

Announcements

- Problem Set 7 graded; will be returned at end of lecture.
- Unclaimed problem sets and midterms moved!
- Now in cabinets in the Gates open area near the drop-off box.

The Complexity Class \mathbf{P}

- The complexity class \mathbf{P} (polynomial time) contains all problems that can be solved in polynomial time.
- Formally:

$$
\mathbf{P}=\bigcup_{k=0}^{\infty} \operatorname{TIME}\left(n^{k}\right)
$$

- The Cobham-Edmonds Thesis: A decision problem can be solved efficiently iff it is in \mathbf{P}.

Examples of Problems in \mathbf{P}

- All regular languages are in \mathbf{P}.
- Belong to TIME(n).
- All DCFLs are in \mathbf{P}.
- Belong to TIME(n^{2}).
- All CFLs are in \mathbf{P}.
- Belong to TIME (n^{18}).
- Many other problems are in \mathbf{P} :
- POWER2
- SEARCH

Proving Languages are in P

- Directly prove the language is in P.
- Build a decider for the language L.
- Prove that the decider runs in time $\mathrm{O}\left(n^{k}\right)$.
- Use closure properties.
- Prove that the language can be formed by appropriate transformations of languages in \mathbf{P}.
- Reduce the language to a language in P.
- Show how a polynomial-time decider for some language L^{\prime} can be used to decide L.

Polynomial-Time Reductions

- Let $\mathrm{A} \subseteq \Sigma_{1}{ }^{*}$ and $\mathrm{B} \subseteq \Sigma_{2}^{*}$ be languages.
- A polynomial-time reduction is a function $f: \Sigma_{1}{ }^{*} \rightarrow \Sigma_{2}{ }^{*}$ with the following properties:
- $\mathrm{f}(w)$ can be computed in polynomial time.
- $w \in \operatorname{A}$ iff $\mathrm{f}(w) \in$ B.
- Notation: $\mathbf{A} \leq_{\mathbf{p}} \mathbf{B}$.
- Informally:
- A way of turning inputs to A into inputs to B
- that can be computed in polynomial time
- that preserves the correct answer.

Polynomial-Time Reductions

- Suppose that we know that $B \in \mathbf{P}$.
- Suppose that $A \leq_{\mathrm{P}} B$.
- Then $A \in \mathbf{P}$ as well.

Theorem: If $B \in \mathbf{P}$ and $A \leq_{\mathrm{p}} B$, then $A \in \mathbf{P}$.
Proof: Let H be a polynomial-time decider for B. Consider the following TM:

```
M = "On input w:
    Compute f(w).
    Run H on f(w).
    If H accepts, accept; if H rejects, reject."
```

We claim that M is a polynomial-time decider for A. To see this, we prove that M is a polynomial-time decider, then that $\mathscr{L}(M)=A$. To see that M is a polynomial-time decider, note that because f is a polynomial-time reduction, computing $f(w)$ takes time $\mathrm{O}\left(n^{k}\right)$ for some k. Moreover, because computing $f(w)$ takes time $\mathrm{O}\left(n^{k}\right)$, we know that $|f(w)|=\mathrm{O}\left(n^{k}\right)$. M then runs H on $f(w)$. Since H is a polynomial-time decider, H halts in $\mathrm{O}\left(m^{r}\right)$ on an input of size m for some r. Since $|f(w)|=\mathrm{O}\left(n^{k}\right), H$ halts after $\mathrm{O}\left(|f(w)|^{r}\right)=\mathrm{O}\left(n^{k r}\right)$ steps. Thus M halts after $\mathrm{O}\left(n^{k}+n^{k r}\right)$ steps, so M is a polynomial-time decider.
To see that $\mathscr{L}(M)=A$, note that M accepts w iff H accepts $f(w)$ iff $f(w) \in$ A. Since f is a polynomial-time reduction, $f(w) \in B$ iff $w \in A$. Thus M accepts w iff $w \in A$, so $\mathscr{L}(M)=A$.

A Sample Reduction

Maximum Matching

- Given an undirected graph G, a matching in G is a set of edges such that no two edges share an endpoint.
- A maximum matching is a matching with the largest number of edges.

Maximum Matching

- Given an undirected graph G, a matching in G is a set of edges such that no two edges share an endpoint.
- A maximum matching is a matching with the largest number of edges.

Maximum Matching

- Jack Edmonds' paper "Paths, Trees, and Flowers" that describes a polynomialtime algorithm for finding maximum matchings.
- (This is the same Edmonds as in "CobhamEdmonds Thesis.)
- Using this fact, what other problems can we solve?

Domino Tiling

A Domino Tiling Reduction

- Let MATCHING be the language defined as follows:

MATCHING $=\{\langle G, k\rangle \mid G$ is an undirected graph with a matching of size at least $k\}$

- Theorem (Edmonds): MATCHING $\in \mathbf{P}$.
- Let DOMINO be this language:

DOMINO $=\{\langle D, k\rangle \mid D$ is a grid and k nonoverlapping dominoes can be placed on D. \}

- We'll prove DOMINO \leq_{p} MATCHING to show that DOMINO $\in \mathbf{P}$.

Solving Domino Tiling

Our Reduction

- Given as input $\langle D, k\rangle$, construct the graph G as follows:
- For each empty cell x_{i}, construct a node v_{i}.
- For each pair of adjacent empty cells x_{i} and x_{j}, construct an edge (v_{i}, v_{j})

- Let $f(\langle D, k\rangle)=\langle G, k\rangle$.

A Polynomial-Time Reduction

- To prove that f is a polynomial-time reduction, we will show that the size of $f(w)$ is a polynomial in the size of w.
- Technically, this is not sufficient to prove that f runs in polynomial time.
- However, most reductions that construct a polynomially-large object take polynomial time.
- We will gloss over the fact that the polynomialsize object can be constructed in polynomial time; barring very unusual reductions, this is almost always true.

A Polynomial-Time Reduction

- Given a grid D and a number k, how large is the constructed graph G ?
- One node per empty cell in D.
- One edge per pair of adjacent empty cells in D.
- There are $\mathrm{O}(|D|)$ empty cells in D.
- Each empty cell may have up to four neighbors.
- So there are at most $O(|D|)$ constructed edges.
- Each node and edge can be built in polynomial time, so the overall reduction takes polynomial time.

Lemma: f is computable in polynomial time.
Proof: We show that $f(\langle D, k\rangle)=\langle G, k\rangle$ has size that is a polynomial in the size of $\langle D, k\rangle$.
For each empty cell x_{i} in D, we construct a single node v_{i} in G. Since there are $\mathrm{O}(|D|)$ cells, there are $\mathrm{O}(|D|)$ nodes in the graph. For each pair of adjacent, empty cells x_{i} and x_{j} in D, we add the edge ($x_{\mathrm{i}}, x_{\mathrm{j}}$). Since each cell in D has four neighbors, the maximum number of edges we could add this way is $\mathrm{O}(|D|)$ as well. Thus the total size of the graph G is $\mathrm{O}(|D|)$. Consequently, the total size of $\langle G, k\rangle$ is $O(|D|+|k|)$, which is a polynomial in the size of the input.

Since each part of the graph could be constructed in polynomial time, the overall graph can be constructed in polynomial time.

Summary of \mathbf{P}

- \mathbf{P} is the complexity class of yes/no questions that can be solved in polynomial time.
- \mathbf{P} is closed under polynomial-time reductions.

What can't you do in polynomial time?

How many simple paths are there from the start node to the end node?

$1,2,3,4,5,6,7$,
 8

$\}$

1 23
 4
 5
 6
 7
 8

How many binary
search trees can you form from these numbers?

An Interesting Observation

- There are (at least) exponentially many objects of each of the preceding types.
- However, each of those objects is not very large.
- Each simple path has length no longer than the number of nodes in the graph.
- Each subset of a set has no more elements than the original set.
- Each binary search tree made from some elements has exactly one node per element.
- This brings us to our next topic...

NTMs

- A nondeterministic Turing machine (NTM) is a generalization of the Turing machine.
- An NTM may have multiple transitions defined for a given state/symbol combination.
- The NTM accepts if any choice of transitions enters an accepting state.
- The NTM rejects if all choices of transitions enter a rejecting state.
- Otherwise, the NTM loops.

Nondeterminism Revisited

- If we add nondeterminism to the DFA, we get the NFA.
- NFAs are no more powerful than DFAs.
- If we add nondeterminism to the DPDA, we get the PDA.
- PDAs are more powerful than DPDAs.
- Adding nondeterminism to a TM produces the equivalently powerful NTM.
- NTMs are no more powerful than TMs.

Nondeterminism Revisited

- Converting an NFA to a DFA might introduce exponentially more space.
- It is sometimes impossible to convert an NPDA to a DPDA.
- Converting an NTM to a TM might dramatically slow down the TM.

Designing NTMs

- Nondeterminism is a very powerful tool for solving problems.
- Many problems can be solved simply with nondeterminism using the following template:
- Nondeterministically guess some important piece of information.
- Deterministically check that the guess was correct.

Nondeterministic Algorithms

- Recall: a number $n>1$ is composite if it is not prime.
- Let $\Sigma=\{1\}$ and consider the language

$$
\text { COMPOSITE }=\left\{1^{\mathrm{n}} \mid n \text { is composite }\right\}
$$

- We can build a multitape, nondeterministic TM for COMPOSITE as follows:
- $\mathrm{M}=$ = On input 1^{n} :
- Nondeterministically write out q 1s on a second tape ($2 \leq q<n$)
- Nondeterministically write out r s on a third tape ($2 \leq r<n$)
- Deterministically check if $q r=n$.
- If so, accept.
- Otherwise, reject"

Analyzing NTMs

- When discussing deterministic TMs, the notion of time complexity is (reasonably) straightforward.
- Recall: One way of thinking about nondeterminism is as a tree.
- In a deterministic computation, the tree is a straight line.
- The time complexity is the height of that straight line.

Analyzing NTMs

- When discussing deterministic TMs, the notion of time complexity is (reasonably) straightforward.
- Recall: One way of thinking about nondeterminism is as a tree.
- The time complexity is the height of the tree (the length of the longest possible choice we could make).

Analyzing NTMs

- $\mathrm{M}=$ "On input $\mathbf{1}^{\mathrm{n}}$:
- Nondeterministically write out q 1s
on a second tape ($2 \leq q<n$)

O(n) steps

- Nondeterministically write out r 1s on a third tape ($2 \leq r<n$)
- Deterministically check if $q r=n$.
- If so, accept.
- Otherwise, reject"

O(n) steps
$O\left(n^{2}\right)$ steps
$+\mathrm{O}(1)$ steps
$O\left(n^{2}\right)$ steps

Analyzing NTMs

- Our multitape NTM can decide COMPOSITE in time $\mathrm{O}\left(n^{2}\right)$.
- Using a similar construction to the deterministic case, a single-tape NTM can decide COMPOSITE in $\mathrm{O}\left(n^{4}\right)$.
- The best known deterministic algorithm for deciding COMPOSITE runs much more slowly.
- Runs in time around $\mathrm{O}\left(n^{8}\right)$.
- Just how much more powerful are NTMs?

From NTMs to TMs

- NTMs are at least as powerful as TMs.
- Just don't use any nondeterminism!
- TMs are at least as powerful as NTMs.
- Idea: Simulate the NTM with a multitape TM.
- Run a breadth-first search on possible options.

\square Work Tape
\square

From NTMs to TMs

From NTMs to TMs

- Theorem: For any NTM with time complexity $f(n)$, there is a TM with time complexity $2^{\mathrm{O}(f(n))}$.
- It is unknown whether it is possible to do any better than this in the general case.
- NTMs are capable of exploring multiple options in parallel; this "seems" inherently faster than deterministic computation.

TIME and NTIME

- Recall: $\operatorname{TIME}(f(n))$ is the class of languages that can be decided in $\mathrm{O}(f(n))$ time by a single-tape TM.
- NTIME $(f(n))$ is the class of languages that can be decided in $\mathrm{O}(f(n))$ time by a singletape NTM.
- All possible options terminate in $\mathrm{O}(f(n))$ steps.
- For any $f(n)$, $\operatorname{TIME}(f(n)) \subseteq \operatorname{NTIME}(f(n))$.
- Can always convert a TM to an NTM.

The Complexity Class NP

- The complexity class NP (nondeterministic polynomial time) contains all problems that can be solved in polynomial time by a single-tape NTM.
- Formally:

$$
\mathbf{N P}=\bigcup_{k=0}^{\infty} \operatorname{NTIME}\left(n^{k}\right)
$$

- What types of problems are in NP?

A Problem in NP

- Does a Sudoku grid have a solution?
- $M=$ "On input $\langle S\rangle$, an encoding of a Sudoku puzzle:
- Nondeterministically guess how to fill in all the squares.
- Deterministically check whether the guess is correct.
- If so, accept; if not, reject."

If we allow for a generalized Sudoku board of arbitrary size:

There are polynomially many grid cells to fill in.

Checking the grid takes polynomial time.

Overall algorithm takes polynomial time.

2	5	7	9	6	4	1	8	3
4	9	1	8	7	3	6	5	2
3	8	6	1	2	5	9	4	7
6	4	5	7	3	2	8	1	9
7	1	9	5	4	8	3	2	6
8	3	2	6	1	9	5	7	4
1	6	3	2	5	7	4	9	8
5	7	8	4	9	6	2	3	1
9	2	4	3	8	1	7	6	5

A Problem in NP

- A graph coloring is a way of assigning colors to nodes in an undirected graph such that no two nodes joined by an edge have the same color.
- Applications in compilers, cell phone towers, etc.
- Question: Can graph G be colored with at most k colors?
- $M=$ "On input $\langle G, k\rangle$:
- Nondeterministically guess a k-coloring of the nodes of G.
- Deterministically check whether it is legal.
- If so, accept; if not, reject."

A Problem in NP

- Suppose you want to start a delivery service. You want to place depots such that each customer is within some distance of the depot.
- Given a set of candidate locations for depots, can you place k depots and guarantee that each customer is covered?
- $M=$ "On input $\langle D, C, \delta, k\rangle$ (depot locations, customer locations, minimum distance required, and number of depots desired):
- Nondeterministically guess k depots from D.
- Deterministically verify each $c \in C$ is within δ distance of some depot.
- If so, accept; otherwise reject."

A General Pattern

- The NTMs we have seen so far always follow this pattern:
- $M=$ "On input w :
- Nondeterministically guess some string x.
- Deterministically check whether x solves w.
- If so, accept; otherwise, reject."
- Is there a different way of characterizing NP?

Polynomial-Time Verifiers

- A polynomial-time verifier is a deterministic TM of the form
- $M=$ "On input $\langle w, x\rangle$:
- Deterministically check whether x solves w.
- If so, accept; otherwise, reject." such that M runs in time polynomial in the length of w (not the length of x).
- The string x is called a certificate or a witness for w.

An Efficiently Verifiable Puzzle

Question: Can this lock be opened?

Verifiers, Formally

- Formally, a verifier is a TM V such that $w \in L$ iff $\exists x \in \Sigma^{*} . V$ accepts $\langle w, x\rangle$
- In other words

$$
L=\left\{w \in \Sigma^{*} \mid \exists x \in \Sigma^{*} . V \text { accepts }\langle w, x\rangle\right\}
$$

- If $w \in L$, the verifier can check this easily if we know the proper x.
- If $w \notin L$, the verifier does not help much.
- Just because V rejects $\langle w, x\rangle$ does not mean that $w \notin L$.
- Note that $\mathscr{L}(V) \neq L$.

Verification is Powerful

- Many undecidable languages can still be verified.
- Here is a verifier for HALT:
- $V=$ "On input $\langle M, w, n\rangle$, where M is a TM, w is a string, and n is a natural number:
- Run M on w for n steps.
- If M halts w within that time, accept; otherwise reject."
- V always halts on all inputs (even if M loops on w).
- If M halts on w, there is some choice of n for which V accepts (namely, the number of steps M takes before it halts on w).
- Thus HALT can be verified but not decided.

A Problem in NP

- Does a Sudoku grid have a solution?
- $\mathrm{M}=$ "On input $\langle S, A\rangle$, an encoding of a Sudoku puzzle and an alleged solution to it:
- Deterministically check whether A is a solution to S.
- If so, accept; if not, reject."

		7		6		1		
3					3		5	2
6		5		3		8		9
	1						2	
8		2		1		5		4
1		3	2		7			8
5	7		4					
		4		8		7		

A Problem in NP

- A graph coloring is a way of assigning colors to nodes in an undirected graph such that no two nodes joined by an edge have the same color.
- Applications in compilers, cell phone towers, etc.
- Question: Can graph G be colored with at most k colors?
- $M=$ "On input $\langle G, k, C\rangle$, where C is an alleged coloring:
- Deterministically check whether C is a legal k-coloring of G.
- If so, accept; if not, reject."

Two Equivalent Formulations of NP

- Theorem: A language L has a polynomial-time verifier iff $L \in \mathbf{N P}$.
- Proof sketch:
- Any polynomial-time verifier can be turned into a polynomial-time NTM by having the NTM nondeterministically guess the certificate for w, then check it (deterministically) by running the verifier.
- If an NTM can decide L in polynomial time, a verifier could work by having a certificate saying which nondeterministic choices the original NTM made, then simulating those choices of the NTM to check it.

Next Time

- NP-Completeness
- What are the hardest problems in NP?
- How do you prove a problem is NPcomplete?

