

Announcements

- Welcome back!
- Lecture 23 video should be posted by the end of tonight.
- Sorry for not getting it up sooner!
- Problem session tonight in 380-380X from 7:00PM - 7:50PM.
- Optional, but highly recommended.

It may be that since one is customarily concerned with existence, [...] decidability, and so forth, one is not inclined to take seriously the question of the existence of a better-than-decidable algorithm.

- Jack Edmonds, "Paths, Trees, and Flowers"

A Decidable Problem

- Presburger arithmetic is a logical system for reasoning about arithmetic.
- $\forall x . x+1 \neq 0$
- $\forall x \cdot \forall y \cdot(x+1=y+1 \rightarrow x=y)$
- $\forall x . x+0=x$
- $\forall x . \forall y .(x+y)+1=x+(y+1)$
- $\forall x .((P(0) \wedge \forall y .(P(y) \rightarrow P(y+1))) \rightarrow \forall x . P(x)$
- Given a statement, it is decidable whether that statement can be proven from the laws of Presburger arithmetic.
- Any Turing machine that decides whether a statement in Presburger arithmetic is true or false has to move the tape head at least $\mathbf{2}^{2^{\text {cn }}}$ times on some inputs of length n (for some fixed constant C).

For Reference

- Assume $c=1$.

$$
\begin{gathered}
2^{2^{0}}=2 \\
2^{2^{1}}=4 \\
2^{2^{2}}=16 \\
2^{2^{3}}=256 \\
2^{2^{4}}=65536 \\
2^{2^{5}}=18446744073709551616
\end{gathered}
$$

$2^{2^{6}}=340282366920938463463374607431768211456$

The Limits of Decidability

- The fact that a problem is decidable does not mean that it is feasibly decidable.
- In computability theory, we ask the question

Is it possible to solve problem L ?

- In complexity theory, we ask the question

Is it possible to solve problem L efficiently?

- In the remainder of this course, we will explore this question in more detail.

The Setup

- In order to study computability, we needed to answer these questions:
- What is "computation?"
- What is a "problem?"
- What does it mean to "solve" a problem?
- To study complexity, we need to answer these questions:
- What does "complexity" even mean?
- What is an "efficient" solution to a problem?

Measuring Complexity

- Suppose that we have a decider D for some language L.
- How might we measure the complexity of D ?
- Number of states.
- Size of tape alphabet.
- Size of input alphabet.
- Amount of tape required.
- Number of steps required.
- Number of times a given state is entered.
- Number of times a given symbol is printed.
- Number of times a given transition is taken.
- (Plus a whole lot more...)

Time Complexity

- A step of a Turing machine is one event where the TM takes a transition.
- Running a TM on different inputs might take a different number of steps.

	0		1			B
q_{0}	0	R	q_{1}	reject	accept	
q_{1}	reject	1	R	q_{0}	accept	

Time Complexity

- A step of a Turing machine is one event where the TM takes a transition.
- Running a TM on different inputs might take a different number of steps.

Accepting means
transitioning
into a special state。

Step Counter
6

Time Complexity

- A step of a Turing machine is one event where the TM takes a transition.
- Running a TM on different inputs might take a different number of steps.

Step Counter

Time Complexity

- A step of a Turing machine is one event where the TM takes a transition.
- Running a TM on different inputs might take a different number of steps.

| | 0 | | 1 | | B | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| q_{0} | 0 | R | q_{1} | reject | accept | |
| q_{1} | reject | | 1 | R | q_{0} | accept |

Step Counter

Time Complexity

- The number of steps a TM takes on some input is sensitive to
- The structure of that input.
- The length of the input.
- How can we come up with a consistent measure of a machine's runtime?

Time Complexity

- The time complexity of a TM M is a function (typically denoted $f(n)$) that measures the worst-case number of steps M takes on any input of length n.
- By convention, n denotes the length of the input.
- If M loops on some input of length k, then $f(k)=\infty$.
- The previous TM has time complexity $f(n)=n+1$.
- Any input of length n of the form 01010... halts after $n+1$ steps.
- Some inputs may take less time to halt, but time complexity considers the worst-case complexity.

A Slight Problem

- Consider the following TM over $\Sigma=\{0,1\}$ for the language BALANCE $=\left\{w \in \Sigma^{*} \mid w\right.$ has the same number of 0 s and 1 s$\}$:
- $M=$ "On input w :
- Scan across the tape until a 0 or 1 is found.
- If none are found, accept.
- If one is found, continue scanning until a matching 1 or 0 is found.
- If none is found, reject.
- Otherwise, cross off that symbol and repeat."
- What is the time complexity of M ?

A Loss of Precision

- When considering computability, using high-level TM descriptions is perfectly fine.
- When considering complexity, high-level TM descriptions make it nearly impossible to precisely reason about the actual time complexity.
- What are we to do about this?

The Best We Can

$M=$ "On input w :

- Scan across the tape until a 0 or 1 At most n steps. is found.
- If none are found, accept.
- If one is found, continue scanning until a matching 1 or 0 is found.
- If none are found, reject.

At most 1 step.

- Otherwise, cross off that symbol and repeat."

At most
n/2
loops

At most 1 step
At most \boldsymbol{n} steps to get back to the $+\quad$ start of the tape. At most $3 n+2$ steps.
$\times \quad$ At most $n / 2$ loops.
At most $3 n^{2} / 2+n$ steps.

An Easier Approach

- In complexity theory, we rarely need an exact value for a TM's time complexity.
- Usually, we are curious with the long-term growth rate of the time complexity.
- For example, if the time complexity is $3 n+5$, then doubling the length of the string roughly doubles the worst-case runtime.
- If the time complexity is $2^{n}-n^{2}$, since 2^{n} grows much more quickly than n^{2}, for large values of n, increasing the size of the input by 1 doubles the worst-case running time.

Big-O Notation

- Ignore everything except the dominant growth term, including constant factors.
- Examples:
- $4 n+4=\mathbf{O}(n)$
- $137 n+271=\mathbf{O}(n)$
- $n^{2}+3 n+4=\mathbf{O}\left(\boldsymbol{n}^{2}\right)$
- $2^{n}+n^{3}=\mathbf{O}\left(2^{n}\right)$
- $137=\mathbf{O (1)}$
- $n^{2} \log n+\log ^{5} n=\mathbf{O}\left(\boldsymbol{n}^{2} \log \boldsymbol{n}\right)$

Big-O Notation, Formally

- Let $f: \mathbb{N} \rightarrow \mathbb{N}$ and $g: \mathbb{N} \rightarrow \mathbb{N}$.
- Then $f(n)=O(g(n))$ iff there exist constants $c \in \mathbb{R}$ and $n_{0} \in \mathbb{N}$ such that

For any $n \geq \boldsymbol{n}_{0}, f(n) \leq \boldsymbol{c g}(n)$

- Intuitively, as n gets "large" (greater than $\left.n_{0}\right), f(n)$ is bounded from above by some multiple (determined by c) of $g(n)$.

Properties of Big-O Notation

- Theorem: If $f_{1}(n)=\mathrm{O}\left(g_{1}(n)\right)$ and $f_{2}(n)=\mathrm{O}\left(g_{2}(n)\right)$, then $f_{1}(n)+f_{2}(n)=\mathrm{O}\left(g_{1}(n)+g_{2}(n)\right)$.
- Intuitively: If you run two programs one after another, the big-O of the result is the big-O of the sum of the two runtimes.
- Theorem: If $f_{1}(n)=\mathrm{O}\left(g_{1}(n)\right)$ and $f_{2}(n)=\mathrm{O}\left(g_{2}(n)\right)$, then $f_{1}(n) f_{2}(n)=\mathrm{O}\left(g_{1}(n) g_{2}(n)\right)$.
- Intuitively: If you run one program some number of times, the big-O of the result is the big-O of the program times the big-O of the number of iterations.
- This makes it substantially easier to analyze time complexity, though we do lose some precision.

Life is Easier with Big-O

$M=$ "On input w :

- Scan across the tape until a 0 or 1 is found.
- If none are found, accept.
\(\left.\begin{array}{ll} \& O(1) steps

\& O(n) steps

\& O(1) steps

+\quad \& O(n) steps\end{array}\right\}\)| $O(n)$ |
| :--- |
| loops |
| $\times \quad O(n)$ steps |
| |

MTTMs

- A multitape Turing machine (MTTM) is a Turing machine with multiple tapes.
- The input tape holds the original input.
- Each tape head can move independently of the rest.
- Each tape head can base its transition on the symbols under all tape heads.

An MTTM for BALANCE

- $M_{2}=$ "On input $w:$
- Scan across the tape and copy all 1s

O(n) steps to a secondary tape.

- Move both tape heads back to the start $O(n)$ steps of their tapes.
- Until the end of the input is reached:
- Scan on the input tape until a 0 is found.

O(n) steps

- Match the 0 with a 1 on the second tape.
- If an imbalance is found, reject.
- If all 0s and 1s are matched, accept. $\frac{+\quad \mathrm{O}(1) \text { steps }}{\mathrm{O}(n) \text { steps. }}$

A Performance Comparison

- Our original 1-tape TM for BALANCE runs in $\mathrm{O}\left(n^{2}\right)$ time.
- Our MTTM can decide BALANCE in O(n) time.
- Nontrivial result: There is no single-tape TM that can decide BALANCE in $\mathrm{O}(n)$ time.
- The MTTM is inherently faster than the single-tape TM!

Complexity is Tricky

- The Church-Turing thesis states that any feasible model of computation is no more powerful than a TM.
- However, some models of computation might be more efficient than the TM.
- When analyzing complexity, the model of computation matters!

Analyzing Efficiency

- We need to reason about the efficiency of our TM equivalents.
- Questions worth considering:
- If there is a MTTM for L that runs in time $f(n)$, can we find a TM for L that runs in time $f(n) ? f(n)^{2} ? f(n)^{3}$?
- If there is a WB program for L that runs in time $f(n)$, can we find a TM for L that runs in time $f(n)$? $f(n)^{2}$? $f(n)^{3}$?

Our Line of Reasoning

- To analyze the relative efficiencies of MTTMs, WB programs, and TMs, we will do the following:
- Show how much slowdown we get when converting a WB program to a TM.
- Show how much slowdown we get when we convert a multitape WB program to a singletape WB program.
- Show how much slowdown we get when we convert a multitape TM to a multitape WB program.

From WB to TMs

Connecting Models of Computation

- Theorem: If there is a WB program for L whose time complexity is $f(n)$, there is a TM whose time complexity is at most $2 f(n)$.
- Proof sketch: Every line in a WB program gets converted into a set of TM states. Executing each line makes at most two transitions. Thus if the WB program takes time $f(n)$, then TM takes time at most $2 f(n)$.

Connecting Models of Computation

- How efficient is a multitape WB program compared to a single-tape WB program?
- Recall: We saw how to implement a multitape WB program with a multistack WB program such that each operation on the multitape WB program required $O(1)$ stack operations.
- We can therefore analyze the efficiency of a multitape WB program by analyzing the efficiency of a multistack WB program.

Multitape TM Efficiency

- Time to push or pop a stack is determined by
- how many elements are on that stack and
- where the tape head is on the tape.
- Important Fact \# 1: After running for n steps, a multistack program can have at most n elements on any stack.
- Important Fact \#2: After running for n steps, the read head of a TM can be at most n cells to the right of where it started.

Multitape TM Efficiency

- Lemma: The time required to simulate the k th step of a multitape TM is $\mathrm{O}(k)$.
- Proof sketch: We need to do at most $O(k)$ work to seek back to the start of the tape, at most $O(k)$ work to seek to the end of the stack, at most O(1) work manipulating the stack, and at most $\mathrm{O}(\mathrm{k})$ work moving the tape head back to where it started.
- Theorem: If there is a multitape TM for L with time complexity $f(n)$, there is a single-tape TM for L with time complexity $\mathrm{O}\left(f(n)^{2}\right)$.
- Proof Sketch: At most $O(f(n))$ work is required to simulate any move of the multitape TM, because there are at most $f(n)$ moves made. Doing $O(f(n))$ work $f(n)$ times requires time at most $O\left(f(n)^{2}\right)$. \square

What This Result Means

- We have shown that if it's possible to find an $f(n)$-time MTTM for some language L, we can also find an $\mathrm{O}\left(f(n)^{2}\right)$-time singletape TM for L.
- It might be possible to do better, though there's no guarantee.

More Impressive Results

- What is the connection between the big-O notation we're used to for real computers and the time complexity of Turing machines?
- Theorem: Any algorithm written on a standard computer that runs in time $f(n)$ can be simulated by a single-tape TM in time $\mathrm{O}\left(f(n)^{6}\right)$.
- Proof involves building up a simulator for standard computers using TMs; talk to me if you'd like a reference.

Why All This Matters

- Different models of computation have different efficiencies.
- TMs, MTTMs, WB programs, and computers can all solve the same problems, but may do so at different speeds.
- In many theoretical results, these differences do not matter.
- We'll see why in a minute.

Time Complexity Classes

Time Complexity

- Armed with big-O notation, we can start to define different complexity classes.
- The time complexity class $\operatorname{TIME}(f(\mathrm{n}))$ is the set of languages decidable by a singletape TM with runtime $O(f(n))$.
- For example:
- $\operatorname{TIME}(n)$ is the set of all languages decidable in time $O(n)$.
- TIME (2^{n}) is the set of all languages decidable in time $\mathrm{O}\left(2^{n}\right)$.

TIME(n)

- All regular languages are in TIME(n)
- Build a DFA for a regular language.
- Convert the DFA into a TM.
- Accepts in time at most $n+1$.
- Nontrivial result: A language is regular iff it is in TIME(n).
- (This is why we can't build a single-tape TM for BALANCE that runs in $\mathrm{O}(n)$ time.)

TIME (n^{2})

- The language of palindromes is in $\operatorname{TIME}\left(n^{2}\right)$
- Snake back and forth across the tape checking whether the ends match.
- The language of balanced parentheses is in $\operatorname{TIME}\left(n^{2}\right)$.
- Use an MTTM to track unmatched open parentheses on a second tape.
- All DCFLs are in TIME(n^{2}).
- Simulate a DCFL with a multitape TM in time O(n).
- Convert to a single-tape TM in $\mathrm{O}\left(n^{2}\right)$.
- Any language in TIME(n) is also in $\operatorname{TIME}\left(n^{2}\right)$.
- Since it takes at most $O(n)$ time, it also takes at most $\mathrm{O}\left(n^{2}\right)$ time as well.

$\operatorname{TIME}\left(n^{18}\right)$

- All CFLs are in TIME $\left(n^{18}\right)$.
- Given a grammar G, there exists an algorithm on a standard computer that can decide whether G generates w in time $O\left(n^{3}\right)$.
- Since an $f(n)$-time computer program can be simulated in time $\mathrm{O}\left(f(n)^{6}\right)$ on a TM, this means all CFLs are in $\operatorname{TIME}\left(n^{18}\right)$.

What is Efficiency?

Growth Rates, Part One

Growth Rates, Part Two

Growth Rates, Part Three

To Give You A Better Sense...

Once More with Logarithms

Comparison of Runtimes

(1 operation = 1 microsecond)

Size	1	lgn	n	$n \log n$	n^{2}	n^{3}	2^{n}
100	$1 \mu \mathrm{~s}$	$7 \mu \mathrm{~s}$	$100 \mu \mathrm{~s}$	0.7 ms	10 ms	$<1 \mathrm{~min}$	40 quadrillion yrs
200	$1 \mu \mathrm{~s}$	$8 \mu \mathrm{~s}$	$200 \mu \mathrm{~s}$	1.5 ms	40 ms	$<1 \mathrm{~min}$	More than that
300	$1 \mu \mathrm{~s}$	$8 \mu \mathrm{~s}$	$300 \mu \mathrm{~s}$	2.5 ms	90 ms	1 min	
400	$1 \mu \mathrm{~s}$	$9 \mu \mathrm{~s}$	$400 \mu \mathrm{~s}$	3.5 ms	160 ms	2 min	
500	$1 \mu \mathrm{~s}$	$9 \mu \mathrm{~s}$	$500 \mu \mathrm{~s}$	4.5 ms	250 ms	4 min	
600	$1 \mu \mathrm{~s}$	$9 \mu \mathrm{~s}$	$600 \mu \mathrm{~s}$	5.5 ms	360 ms	6 min	
700	$1 \mu \mathrm{~s}$	$9 \mu \mathrm{~s}$	$700 \mu \mathrm{~s}$	6.6 ms	490 ms	9 min	
800	$1 \mu \mathrm{~s}$	$10 \mu \mathrm{~s}$	$800 \mu \mathrm{~s}$	7.7 ms	640 ms	12 min	
900	$1 \mu \mathrm{~s}$	$10 \mu \mathrm{~s}$	$900 \mu \mathrm{~s}$	8.8 ms	810 ms	17 min	
1000	$1 \mu \mathrm{~s}$	$10 \mu \mathrm{~s}$	$1000 \mu \mathrm{~s}$	10 ms	1000 ms	22 min	
1100	$1 \mu \mathrm{~s}$	$10 \mu \mathrm{~s}$	$1100 \mu \mathrm{~s}$	11 ms	1200 ms	29 min	
1200	$1 \mu \mathrm{~s}$	$10 \mu \mathrm{~s}$	$1200 \mu \mathrm{~s}$	12 ms	1400 ms	37 min	
1300	$1 \mu \mathrm{~s}$	$10 \mu \mathrm{~s}$	$1300 \mu \mathrm{~s}$	13 ms	1700 ms	45 min	
1400	$1 \mu \mathrm{~s}$	$10 \mu \mathrm{~s}$	$1400 \mu \mathrm{~s}$	15 ms	2000 ms	56 min	

Polynomials and Exponentials

- Polynomial functions "scale well."
- Small changes to the size of the input do not typically induce enormous changes to the overall runtime.
- Exponential functions scale terribly.
- Small changes to the size of the input induce huge changes in the overall runtime.

The Cobham-Edmonds Thesis

A language L can be decided efficiently iff there is a TM that decides it in polynomial time.

Equivalently, L can be decided in time $\mathrm{O}\left(n^{k}\right)$ for some $k \in \mathbb{N}$.

Equivalently, $L \in \operatorname{TIME}\left(n^{k}\right)$ for some $k \in \mathbb{N}$

The Cobham-Edmonds Thesis

- Efficient runtimes:
- $4 n+13$
- $n^{3}-2 n^{2}+4 n$
- $n \log \log n$
- "Efficient" runtimes:
- $n^{1,000,000,000,000}$
- 10^{500}
- Inefficient runtimes:
- 2^{n}
- n !
- n^{n}
- "Inefficient" runtimes:
- $n^{0.0001 \log n}$
- 1.000000001^{n}

The Complexity Class \mathbf{P}

- The complexity class \mathbf{P} contains all problems that can be solved in polynomial time.
- Formally:

$$
\mathbf{P}=\bigcup_{k=0}^{\infty} \operatorname{TIME}\left(n^{k}\right)
$$

- Using our definition, a problem can be solved efficiently iff it is in \mathbf{P}.

Examples of Problems in \mathbf{P}

- All regular languages are in \mathbf{P}.
- Contained in TIME(n).
- All DCFLs are in \mathbf{P}.
- Contained in TIME(n^{2}).
- All CFLs are in \mathbf{P}.
- Contained in TIME(n^{18})
- Many other problems are in \mathbf{P}.
- POWER2
- SEARCH

Regular Languages

DCFLs

CFLs

Undecidable Languages

Problems in \mathbf{P}

- Graph connectivity:

Given a graph G and nodes s and t, is there a path from s to t ?

- Primality testing:

Given a number n, is n prime? (Best known TM for this takes time $\mathrm{O}\left(n^{72}\right)$.)

- Maximum matching:

Given a set of tasks and workers who can perform those tasks, can all of the tasks be completed in under n hours?

Problems in \mathbf{P}

- Remoteness testing:

Given a graph G, are all of the nodes in G within distance at most k of one another?

- Linear programming:

Given a linear set of constraints and linear objective function, is the optimal solution at least n ?

- Edit distance:

Given two strings, can the strings be transformed into one another in at most n single-character edits?

Other Models of Computation

- All models of computation that we've talked about so far (except for the nondeterministic TM) can be reduced to a TM in polynomial time.
- Theorem: $L \in \mathbf{P}$ iff there is a polynomialtime TM, WBn program, multitape TM, or normal computer program for it.
- Essentially - a problem is in \mathbf{P} iff you could solve it on a normal computer in polynomial time.

A Feel For Polynomial Time

- What can you do in polynomial time?
- What can you not do in polynomial time?
- Let's see some examples.

Closure under Addition

- Theorem: $\mathrm{O}\left(n^{k}\right)+\mathrm{O}\left(n^{r}\right)=\mathrm{O}\left(n^{\max \{k, r\}}\right)$.
- The sum of two polynomial-bounded functions is itself a polynomial-bounded function.
- If you have two programs that each run in polynomial time, running them in sequence still stays within polynomial time.
function newCode() \{

$$
\begin{aligned}
& \text { polynomialFunctionOne() ; } \\
& \text { polynomialFunctionTwo(); }
\end{aligned}
$$

Closure under Multiplication

- Theorem: $\mathrm{O}\left(n^{k}\right) \mathrm{O}\left(n^{r}\right)=\mathrm{O}\left(n^{k+r}\right)$.
- The product of two polynomial-bounded functions is itself a polynomial-bounded function
- Doing polynomial work polynomially many times stays polynomial.

$$
\begin{aligned}
& \text { for (int i = 0; i < poly(); i++) \{ } \\
& \text { polynomialFunction(); } \\
& \text { \} }
\end{aligned}
$$

Closure under Composition

- Theorem: If $f(n)=\mathrm{O}\left(n^{k}\right)$ and $g(n)=\mathrm{O}\left(n^{r}\right)$, then $f(g(n))=O\left(n^{k r}\right)$.
- The composition of polynomials (applying one polynomial to another) is itself a polynomial.
- Calling one polynomial function on the result of another stays polynomial:
function newCode() \{
polynomial2(polynomial1());
\}

Proving Languages are in \mathbf{P}

- To prove that a language is regular, we could
- Design a DFA for it.
- Design an NFA for it.
- Design a regular expression for it.
- Use closure properties.
- To prove that a language is a CFL, we could
- Design a CFG for it.
- Design a PDA for it.
- Use closure properties.
- How do we prove that a language is in \mathbf{P} ?

Proving Languages are in \mathbf{P}

- Directly prove the language is in P.
- Build a decider for the language L.
- Prove that the decider runs in time $\mathrm{O}\left(n^{k}\right)$.
- Use closure properties.
- Prove that the language can be formed by appropriate transformations of languages in \mathbf{P}.
- Reduce the language to a language in P.
- Show how a polynomial-time decider for some language L^{\prime} can be used to decide L.

Reductions

If any instance of A can be converted into an instance of B, we say that A reduces to B.

Mapping Reductions and \mathbf{P}

- When studying whether problems were in $\mathbf{R}, \mathbf{R E}$, or co-RE, we used mapping reductions.
- We cannot use mapping reductions when talking about the class \mathbf{P}.
- The reduction can do more than polynomial work.
- We will need to introduce a new kind of reduction.

Polynomial-Time Reductions

- Let $A \subseteq \Sigma_{1}{ }^{*}$ and $B \subseteq \Sigma_{2}{ }^{*}$ be languages.
- A polynomial-time mapping reduction is a function $f: \Sigma_{1}{ }^{*} \rightarrow \Sigma_{2}{ }^{*}$ with the following properties:
- $f(w)$ can be computed in polynomial time.
- $w \in A$ iff $f(w) \in B$.
- Informally:
- A way of turning inputs to A into inputs to B
- that can be computed in polynomial time
- that preserves the correct answer.
- Notation: $\boldsymbol{A} \leq_{\mathbf{p}} \boldsymbol{B}$ iff there is a polynomial-time mapping reduction from A to B.

Next Time

- Polynomial-Time Reductions
- What do these reductions look like?
- NP
- What can we verify quickly?
- $\mathbf{P} \stackrel{2}{=} \mathbf{N P}$
- How are these classes related?

