.

● We already knew you could do this; every NP problems is
reducible to any NP-complete problem!

P

 NP

NPC

Be Careful!

● To prove that some language L is NP-complete, show
that L ∈ NP, then reduce some known NP-complete
problem to L.

● Do not reduce L to a known NP-complete problem.

● We already knew you could do this; every NP problems is
reducible to any NP-complete problem!

P

 NP

NPC

So what other problems are NP-complete?

An independent set in an undirected graph
is a set of vertices that have no edges between them

An independent set in an undirected graph
is a set of vertices that have no edges between them

An independent set in an undirected graph
is a set of vertices that have no edges between them

An independent set in an undirected graph
is a set of vertices that have no edges between them

An independent set in an undirected graph
is a set of vertices that have no edges between them

The Independent Set Problem

● Given an undirected graph G and a
natural number n, the independent set
problem is

Does G contain an independent set
of size at least n?

● As a formal language:

INDSET = { ⟨G, n⟩ | G is an
undirected graph with an

independent set of size at least n }

INDSET ∈ NP

● The independent set problem is in NP.
● Here is a polynomial-time verifier that

checks whether S is an n-element
independent set:
● V = “On input ⟨G, n, S⟩:

– If |S| < n, reject.
– For each edge in G, if both endpoints are in S,

reject.
– Otherwise, accept.”

INDSET ∈ NPC

● The INDSET problem is NP-complete.
● To prove this, we will find a polynomial-

time reduction from 3SAT to INDSET.
● Goal: Given a 3CNF formula φ, construct

a graph G and number n such that φ is
satisfiable iff G has an independent set of
size n.

● How can we accomplish this?

The Structure of 3CNF

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

The Structure of 3CNF

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

The Structure of 3CNF

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

Each clause must have
at least one

true literal in it.

The Structure of 3CNF

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

The Structure of 3CNF

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

We should pick at least one
true literal from each clause

The Structure of 3CNF

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

The Structure of 3CNF

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

The Structure of 3CNF

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

The Structure of 3CNF

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

The Structure of 3CNF

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

… subject to the constraint that
we never choose a literal

and its negation

From 3SAT to INDSET

● To convert a 3SAT instance φ to an INDSET
instance, we need a graph G and number n
such that an independent set of size at least n
in G
● gives us a way to choose which literal in each

clause of φ should be true,
● doesn't simultaneously choose a literal and its

negation, and
● has size polynomially large in the length of the

formula φ.

From 3SAT to INDSET

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

From 3SAT to INDSET

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

From 3SAT to INDSET

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

x

y

¬z ¬x

¬y

z ¬x

y

¬z

From 3SAT to INDSET

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

x

y

¬z ¬x

¬y

z ¬x

y

¬z

Any independent set in this graph
chooses exactly one literal from

each clause to be true.

From 3SAT to INDSET

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

x

y

¬z ¬x

¬y

z ¬x

y

¬z

Any independent set in this graph
chooses exactly one literal from

each clause to be true.

From 3SAT to INDSET

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

x

y

¬z ¬x

¬y

z ¬x

y

¬z

Any independent set in this graph
chooses exactly one literal from

each clause to be true.

From 3SAT to INDSET

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

x

y

¬z ¬x

¬y

z ¬x

y

¬z

Any independent set in this graph
chooses exactly one literal from

each clause to be true.

From 3SAT to INDSET

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

x

y

¬z ¬x

¬y

z ¬x

y

¬z

Any independent set in this graph
chooses exactly one literal from

each clause to be true.

From 3SAT to INDSET

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

x

y

¬z ¬x

¬y

z ¬x

y

¬z

Any independent set in this graph
chooses exactly one literal from

each clause to be true.

From 3SAT to INDSET

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

x

y

¬z ¬x

¬y

z ¬x

y

¬z

Any independent set in this graph
chooses exactly one literal from

each clause to be true.

From 3SAT to INDSET

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

x

y

¬z ¬x

¬y

z ¬x

y

¬z

Any independent set in this graph
chooses exactly one literal from

each clause to be true.

From 3SAT to INDSET

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

x

y

¬z ¬x

¬y

z ¬x

y

¬z

Any independent set in this graph
chooses exactly one literal from

each clause to be true.

From 3SAT to INDSET

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

x

y

¬z ¬x

¬y

z ¬x

y

¬z

We need a way to ensure we never
pick a literal and its negation.

From 3SAT to INDSET

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

x

y

¬z ¬x

¬y

z ¬x

y

¬z

From 3SAT to INDSET

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

x

y

¬z ¬x

¬y

z ¬x

y

¬z

From 3SAT to INDSET

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

x

y

¬z ¬x

¬y

z ¬x

y

¬z

From 3SAT to INDSET

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

x

y

¬z ¬x

¬y

z ¬x

y

¬z

No independent set in this graph can
choose two nodes labeled x and ¬x.

From 3SAT to INDSET

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

x

y

¬z ¬x

¬y

z ¬x

y

¬z

From 3SAT to INDSET

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

x

y

¬z ¬x

¬y

z ¬x

y

¬z

From 3SAT to INDSET

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

x

y

¬z ¬x

¬y

z ¬x

y

¬z

From 3SAT to INDSET

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

x

y

¬z ¬x

¬y

z ¬x

y

¬z

From 3SAT to INDSET

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

x

y

¬z ¬x

¬y

z ¬x

y

¬z

From 3SAT to INDSET

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

x

y

¬z ¬x

¬y

z ¬x

y

¬z

From 3SAT to INDSET

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

x

y

¬z ¬x

¬y

z ¬x

y

¬z

From 3SAT to INDSET

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

x

y

¬z ¬x

¬y

z ¬x

y

¬z

If this graph has an independent set of
size three, the original formula is satisfiable.

From 3SAT to INDSET

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

If this graph has an independent set of
size three, the original formula is satisfiable.

x

y

¬z ¬x

¬y

z ¬x

y

¬z

From 3SAT to INDSET

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

If this graph has an independent set of
size three, the original formula is satisfiable.

x

y

¬z ¬x

¬y

z ¬x

y

¬z

From 3SAT to INDSET

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

x = false, y = false, z = false.

If this graph has an independent set of
size three, the original formula is satisfiable.

x

y

¬z ¬x

¬y

z ¬x

y

¬z

From 3SAT to INDSET

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

If this graph has an independent set of
size three, the original formula is satisfiable.

x

y

¬z ¬x

¬y

z ¬x

y

¬z

From 3SAT to INDSET

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

If this graph has an independent set of
size three, the original formula is satisfiable.

x

y

¬z ¬x

¬y

z ¬x

y

¬z

From 3SAT to INDSET

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

x = true, y = true, z = true.

If this graph has an independent set of
size three, the original formula is satisfiable.

x

y

¬z ¬x

¬y

z ¬x

y

¬z

From 3SAT to INDSET

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

If this graph has an independent set of
size three, the original formula is satisfiable.

x

y

¬z ¬x

¬y

z ¬x

y

¬z

From 3SAT to INDSET

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

If this graph has an independent set of
size three, the original formula is satisfiable.

x

y

¬z ¬x

¬y

z ¬x

y

¬z

From 3SAT to INDSET

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

x = false, y = ??, z = false.

If this graph has an independent set of
size three, the original formula is satisfiable.

x

y

¬z ¬x

¬y

z ¬x

y

¬z

From 3SAT to INDSET

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

x = false, y = true, z = false.

If this graph has an independent set of
size three, the original formula is satisfiable.

x

y

¬z ¬x

¬y

z ¬x

y

¬z

From 3SAT to INDSET

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

x = false, y = false, z = false.

If this graph has an independent set of
size three, the original formula is satisfiable.

x

y

¬z ¬x

¬y

z ¬x

y

¬z

From 3SAT to INDSET

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

x

y

¬z ¬x

¬y

z ¬x

y

¬z

From 3SAT to INDSET

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

x

y

¬z ¬x

¬y

z ¬x

y

¬z

If the original formula is satisfiable,
this graph has an independent set of size three.

From 3SAT to INDSET

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

x = false, y = true, z = false.

x

y

¬z ¬x

¬y

z ¬x

y

¬z

If the original formula is satisfiable,
this graph has an independent set of size three.

From 3SAT to INDSET

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

x = false, y = true, z = false.

x

y

¬z ¬x

¬y

z ¬x

y

¬z

If the original formula is satisfiable,
this graph has an independent set of size three.

From 3SAT to INDSET

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

x = false, y = true, z = false.

x

y

¬z ¬x

¬y

z ¬x

y

¬z

If the original formula is satisfiable,
this graph has an independent set of size three.

From 3SAT to INDSET
● Let φ = C1 ∧ C2 ∧ … ∧ Cn be a 3-CNF formula.

● Construct the graph G as follows:
● For each clause Ci = x1 ∨ x2 ∨ x3, where x1, x2, and x3

are literals, add three new nodes into G with edges
connecting them.

● For each pair of nodes vi and ¬vi, where vi is some
variable, add an edge connecting vi and ¬vi. (Note
that there are multiple copies of these nodes)

● Claim One: This reduction can be computed in
polynomial time.

● Claim: G has an independent set of size n iff φ is
satisfiable.

Lemma: This reduction can be computed in
polynomial time.

Proof: Suppose that the original 3-CNF formula φ
has n clauses, each of which has three literals.
Then we construct 3n nodes in our graph.
Each clause contributes 3 edges, so there are
O(n) edges added from clauses. For each pair
of nodes representing opposite literals, we
introduce one edge. Since there are O(n2)
pairs of literals, this introduces at most O(n2)
new edges. This gives a graph with O(n) nodes
and O(n2) edges. Each node and edge can be
constructed in polynomial time, so overall this
reduction can be computed in polynomial time,
as required. ■

Lemma: This reduction can be computed in
polynomial time.

Proof: Suppose that the original 3-CNF formula φ
has n clauses, each of which has three literals.
Then we construct 3n nodes in our graph.
Each clause contributes 3 edges, so there are
O(n) edges added from clauses. For each pair
of nodes representing opposite literals, we
introduce one edge. Since there are O(n2)
pairs of literals, this introduces at most O(n2)
new edges. This gives a graph with O(n) nodes
and O(n2) edges. Each node and edge can be
constructed in polynomial time, so overall this
reduction can be computed in polynomial time,
as required. ■

Lemma: This reduction can be computed in
polynomial time.

Proof: Suppose that the original 3-CNF formula φ
has n clauses, each of which has three literals.
Then we construct 3n nodes in our graph.
Each clause contributes 3 edges, so there are
O(n) edges added from clauses. For each pair
of nodes representing opposite literals, we
introduce one edge. Since there are O(n2)
pairs of literals, this introduces at most O(n2)
new edges. This gives a graph with O(n) nodes
and O(n2) edges. Each node and edge can be
constructed in polynomial time, so overall this
reduction can be computed in polynomial time,
as required. ■

Lemma: This reduction can be computed in
polynomial time.

Proof: Suppose that the original 3-CNF formula φ
has n clauses, each of which has three literals.
Then we construct 3n nodes in our graph.
Each clause contributes 3 edges, so there are
O(n) edges added from clauses. For each pair
of nodes representing opposite literals, we
introduce one edge. Since there are O(n2)
pairs of literals, this introduces at most O(n2)
new edges. This gives a graph with O(n) nodes
and O(n2) edges. Each node and edge can be
constructed in polynomial time, so overall this
reduction can be computed in polynomial time,
as required. ■

Lemma: This reduction can be computed in
polynomial time.

Proof: Suppose that the original 3-CNF formula φ
has n clauses, each of which has three literals.
Then we construct 3n nodes in our graph.
Each clause contributes 3 edges, so there are
O(n) edges added from clauses. For each pair
of nodes representing opposite literals, we
introduce one edge. Since there are O(n2)
pairs of literals, this introduces at most O(n2)
new edges. This gives a graph with O(n) nodes
and O(n2) edges. Each node and edge can be
constructed in polynomial time, so overall this
reduction can be computed in polynomial time,
as required. ■

Lemma: This reduction can be computed in
polynomial time.

Proof: Suppose that the original 3-CNF formula φ
has n clauses, each of which has three literals.
Then we construct 3n nodes in our graph.
Each clause contributes 3 edges, so there are
O(n) edges added from clauses. For each pair
of nodes representing opposite literals, we
introduce one edge. Since there are O(n2)
pairs of literals, this introduces at most O(n2)
new edges. This gives a graph with O(n) nodes
and O(n2) edges. Each node and edge can be
constructed in polynomial time, so overall this
reduction can be computed in polynomial time,
as required. ■

Lemma: This reduction can be computed in
polynomial time.

Proof: Suppose that the original 3-CNF formula φ
has n clauses, each of which has three literals.
Then we construct 3n nodes in our graph.
Each clause contributes 3 edges, so there are
O(n) edges added from clauses. For each pair
of nodes representing opposite literals, we
introduce one edge. Since there are O(n2)
pairs of literals, this introduces at most O(n2)
new edges. This gives a graph with O(n) nodes
and O(n2) edges. Each node and edge can be
constructed in polynomial time, so overall this
reduction can be computed in polynomial time,
as required. ■

Lemma: This reduction can be computed in
polynomial time.

Proof: Suppose that the original 3-CNF formula φ
has n clauses, each of which has three literals.
Then we construct 3n nodes in our graph.
Each clause contributes 3 edges, so there are
O(n) edges added from clauses. For each pair
of nodes representing opposite literals, we
introduce one edge. Since there are O(n2)
pairs of literals, this introduces at most O(n2)
new edges. This gives a graph with O(n) nodes
and O(n2) edges. Each node and edge can be
constructed in polynomial time, so overall this
reduction can be computed in polynomial time,
as required. ■

Lemma: This reduction can be computed in
polynomial time.

Proof: Suppose that the original 3-CNF formula φ
has n clauses, each of which has three literals.
Then we construct 3n nodes in our graph.
Each clause contributes 3 edges, so there are
O(n) edges added from clauses. For each pair
of nodes representing opposite literals, we
introduce one edge. Since there are O(n2)
pairs of literals, this introduces at most O(n2)
new edges. This gives a graph with O(n) nodes
and O(n2) edges. Each node and edge can be
constructed in polynomial time, so overall this
reduction can be computed in polynomial time,
as required. ■

Lemma: If the graph G has an independent set of size n (where
n is the number of clauses in φ), then φ is satisfiable.

Proof: Suppose G has an independent set of size n, call if S. No
two nodes in S can correspond to v and ¬v for any variable
v, because there is an edge between all nodes with this
property. Thus for each variable v, either there is a node in
S with label v, or there is a node in S with label ¬v, or no
node in S has either label. In the first case, set v to true; in
the second case, set v to false; in the third case, choose a
value for v arbitrarily. We claim that this gives a satisfying
assignment for φ.

To see this, we show that each clause C in φ is satisfied. By
construction, no two nodes in S can come from nodes added
by C, because each has an edge to the other. Since there
are n nodes in S and n clauses in φ, for any clause in φ some
node corresponding to a literal from that clause is in S. If
that node has the form x, then C contains x, and since we
set x to true, C is satisfied. If that node has the form ¬x,
then C contains ¬x, and since we set x to false, C is
satisfied. Thus all clauses in φ are satisfied, so φ is satisfied
by this assignment. ■

Lemma: If φ is satisfiable and has n clauses, then G has an
independent set of size n.

Proof: Suppose that φ is satisfiable and consider any satisfying
assignment for it. Thus under that assignment, for each
clause C, there is some literal that evaluates to true. For
each clause C, choose some literal that evaluates to true
and add the corresponding node in G to a set S. Then S has
size n, since it contains one node per clause.

We claim moreover that S is an independent set in G. To see
this, note that there are two types of edges in G: edges
between nodes representing literals in the same clause, and
edges between variables and their negations. No two nodes
joined by edges within a clause are in S, because we
explicitly picked one node per clause. Moreover, no two
nodes joined by edges between opposite literals are in S,
because in a satisfying assignment both of the two could not
be true. Thus no nodes in S are joined by edges, so S is an
independent set. ■

Putting it All Together

Theorem: INDSET is NP-complete.

Proof: We know that INDSET ∈ NP, because we
constructed a polynomial-time verifier for it. So
all we need to show is that every problem in NP is
polynomial-time reducible to INDSET.

To do this, we use the polynomial-time reduction
from 3SAT to INDSET that we just gave. As we
proved, φ ∈ 3SAT iff ⟨G, n⟩ ∈ INDSET, and this
reduction can be computed in polynomial time.
Thus 3SAT is polynomial-time reducible to
INDSET, so INDSET is NP-complete. ■

Putting it All Together

Theorem: INDSET is NP-complete.

Proof: We know that INDSET ∈ NP, because we
constructed a polynomial-time verifier for it. So
all we need to show is that every problem in NP is
polynomial-time reducible to INDSET.

To do this, we use the polynomial-time reduction
from 3SAT to INDSET that we just gave. As we
proved, φ ∈ 3SAT iff ⟨G, n⟩ ∈ INDSET, and this
reduction can be computed in polynomial time.
Thus 3SAT is polynomial-time reducible to
INDSET, so INDSET is NP-complete. ■

Putting it All Together

Theorem: INDSET is NP-complete.

Proof: We know that INDSET ∈ NP, because we
constructed a polynomial-time verifier for it. So
all we need to show is that every problem in NP is
polynomial-time reducible to INDSET.

To do this, we use the polynomial-time reduction
from 3SAT to INDSET that we just gave. As we
proved, φ ∈ 3SAT iff ⟨G, n⟩ ∈ INDSET, and this
reduction can be computed in polynomial time.
Thus 3SAT is polynomial-time reducible to
INDSET, so INDSET is NP-complete. ■

Putting it All Together

Theorem: INDSET is NP-complete.

Proof: We know that INDSET ∈ NP, because we
constructed a polynomial-time verifier for it. So
all we need to show is that every problem in NP is
polynomial-time reducible to INDSET.

To do this, we use the polynomial-time reduction
from 3SAT to INDSET that we just gave. As we
proved, φ ∈ 3SAT iff ⟨G, n⟩ ∈ INDSET, and this
reduction can be computed in polynomial time.
Thus 3SAT is polynomial-time reducible to
INDSET, so INDSET is NP-complete. ■

Putting it All Together

Theorem: INDSET is NP-complete.

Proof: We know that INDSET ∈ NP, because we
constructed a polynomial-time verifier for it. So
all we need to show is that every problem in NP is
polynomial-time reducible to INDSET.

To do this, we use the polynomial-time reduction
from 3SAT to INDSET that we just gave. As we
proved, φ ∈ 3SAT iff ⟨G, n⟩ ∈ INDSET, and this
reduction can be computed in polynomial time.
Thus 3SAT is polynomial-time reducible to
INDSET, so INDSET is NP-complete. ■

Putting it All Together

Theorem: INDSET is NP-complete.

Proof: We know that INDSET ∈ NP, because we
constructed a polynomial-time verifier for it. So
all we need to show is that every problem in NP is
polynomial-time reducible to INDSET.

To do this, we use the polynomial-time reduction
from 3SAT to INDSET that we just gave. As we
proved, φ ∈ 3SAT iff ⟨G, n⟩ ∈ INDSET, and this
reduction can be computed in polynomial time.
Thus 3SAT is polynomial-time reducible to
INDSET, so INDSET is NP-complete. ■

Putting it All Together

Theorem: INDSET is NP-complete.

Proof: We know that INDSET ∈ NP, because we
constructed a polynomial-time verifier for it. So
all we need to show is that every problem in NP is
polynomial-time reducible to INDSET.

To do this, we use the polynomial-time reduction
from 3SAT to INDSET that we just gave. As we
proved, φ ∈ 3SAT iff ⟨G, n⟩ ∈ INDSET, and this
reduction can be computed in polynomial time.
Thus 3SAT is polynomial-time reducible to
INDSET, so INDSET is NP-complete. ■

Next Time

● More NP-Completeness
● A sampler of other NP-complete problems.
● Problems from disaster relief, route

planning, etc.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171

