

NPN P

Announcements

● Problem Set 7 graded; will be returned
at end of lecture.

● Unclaimed problem sets and midterms
moved!
● Now in cabinets in the Gates open area near

the drop-off box.

Previously on CS103...

The Complexity Class P

● The complexity class P (polynomial time)
contains all problems that can be solved
in polynomial time.

● Formally:

● The Cobham-Edmonds Thesis: A
decision problem can be solved efficiently
iff it is in P.

∪∞ TIME(nk)P =
k = 0

Examples of Problems in P

● All regular languages are in P.
● Belong to TIME(n).

● All DCFLs are in P.
● Belong to TIME(n2).

● All CFLs are in P.
● Belong to TIME(n18).

● Many other problems are in P:
● POWER2
● SEARCH

 Undecidable Languages

Regular
Languages CFLsDCFLs RP

Proving Languages are in P

● Directly prove the language is in P.
● Build a decider for the language L.
● Prove that the decider runs in time O(nk).

● Use closure properties.
● Prove that the language can be formed by

appropriate transformations of languages in P.

● Reduce the language to a language in P.
● Show how a polynomial-time decider for some

language L' can be used to decide L.

Polynomial-Time Reductions

● Let A ⊆ Σ1* and B ⊆ Σ2* be languages.

● A polynomial-time reduction is a function
f : Σ1* → Σ2* with the following properties:

● f(w) can be computed in polynomial time.
● w ∈ A iff f(w) ∈ B.

● Notation: A ≤P B.

● Informally:
● A way of turning inputs to A into inputs to B
● that can be computed in polynomial time
● that preserves the correct answer.

Polynomial-Time Reductions

A

Solvable?

B

Solvable
in O(nr)

● Suppose that we know that B ∈ P.

● Suppose that A ≤P B.

Polynomial-Time Reductions

A

Solvable?

B

Solvable
in O(nr)

● Suppose that we know that B ∈ P.

● Suppose that A ≤P B.

Input size: n

Polynomial-Time Reductions

A

Solvable?

B

Solvable
in O(nr)

A reduces to B

● Suppose that we know that B ∈ P.

● Suppose that A ≤P B.

Input size: n

Polynomial-Time Reductions

A

Solvable?

B

Solvable
in O(nr)

A reduces to B

● Suppose that we know that B ∈ P.

● Suppose that A ≤P B.

Input size: n Time required: O(nk)

Polynomial-Time Reductions

A

Solvable?

B

Solvable
in O(nr)

A reduces to B

● Suppose that we know that B ∈ P.

● Suppose that A ≤P B.

Input size: n Time required: O(nk) Input size: O(nk)

Polynomial-Time Reductions

A

Solvable?

B

Solvable
in O(nr)

A reduces to B

B decides A

● Suppose that we know that B ∈ P.

● Suppose that A ≤P B.

Input size: n Time required: O(nk) Input size: O(nk)

Polynomial-Time Reductions

A

Solvable?

B

Solvable
in O(nr)

A reduces to B

B decides A

● Suppose that we know that B ∈ P.

● Suppose that A ≤P B.

Input size: n Time required: O(nk)

Time required: O(nkr)

Input size: O(nk)

Polynomial-Time Reductions

A

Solvable in
 O(nkr)

B

Solvable
in O(nr)

A reduces to B

B decides A

● Suppose that we know that B ∈ P.

● Suppose that A ≤P B.

Input size: n Time required: O(nk)

Time required: O(nkr)

Input size: O(nk)

Polynomial-Time Reductions

A

Solvable in
 O(nkr)

B

Solvable
in O(nr)

A reduces to B

B decides A

● Suppose that we know that B ∈ P.

● Suppose that A ≤P B.

● Then A ∈ P as well.

Input size: n Time required: O(nk)

Time required: O(nkr)

Input size: O(nk)

Theorem: If B ∈ P and A ≤P B, then A ∈ P.

Proof: Let H be a polynomial-time decider for B. Consider the
following TM:

M = “On input w:
Compute f(w).
Run H on f(w).
If H accepts, accept; if H rejects, reject.”

We claim that M is a polynomial-time decider for A. To see this,
we prove that M is a polynomial-time decider, then that
ℒ(M) = A. To see that M is a polynomial-time decider, note that
because f is a polynomial-time reduction, computing f(w) takes
time O(nk) for some k. Moreover, because computing f(w) takes
time O(nk), we know that |f(w)| = O(nk). M then runs H on f(w).
Since H is a polynomial-time decider, H halts in O(mr) on an
input of size m for some r. Since |f(w)| = O(nk), H halts after
O(|f(w)|r) = O(nkr) steps. Thus M halts after O(nk + nkr) steps, so
M is a polynomial-time decider.

To see that (ℒ M) = A, note that M accepts w iff H accepts f(w)
iff f(w) ∈ A. Since f is a polynomial-time reduction, f(w) ∈ B iff
w ∈ A. Thus M accepts w iff w ∈ A, so (ℒ M) = A. ■

A Sample Reduction

Maximum Matching

● Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an
endpoint.

● A maximum matching is a matching with the
largest number of edges.

Maximum Matching

● Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an
endpoint.

● A maximum matching is a matching with the
largest number of edges.

Maximum Matching

● Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an
endpoint.

● A maximum matching is a matching with the
largest number of edges.

A matching, but
not a maximum

matching.

A matching, but
not a maximum

matching.

Maximum Matching

● Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an
endpoint.

● A maximum matching is a matching with the
largest number of edges.

A maximum
matching.

A maximum
matching.

Maximum Matching

● Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an
endpoint.

● A maximum matching is a matching with the
largest number of edges.

Maximum Matching

● Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an
endpoint.

● A maximum matching is a matching with the
largest number of edges.

Maximum Matching

● Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an
endpoint.

● A maximum matching is a matching with the
largest number of edges.

Maximum Matching

● Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an
endpoint.

● A maximum matching is a matching with the
largest number of edges.

Maximum matchings
are not necessarily

unique.

Maximum matchings
are not necessarily

unique.

Maximum Matching

● Jack Edmonds' paper “Paths, Trees, and
Flowers” that describes a polynomial-
time algorithm for finding maximum
matchings.
● (This is the same Edmonds as in “Cobham-

Edmonds Thesis.)

● Using this fact, what other problems can
we solve?

Domino Tiling

Domino Tiling

Domino Tiling

Domino Tiling

Domino Tiling

Domino Tiling

A Domino Tiling Reduction

● Let MATCHING be the language defined as
follows:

MATCHING = { ⟨G, k⟩ | G is an undirected graph
with a matching of size at least k }

● Theorem (Edmonds): MATCHING ∈ P.
● Let DOMINO be this language:

DOMINO = { ⟨D, k⟩ | D is a grid and k
nonoverlapping dominoes can be placed on D. }

● We'll prove DOMINO ≤P MATCHING to show
that DOMINO ∈ P.

Solving Domino Tiling

Solving Domino Tiling

Solving Domino Tiling

Solving Domino Tiling

Solving Domino Tiling

Solving Domino Tiling

Solving Domino Tiling

Solving Domino Tiling

Our Reduction

● Given as input ⟨D, k⟩, construct the graph G as
follows:

● For each empty cell xi, construct a node vi.

● For each pair of adjacent empty cells xi and xj,
construct an edge (vi, vj)

● Let f(⟨D, k⟩) = ⟨G, k⟩.

A Polynomial-Time Reduction

● To prove that f is a polynomial-time
reduction, we will show that the size of f(w)
is a polynomial in the size of w.
● Technically, this is not sufficient to prove that f

runs in polynomial time.
● However, most reductions that construct a

polynomially-large object take polynomial time.
● We will gloss over the fact that the polynomial-

size object can be constructed in polynomial
time; barring very unusual reductions, this is
almost always true.

A Polynomial-Time Reduction

● Given a grid D and a number k, how large is the
constructed graph G?
● One node per empty cell in D.
● One edge per pair of adjacent empty cells in D.

● There are O(|D|) empty cells in D.
● Each empty cell may have up to four neighbors.
● So there are at most O(|D|) constructed edges.
● Each node and edge can be built in polynomial time, so the

overall reduction takes polynomial time.

Lemma: f is computable in polynomial time.

Proof: We show that f(⟨D, k⟩) = ⟨G, k⟩ has size that is a
polynomial in the size of ⟨D, k⟩.

For each empty cell xi in D, we construct a single node
vi in G. Since there are O(|D|) cells, there are O(|D|)
nodes in the graph. For each pair of adjacent, empty
cells xi and xj in D, we add the edge (xi, xj). Since each
cell in D has four neighbors, the maximum number of
edges we could add this way is O(|D|) as well. Thus
the total size of the graph G is O(|D|). Consequently,
the total size of ⟨G, k⟩ is O(|D| + |k|), which is a
polynomial in the size of the input.

Since each part of the graph could be constructed in
polynomial time, the overall graph can be constructed
in polynomial time. ■

Summary of P

● P is the complexity class of yes/no
questions that can be solved in
polynomial time.

● P is closed under polynomial-time
reductions.

What can't you do in polynomial time?

start

end

How many simple
paths are there
from the start
node to the end

node?

How many simple
paths are there
from the start
node to the end

node?

, , ,

How many
subsets of this
set are there?

How many
subsets of this
set are there?

1 2 3 4 5 6 7 8

How many binary
search trees can
you form from
these numbers?

How many binary
search trees can
you form from
these numbers?

An Interesting Observation

● There are (at least) exponentially many objects of
each of the preceding types.

● However, each of those objects is not very large.
● Each simple path has length no longer than the

number of nodes in the graph.
● Each subset of a set has no more elements than the

original set.
● Each binary search tree made from some elements

has exactly one node per element.

● This brings us to our next topic...

NPN P

NTMs

● A nondeterministic Turing machine (NTM) is a
generalization of the Turing machine.

● An NTM may have multiple transitions defined for
a given state/symbol combination.

● The NTM accepts if any choice of transitions
enters an accepting state.

● The NTM rejects if all choices of transitions enter
a rejecting state.

● Otherwise, the NTM loops.

Nondeterminism Revisited

● If we add nondeterminism to the DFA, we
get the NFA.
● NFAs are no more powerful than DFAs.

● If we add nondeterminism to the DPDA,
we get the PDA.
● PDAs are more powerful than DPDAs.

● Adding nondeterminism to a TM
produces the equivalently powerful NTM.
● NTMs are no more powerful than TMs.

Nondeterminism Revisited

● Converting an NFA to a DFA might
introduce exponentially more space.

● It is sometimes impossible to convert an
NPDA to a DPDA.

● Converting an NTM to a TM might
dramatically slow down the TM.

Designing NTMs

● Nondeterminism is a very powerful tool
for solving problems.

● Many problems can be solved simply
with nondeterminism using the following
template:
● Nondeterministically guess some

important piece of information.
● Deterministically check that the guess was

correct.

Nondeterministic Algorithms

● Recall: a number n > 1 is composite if it is not prime.

● Let Σ = { 1 } and consider the language

COMPOSITE = { 1n | n is composite }

● We can build a multitape, nondeterministic TM for
COMPOSITE as follows:

● M = “On input 1n:

● Nondeterministically write out q 1s on a second tape (2 ≤ q < n)

● Nondeterministically write out r 1s on a third tape (2 ≤ r < n)

● Deterministically check if qr = n.

● If so, accept.

● Otherwise, reject”

Guess q and r
(Nondeterministic)

Nondeterministic Algorithms

1 1 1 1 1 1 1 1 1 1

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

Guess q and r
(Nondeterministic)

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

…

…

…

…

Guess q and r
(Nondeterministic)

Nondeterministic Algorithms

1 1 1 1 1 1 1 1 1 1

1

1

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

Guess q and r
(Nondeterministic)

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

…

…

…

…

Guess q and r
(Nondeterministic)

Nondeterministic Algorithms

1 1 1 1 1 1 1 1 1 1

1 1

1 1

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

Guess q and r
(Nondeterministic)

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

…

…

…

…

Nondeterministic Algorithms

1 1 1 1 1 1 1 1 1 1

1 1

1 1 1

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

Guess q and r
(Nondeterministic)

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

…

…

…

…
Guess q and r

(Nondeterministic)
Guess q and r

(Nondeterministic)

Nondeterministic Algorithms

1 1 1 1 1 1 1 1 1 1

1 1

1 1 1 1

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

Guess q and r
(Nondeterministic)

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

…

…

…

…
Guess q and r

(Nondeterministic)
Guess q and r

(Nondeterministic)

Nondeterministic Algorithms

1 1 1 1 1 1 1 1 1 1

1 1

1 1 1 1 1

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

Guess q and r
(Nondeterministic)

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

…

…

…

…
Guess q and r

(Nondeterministic)
Guess q and r

(Nondeterministic)

Nondeterministic Algorithms

1 1 1 1 1 1 1 1 1 1

1 1

1 1 1 1 1

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

Guess q and r
(Nondeterministic)

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

…

…

…

…
Guess q and r

(Nondeterministic)
Guess q and r

(Nondeterministic)

Nondeterministic Algorithms

1 1 1 1 1 1 1 1 1 1

1 1

1 1 1 1 1

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

Guess q and r
(Nondeterministic)

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

…

…

…

…
Guess q and r

(Nondeterministic)
Guess q and r

(Nondeterministic)

Nondeterministic Algorithms

1 1 1 1 1 1 1 1 1 1

1 1

1 1 1 1 1

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

Guess q and r
(Nondeterministic)

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

…

…

…

…
Guess q and r

(Nondeterministic)
Guess q and r

(Nondeterministic)

Nondeterministic Algorithms

1 1 1 1 1 1 1 1 1 1

1 1

1 1 1 1 1

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

Guess q and r
(Nondeterministic)

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

…

…

…

…
Guess q and r

(Nondeterministic)
Guess q and r

(Nondeterministic)

Nondeterministic Algorithms

1 1 1 1 1 1 1 1 1 1

1 1

1 1 1 1 1

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

Guess q and r
(Nondeterministic)

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

…

…

…

…
Guess q and r

(Nondeterministic)
Guess q and r

(Nondeterministic)

Compute qr
(Deterministic)

Nondeterministic Algorithms

1 1 1 1 1 1 1 1 1 1

1 1

1 1 1 1 1

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

Guess q and r
(Nondeterministic)

Check if n = qr
(Deterministic)

…

…

…

…
Guess q and r

(Nondeterministic)

Nondeterministic Algorithms

1 1 1 1 1 1 1 1 1 1

1 1

1 1 1 1 1

1

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

Guess q and r
(Nondeterministic)

Check if n = qr
(Deterministic)

…

…

…

…
Guess q and r

(Nondeterministic)

Nondeterministic Algorithms

1 1 1 1 1 1 1 1 1 1

1 1

1 1 1 1 1

1 1

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

Guess q and r
(Nondeterministic)

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

…

…

…

…
Guess q and r

(Nondeterministic)

Compute qr
(Deterministic)

Compute qr
(Deterministic)

Nondeterministic Algorithms

1 1 1 1 1 1 1 1 1 1

1 1

1 1 1 1 1

1 1 1

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

Guess q and r
(Nondeterministic)

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

…

…

…

…
Guess q and r

(Nondeterministic)

Compute qr
(Deterministic)

Nondeterministic Algorithms

1 1 1 1 1 1 1 1 1 1

1 1

1 1 1 1 1

1 1 1 1

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

Guess q and r
(Nondeterministic)

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

…

…

…

…
Guess q and r

(Nondeterministic)

Compute qr
(Deterministic)

Nondeterministic Algorithms

1 1 1 1 1 1 1 1 1 1

1 1

1 1 1 1 1

1 1 1 1 1

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

Guess q and r
(Nondeterministic)

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

…

…

…

…
Guess q and r

(Nondeterministic)

Compute qr
(Deterministic)

Nondeterministic Algorithms

1 1 1 1 1 1 1 1 1 1

1 1

1 1 1 1 1

1 1 1 1 1

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

Guess q and r
(Nondeterministic)

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

…

…

…

…
Guess q and r

(Nondeterministic)

Compute qr
(Deterministic)

Nondeterministic Algorithms

1 1 1 1 1 1 1 1 1 1

1 1

1 1 1 1 1

1 1 1 1 1

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

Guess q and r
(Nondeterministic)

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

…

…

…

…
Guess q and r

(Nondeterministic)

Compute qr
(Deterministic)

Nondeterministic Algorithms

1 1 1 1 1 1 1 1 1 1

1 1

1 1 1 1 1

1 1 1 1 1

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

Guess q and r
(Nondeterministic)

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

…

…

…

…
Guess q and r

(Nondeterministic)

Compute qr
(Deterministic)

Nondeterministic Algorithms

1 1 1 1 1 1 1 1 1 1

1 1

1 1 1 1 1

1 1 1 1 1

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

Guess q and r
(Nondeterministic)

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

…

…

…

…
Guess q and r

(Nondeterministic)

Compute qr
(Deterministic)

Nondeterministic Algorithms

1 1 1 1 1 1 1 1 1 1

1 1

1 1 1 1 1

1 1 1 1 1

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

Guess q and r
(Nondeterministic)

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

…

…

…

…
Guess q and r

(Nondeterministic)

Compute qr
(Deterministic)

Nondeterministic Algorithms

1 1 1 1 1 1 1 1 1 1

1 1

1 1 1 1 1

1 1 1 1 1

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

Guess q and r
(Nondeterministic)

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

…

…

…

…
Guess q and r

(Nondeterministic)

Compute qr
(Deterministic)

Nondeterministic Algorithms

1 1 1 1 1 1 1 1 1 1

1 1

1 1 1 1 1

1 1 1 1 1 1

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

Guess q and r
(Nondeterministic)

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

…

…

…

…
Guess q and r

(Nondeterministic)

Compute qr
(Deterministic)

Nondeterministic Algorithms

1 1 1 1 1 1 1 1 1 1

1 1

1 1 1 1 1

1 1 1 1 1 1 1

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

Guess q and r
(Nondeterministic)

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

…

…

…

…
Guess q and r

(Nondeterministic)

Compute qr
(Deterministic)

Nondeterministic Algorithms

1 1 1 1 1 1 1 1 1 1

1 1

1 1 1 1 1

1 1 1 1 1 1 1 1

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

Guess q and r
(Nondeterministic)

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

…

…

…

…
Guess q and r

(Nondeterministic)

Compute qr
(Deterministic)

Nondeterministic Algorithms

1 1 1 1 1 1 1 1 1 1

1 1

1 1 1 1 1

1 1 1 1 1 1 1 1 1

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

Guess q and r
(Nondeterministic)

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

…

…

…

…
Guess q and r

(Nondeterministic)

Compute qr
(Deterministic)

Nondeterministic Algorithms

1 1 1 1 1 1 1 1 1 1

1 1

1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

Guess q and r
(Nondeterministic)

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

…

…

…

…
Guess q and r

(Nondeterministic)

Compute qr
(Deterministic)

Nondeterministic Algorithms

1 1 1 1 1 1 1 1 1 1

1 1

1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

Guess q and r
(Nondeterministic)

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

…

…

…

…
Guess q and r

(Nondeterministic)

Compute qr
(Deterministic)

Nondeterministic Algorithms

1 1 1 1 1 1 1 1 1 1

1 1

1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

Guess q and r
(Nondeterministic)

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

…

…

…

…
Guess q and r

(Nondeterministic)

Compute qr
(Deterministic)

Nondeterministic Algorithms

1 1 1 1 1 1 1 1 1 1

1 1

1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

Guess q and r
(Nondeterministic)

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

…

…

…

…
Guess q and r

(Nondeterministic)

Compute qr
(Deterministic)

Nondeterministic Algorithms

1 1 1 1 1 1 1 1 1 1

1 1

1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

Guess q and r
(Nondeterministic)

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

…

…

…

…
Guess q and r

(Nondeterministic)

Compute qr
(Deterministic)

Nondeterministic Algorithms

1 1 1 1 1 1 1 1 1 1

1 1

1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

Guess q and r
(Nondeterministic)

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

…

…

…

…
Guess q and r

(Nondeterministic)

Compute qr
(Deterministic)

Nondeterministic Algorithms

1 1 1 1 1 1 1 1 1 1

1 1

1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

Guess q and r
(Nondeterministic)

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

…

…

…

…
Guess q and r

(Nondeterministic)

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

Compute qr
(Deterministic)

Nondeterministic Algorithms

1 1 1 1 1 1 1 1 1 1

1 1

1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

Guess q and r
(Nondeterministic)

Compute qr
(Deterministic)

…

…

…

…
Guess q and r

(Nondeterministic)

Nondeterministic Algorithms

1 1 1 1 1 1 1 1 1 1

1 1

1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

Guess q and r
(Nondeterministic)

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

…

…

…

…
Guess q and r

(Nondeterministic)

Check if n = qr
(Deterministic)

Nondeterministic Algorithms

1 1 1 1 1 1 1 1 1 1

1 1

1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

Guess q and r
(Nondeterministic)

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

…

…

…

…
Guess q and r

(Nondeterministic)

Check if n = qr
(Deterministic)

Nondeterministic Algorithms

1 1 1 1 1 1 1 1 1 1

1 1

1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

Guess q and r
(Nondeterministic)

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

…

…

…

…
Guess q and r

(Nondeterministic)

Check if n = qr
(Deterministic)

Nondeterministic Algorithms

1 1 1 1 1 1 1 1 1 1

1 1

1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

Guess q and r
(Nondeterministic)

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

…

…

…

…
Guess q and r

(Nondeterministic)

Check if n = qr
(Deterministic)

Nondeterministic Algorithms

1 1 1 1 1 1 1 1 1 1

1 1

1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

Guess q and r
(Nondeterministic)

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

…

…

…

…
Guess q and r

(Nondeterministic)

Check if n = qr
(Deterministic)

Nondeterministic Algorithms

1 1 1 1 1 1 1 1 1 1

1 1

1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

Guess q and r
(Nondeterministic)

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

…

…

…

…
Guess q and r

(Nondeterministic)

Check if n = qr
(Deterministic)

Nondeterministic Algorithms

1 1 1 1 1 1 1 1 1 1

1 1

1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

Guess q and r
(Nondeterministic)

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

…

…

…

…
Guess q and r

(Nondeterministic)

Check if n = qr
(Deterministic)

Nondeterministic Algorithms

1 1 1 1 1 1 1 1 1 1

1 1

1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

Guess q and r
(Nondeterministic)

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

…

…

…

…
Guess q and r

(Nondeterministic)

Check if n = qr
(Deterministic)

Nondeterministic Algorithms

1 1 1 1 1 1 1 1 1 1

1 1

1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

Guess q and r
(Nondeterministic)

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

…

…

…

…
Guess q and r

(Nondeterministic)

Check if n = qr
(Deterministic)

Nondeterministic Algorithms

1 1 1 1 1 1 1 1 1 1

1 1

1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

Guess q and r
(Nondeterministic)

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

…

…

…

…
Guess q and r

(Nondeterministic)

Check if n = qr
(Deterministic)

Nondeterministic Algorithms

1 1 1 1 1 1 1 1 1 1

1 1

1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

Guess q and r
(Nondeterministic)

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

…

…

…

…
Guess q and r

(Nondeterministic)

Check if n = qr
(Deterministic)

Nondeterministic Algorithms

1 1 1 1 1 1 1 1 1 1

1 1

1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

Guess q and r
(Nondeterministic)

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

…

…

…

…
Guess q and r

(Nondeterministic)

Check if n = qr
(Deterministic)

Nondeterministic Algorithms

1 1 1 1 1 1 1 1 1 1

1 1

1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

Guess q and r
(Nondeterministic)

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

…

…

…

…
Guess q and r

(Nondeterministic)

Check if n = qr
(Deterministic)

Nondeterministic Algorithms

1 1 1 1 1 1 1 1 1 1

1 1

1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

Guess q and r
(Nondeterministic)

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

…

…

…

…
Guess q and r

(Nondeterministic)

Check if n = qr
(Deterministic)

Nondeterministic Algorithms

1 1 1 1 1 1 1 1 1 1

1 1

1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

Guess q and r
(Nondeterministic)

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

…

…

…

…
Guess q and r

(Nondeterministic)

Check if n = qr
(Deterministic)

Nondeterministic Algorithms

1 1 1 1 1 1 1 1 1 1

1 1

1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

Guess q and r
(Nondeterministic)

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

…

…

…

…
Guess q and r

(Nondeterministic)

Check if n = qr
(Deterministic)

Nondeterministic Algorithms

1 1 1 1 1 1 1 1 1 1

1 1

1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

Guess q and r
(Nondeterministic)

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

…

…

…

…
Guess q and r

(Nondeterministic)

Check if n = qr
(Deterministic)

Nondeterministic Algorithms

1 1 1 1 1 1 1 1 1 1

1 1

1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

Guess q and r
(Nondeterministic)

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

…

…

…

…
Guess q and r

(Nondeterministic)

Check if n = qr
(Deterministic)

Nondeterministic Algorithms

1 1 1 1 1 1 1 1 1 1

1 1

1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

Guess q and r
(Nondeterministic)

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

…

…

…

…
Guess q and r

(Nondeterministic)

Check if n = qr
(Deterministic)

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

Guess q and r
(Nondeterministic)

Nondeterministic Algorithms

1 1 1 1 1 1 1 1 1 1

1 1

1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

Compute qr
(Deterministic)

Check if n = qr
(Deterministic)

…

…

…

…
Guess q and r

(Nondeterministic)

Check if n = qr
(Deterministic)

Analyzing NTMs

● When discussing deterministic TMs, the notion of
time complexity is (reasonably)
straightforward.

● Recall: One way of thinking about
nondeterminism is as a tree.

● In a deterministic computation,
the tree is a straight line.

● The time complexity is the
height of that straight line.

Analyzing NTMs

● When discussing deterministic TMs, the notion of time
complexity is (reasonably) straightforward.

● Recall: One way of thinking about nondeterminism is
as a tree.

● The time complexity is the height of the
tree (the length of the longest possible
choice we could make).

Analyzing NTMs

● M = “On input 1n:

● Nondeterministically write out q 1s
on a second tape (2 ≤ q < n)

● Nondeterministically write out r 1s
on a third tape (2 ≤ r < n)

● Deterministically check if qr = n.
● If so, accept.
● Otherwise, reject”

O(n) steps

O(n) steps

O(n2) steps

O(1) steps

O(n2) steps

+

Analyzing NTMs

● Our multitape NTM can decide COMPOSITE
in time O(n2).

● Using a similar construction to the
deterministic case, a single-tape NTM can
decide COMPOSITE in O(n4).

● The best known deterministic algorithm for
deciding COMPOSITE runs much more
slowly.
● Runs in time around O(n8).

● Just how much more powerful are NTMs?

From NTMs to TMs

● NTMs are at least as powerful as TMs.

● Just don't use any nondeterminism!

● TMs are at least as powerful as NTMs.

● Idea: Simulate the NTM with a multitape TM.

● Run a breadth-first search on possible options.

0 q
0 1 1 0

q
0 0 1 0 # 1 1 q

2 0 0 # q
4 0 1 …

Work Tape

Configuration Tape

From NTMs to TMs

From NTMs to TMs

● Theorem: For any NTM with time
complexity f(n), there is a TM with time
complexity 2O(f(n)).

● It is unknown whether it is possible
to do any better than this in the
general case.

● NTMs are capable of exploring multiple
options in parallel; this “seems”
inherently faster than deterministic
computation.

TIME and NTIME

● Recall: TIME(f(n)) is the class of languages
that can be decided in O(f(n)) time by a
single-tape TM.

● NTIME(f(n)) is the class of languages that
can be decided in O(f(n)) time by a single-
tape NTM.
● All possible options terminate in O(f(n)) steps.

● For any f(n), TIME(f(n)) ⊆ NTIME(f(n)).
● Can always convert a TM to an NTM.

The Complexity Class NP

● The complexity class NP
(nondeterministic polynomial time)
contains all problems that can be solved
in polynomial time by a single-tape NTM.

● Formally:

● What types of problems are in NP?

∪∞ NTIME(nk)NP =
k = 0

A Problem in NP
● Does a Sudoku grid have a solution?

● M = “On input ⟨S⟩, an encoding of a Sudoku puzzle:
– Nondeterministically guess how to fill in all the squares.

– Deterministically check whether the guess is correct.

– If so, accept; if not, reject.”

3

6

8

1

5

1

7

7

5

2

3

4

1

2

4

6

3

1

8

3

5

7

1

9

8

5

7

5

2

2

7

9

4

8

A Problem in NP
● Does a Sudoku grid have a solution?

● M = “On input ⟨S⟩, an encoding of a Sudoku puzzle:
– Nondeterministically guess how to fill in all the squares.

– Deterministically check whether the guess is correct.

– If so, accept; if not, reject.” 2

4

3

6

7

8

1

5

9

5

9

8

4

1

3

6

7

2

7

1

6

5

9

2

3

8

4

9

8

1

7

5

6

2

4

3

6

7

2

3

4

1

5

9

8

4

3

5

2

8

9

7

6

1

1

6

9

8

3

5

4

2

7

8

5

4

1

2

7

9

3

6

3

2

7

9

6

4

8

1

5

A Problem in NP
● Does a Sudoku grid have a solution?

● M = “On input ⟨S⟩, an encoding of a Sudoku puzzle:
– Nondeterministically guess how to fill in all the squares.

– Deterministically check whether the guess is correct.

– If so, accept; if not, reject.” 2

4

3

6

7

8

1

5

9

5

9

8

4

1

3

6

7

2

7

1

6

5

9

2

3

8

4

9

8

1

7

5

6

2

4

3

6

7

2

3

4

1

5

9

8

4

3

5

2

8

9

7

6

1

1

6

9

8

3

5

4

2

7

8

5

4

1

2

7

9

3

6

3

2

7

9

6

4

8

1

5

If we allow for a generalized Sudoku
board of arbitrary size:

There are polynomially many
 grid cells to fill in.

Checking the grid takes
polynomial time.

Overall algorithm takes
polynomial time.

A Problem in NP

● A graph coloring is a way of assigning colors to nodes in
an undirected graph such that no two nodes joined by an
edge have the same color.
● Applications in compilers, cell phone towers, etc.

● Question: Can graph G be colored with at most k colors?
● M = “On input ⟨G, k⟩:

● Nondeterministically guess a coloring of the nodes.
● Deterministically check whether it is legal.
● If so, accept; if not, reject.”

A Problem in NP

● A graph coloring is a way of assigning colors to nodes in
an undirected graph such that no two nodes joined by an
edge have the same color.
● Applications in compilers, cell phone towers, etc.

● Question: Can graph G be colored with at most k colors?
● M = “On input ⟨G, k⟩:

● Nondeterministically guess a coloring of the nodes.
● Deterministically check whether it is legal.
● If so, accept; if not, reject.”

A Problem in NP

● A graph coloring is a way of assigning colors to nodes in
an undirected graph such that no two nodes joined by an
edge have the same color.
● Applications in compilers, cell phone towers, etc.

● Question: Can graph G be colored with at most k colors?
● M = “On input ⟨G, k⟩:

● Nondeterministically guess a k-coloring of the nodes of G.
● Deterministically check whether it is legal.
● If so, accept; if not, reject.”

A Problem in NP
● Suppose you want to start a delivery service. You want to place

depots such that each customer is within some distance of the
depot.

● Given a set of candidate locations for depots, can you place k
depots and guarantee that each customer is covered?

M = “On input ⟨D, C, δ, k⟩ (depot locations, customer locations,
minimum distance required, and number of depots desired):

Nondeterministically guess k depots from D.

Deterministically verify each c ∈ C is within δ distance of some
depot.

If so, accept; otherwise reject.”

A Problem in NP
● Suppose you want to start a delivery service. You want to place

depots such that each customer is within some distance of the
depot.

● Given a set of candidate locations for depots, can you place k
depots and guarantee that each customer is covered?

M = “On input ⟨D, C, δ, k⟩ (depot locations, customer locations,
minimum distance required, and number of depots desired):

Nondeterministically guess k depots from D.

Deterministically verify each c ∈ C is within δ distance of some
depot.

If so, accept; otherwise reject.”

A Problem in NP
● Suppose you want to start a delivery service. You want to place

depots such that each customer is within some distance of the
depot.

● Given a set of candidate locations for depots, can you place k
depots and guarantee that each customer is covered?

● M = “On input ⟨D, C, δ, k⟩ (depot locations, customer locations,
minimum distance required, and number of depots desired):

● Nondeterministically guess k depots from D.

● Deterministically verify each c ∈ C is within δ distance of some
depot.

● If so, accept; otherwise reject.”

A General Pattern

● The NTMs we have seen so far always
follow this pattern:
● M = “On input w:

– Nondeterministically guess some string x.
– Deterministically check whether x solves w.
– If so, accept; otherwise, reject.”

● Is there a different way of characterizing
NP?

Polynomial-Time Verifiers

● A polynomial-time verifier is a
deterministic TM of the form
● M = “On input ⟨w, x⟩:

– Deterministically check whether x solves w.
– If so, accept; otherwise, reject.”

such that M runs in time polynomial in
the length of w (not the length of x).

● The string x is called a certificate or a
witness for w.

An Efficiently Verifiable Puzzle

An Efficiently Verifiable Puzzle

An Efficiently Verifiable Puzzle

Question: Can this
lock be opened?

Verifiers, Formally

● Formally, a verifier is a TM V such that

w ∈ L iff ∃x ∈ Σ*. V accepts ⟨w, x⟩
● In other words

L = { w ∈ Σ* | ∃x ∈ Σ*. V accepts ⟨w, x⟩ }
● If w ∈ L, the verifier can check this easily if we

know the proper x.
● If w ∉ L, the verifier does not help much.

● Just because V rejects ⟨w, x⟩ does not mean that
w ∉ L.

● Note that ℒ(V) ≠ L.

Verification is Powerful
● Many undecidable languages can still be verified.

● Here is a verifier for HALT:
● V = “On input ⟨M, w, n⟩, where M is a TM, w is a

string, and n is a natural number:
– Run M on w for n steps.

– If M halts w within that time, accept; otherwise reject.”

● V always halts on all inputs (even if M loops on w).

● If M halts on w, there is some choice of n for which
V accepts (namely, the number of steps M takes
before it halts on w).

● Thus HALT can be verified but not decided.

A Problem in NP
● Does a Sudoku grid have a solution?

● M = “On input ⟨S, A⟩, an encoding of a Sudoku puzzle
and an alleged solution to it:

– Deterministically check whether A is a solution to S.

– If so, accept; if not, reject.”

3

6

8

1

5

1

7

7

5

2

3

4

1

2

4

6

3

1

8

3

5

7

1

9

8

5

7

5

2

2

7

9

4

8

A Problem in NP

● A graph coloring is a way of assigning colors to nodes in
an undirected graph such that no two nodes joined by an
edge have the same color.
● Applications in compilers, cell phone towers, etc.

● Question: Can graph G be colored with at most k colors?
● M = “On input ⟨G, k, C⟩, where C is an alleged coloring:

● Deterministically check whether C is a legal k-coloring of G.
● If so, accept; if not, reject.”

Two Equivalent Formulations of NP

● Theorem: A language L has a polynomial-time
verifier iff L ∈ NP.

● Proof sketch:
● Any polynomial-time verifier can be turned into a

polynomial-time NTM by having the NTM
nondeterministically guess the certificate for w, then
check it (deterministically) by running the verifier.

● If an NTM can decide L in polynomial time, a verifier
could work by having a certificate saying which
nondeterministic choices the original NTM made, then
simulating those choices of the NTM to check it.

PP

NPN P

NPN P

Next Time

● NP-Completeness
● What are the hardest problems in NP?
● How do you prove a problem is NP-

complete?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146

