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Announcements

● Welcome back!
● Lecture 23 video should be posted by the 

end of tonight.
● Sorry for not getting it up sooner!

● Problem session tonight in 380-380X 
from 7:00PM – 7:50PM.
● Optional, but highly recommended.



  

It may be that since one is customarily 
concerned with existence, […] finiteness, 
and so forth, one is not inclined to take 
seriously the question of the existence of a 
better-than-finite algorithm.

- Jack Edmonds, “Paths, Trees, and Flowers”
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It may be that since one is customarily 
concerned with existence, […] decidability, 
and so forth, one is not inclined to take 
seriously the question of the existence of a 
better-than-decidable algorithm.

- Jack Edmonds, “Paths, Trees, and Flowers”



  

A Decidable Problem
● Presburger arithmetic is a logical system for reasoning 

about arithmetic.

● ∀x. x + 1 ≠ 0

● ∀x. ∀y. (x + 1 = y + 1 → x = y)

● ∀x. x + 0 = x

● ∀x. ∀y. (x + y) + 1 = x + (y + 1)

● ∀x. ((P(0) ∧ ∀y. (P(y) → P(y + 1))) → ∀x. P(x)

● Given a statement, it is decidable whether that statement can 
be proven from the laws of Presburger arithmetic.

● Any Turing machine that decides whether a statement in 
Presburger arithmetic is true or false has to move the tape 
head at least       times on some inputs of length n (for some 
fixed constant c).
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cn



  

For Reference

● Assume c = 1.
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The Limits of Decidability

● The fact that a problem is decidable does not mean 
that it is feasibly decidable.

● In computability theory, we ask the question

          Is it possible to solve problem L?

● In complexity theory, we ask the question

       Is it possible to solve problem L efficiently?

● In the remainder of this course, we will explore this 
question in more detail.
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The Setup

● In order to study computability, we 
needed to answer these questions:
● What is “computation?”
● What is a “problem?”
● What does it mean to “solve” a problem?

● To study complexity, we need to answer 
these questions:
● What does “complexity” even mean?
● What is an “efficient” solution to a problem?



  

Measuring Complexity

● Suppose that we have a decider D for some language L.
● How might we measure the complexity of D?

● Number of states.
● Size of tape alphabet.
● Size of input alphabet.
● Amount of tape required.
● Number of steps required.
● Number of times a given state is entered.
● Number of times a given symbol is printed.
● Number of times a given transition is taken.
● (Plus a whole lot more...)
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Time Complexity

● The number of steps a TM takes on some 
input is sensitive to
● The structure of that input.
● The length of the input.

● How can we come up with a consistent 
measure of a machine's runtime?



  

Time Complexity

● The time complexity of a TM M is a function (typically 
denoted f(n)) that measures the worst-case number of 
steps M takes on any input of length n.

● By convention, n denotes the length of the input.

● If M loops on some input of length k, then f(k) = ∞.

● The previous TM has time complexity f(n) = n + 1.

● Any input of length n of the form 01010... halts after 
n + 1 steps.

● Some inputs may take less time to halt, but time 
complexity considers the worst-case complexity.



  

A Slight Problem

● Consider the following TM over Σ = {0, 1} 
for the language BALANCE = { w ∈ Σ* | w 
has the same number of 0s and 1s }:
● M = “On input w:

– Scan across the tape until a 0 or 1 is found.

– If none are found, accept.
– If one is found, continue scanning until a matching 1 

or 0 is found.

– If none is found, reject.
– Otherwise, cross off that symbol and repeat.”

● What is the time complexity of M?



  

A Loss of Precision

● When considering computability, using 
high-level TM descriptions is perfectly 
fine.

● When considering complexity, high-level 
TM descriptions make it nearly 
impossible to precisely reason about the 
actual time complexity.

● What are we to do about this?



  

The Best We Can

M = “On input w:

● Scan across the tape until a 0 or 1
is found.

● If none are found, accept.
● If one is found, continue scanning

until a matching 1 or 0 is found.

● If none are found, reject.
● Otherwise, cross off that symbol

and repeat.”

At most n steps.

At most 1 step.

At most n 
more steps.

At most 1 step

At most n steps to 
get back to the 

start of the tape.

At most 3n + 2 steps.

At most
n/2

loops

At most n/2 loops.

At most 3n2 / 2 + n steps.

+

×



  

An Easier Approach

● In complexity theory, we rarely need an exact 
value for a TM's time complexity.

● Usually, we are curious with the long-term 
growth rate of the time complexity.

● For example, if the time complexity is 3n + 5, 
then doubling the length of the string roughly 
doubles the worst-case runtime.

● If the time complexity is 2n – n2, since 2n grows 
much more quickly than n2, for large values of n, 
increasing the size of the input by 1 doubles the 
worst-case running time.



  

Big-O Notation

● Ignore everything except the dominant 
growth term, including constant factors.

● Examples:
● 4n + 4 = O(n)
● 137n + 271 = O(n)
● n2 + 3n + 4 = O(n2)
● 2n + n3 = O(2n)
● 137 = O(1)
● n2 log n + log5 n = O(n2 log n)



  

Big-O Notation, Formally

● Let f : ℕ → ℕ and g : ℕ → ℕ.
● Then f(n) = O(g(n)) iff there exist 

constants c ∈ ℝ and n0 ∈ ℕ such that

For any n ≥ n0, f(n) ≤ cg(n) 

● Intuitively, as n gets “large” (greater 
than n0), f(n) is bounded from above by 
some multiple (determined by c) of g(n).



  

● Theorem: If f1(n) = O(g1(n)) and f2(n) = O(g2(n)), 
then f1(n) + f2(n) = O(g1(n) + g2(n)).

● Intuitively: If you run two programs one after 
another, the big-O of the result is the big-O of the 
sum of the two runtimes.

● Theorem: If f1(n) = O(g1(n)) and f2(n) = O(g2(n)), 
then f1(n)f2(n) = O(g1(n)g2(n)).

● Intuitively: If you run one program some number of 
times, the big-O of the result is the big-O of the 
program times the big-O of the number of iterations.

● This makes it substantially easier to analyze time 
complexity, though we do lose some precision.

Properties of Big-O Notation



  

Life is Easier with Big-O

O(n) steps

O(1) steps

O(n) steps

O(1) steps

O(n) steps

O(n) steps

O(n)
loops

O(n) loops

O(n2) steps

+

×

M = “On input w:

● Scan across the tape until a 0 or 1
is found.

● If none are found, accept.
● If one is found, continue scanning

until a matching 1 or 0 is found.

● If none is found, reject.
● Otherwise, cross off that symbol

and repeat.”



  

MTTMs

● A multitape Turing machine (MTTM) 
is a Turing machine with multiple tapes.

● The input tape holds the original input.
● Each tape head can move independently 

of the rest.
● Each tape head can base its transition on 

the symbols under all tape heads.



  

An MTTM for BALANCE

● M2 = “On input w:

● Scan across the tape and copy all 1s
to a secondary tape.

● Move both tape heads back to the start
of their tapes.

● Until the end of the input is reached:
– Scan on the input tape until a 0 is found.

– Match the 0 with a 1 on the second tape.

● If an imbalance is found, reject.

● If all 0s and 1s are matched, accept.

O(n) steps

O(n) steps

O(1) steps

O(n) steps.

+ O(1) steps

O(n) steps



  

A Performance Comparison

● Our original 1-tape TM for BALANCE runs in O(n2) 
time.

● Our MTTM can decide BALANCE in O(n) time.

● Nontrivial result: There is no single-tape TM that 
can decide BALANCE in O(n) time.

● The MTTM is inherently faster than the 
single-tape TM!



  

Complexity is Tricky

● The Church-Turing thesis states that any 
feasible model of computation is no more 
powerful than a TM.

● However, some models of computation 
might be more efficient than the TM.

● When analyzing complexity, the model 
of computation matters!



  

Analyzing Efficiency

● We need to reason about the efficiency of 
our TM equivalents.

● Questions worth considering:
● If there is a MTTM for L that runs in time 
f(n), can we find a TM for L that runs in time 
f(n)?  f(n)2?  f(n)3?

● If there is a WB program for L that runs in 
time f(n), can we find a TM for L that runs in 
time f(n)?  f(n)2?  f(n)3?



  

Our Line of Reasoning

● To analyze the relative efficiencies of 
MTTMs, WB programs, and TMs, we will 
do the following:
● Show how much slowdown we get when 

converting a WB program to a TM.
● Show how much slowdown we get when we 

convert a multitape WB program to a single-
tape WB program.

● Show how much slowdown we get when we 
convert a multitape TM to a multitape WB 
program.



  

From WB to TMs

0: If reading B, go to 4.
1: If reading 1, go to 5.
2: Move right.
3: Go to 0.
4: Accept.
5: Reject.

0 1 t
12

3

4 5

t
01

t
04

0 → 0, R
1 → 1, R Γ → Γ, L

B → B, R                    

Γ → Γ, L                    

a r

t
15

1 → 1, R                    

Γ → Γ, L                    

0 → 0, R
B → B, R

2
Γ → Γ, L

t
03

Γ → Γ, R

Γ → Γ, L                    Γ → Γ, R                 

Γ → Γ, R                    Γ → Γ, R                    

start

a r



  

Connecting Models of Computation

● Theorem: If there is a WB program for 
L whose time complexity is f(n), there is 
a TM whose time complexity is at most 
2f(n).

● Proof sketch: Every line in a WB 
program gets converted into a set of TM 
states.  Executing each line makes at 
most two transitions.  Thus if the WB 
program takes time f(n), then TM takes 
time at most 2f(n).



  

Connecting Models of Computation

● How efficient is a multitape WB program 
compared to a single-tape WB program?

● Recall: We saw how to implement a multitape 
WB program with a multistack WB program 
such that each operation on the multitape WB 
program required O(1) stack operations.

● We can therefore analyze the efficiency of a 
multitape WB program by analyzing the 
efficiency of a multistack WB program.
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Multitape TM Efficiency

● Time to push or pop a stack is determined by
● how many elements are on that stack and
● where the tape head is on the tape.

● Important Fact #1: After running for n steps, a 
multistack program can have at most n elements 
on any stack.

● Important Fact #2: After running for n steps, 
the read head of a TM can be at most n cells to 
the right of where it started.



  

Multitape TM Efficiency

● Lemma: The time required to simulate the kth step of 
a multitape TM is O(k).

● Proof sketch: We need to do at most O(k) work to 
seek back to the start of the tape, at most O(k) work 
to seek to the end of the stack, at most O(1) work 
manipulating the stack, and at most O(k) work 
moving the tape head back to where it started.

● Theorem: If there is a multitape TM for L with time 
complexity f(n), there is a single-tape TM for L with 
time complexity O(f(n)2).

● Proof Sketch: At most O(f(n)) work is required to 
simulate any move of the multitape TM, because 
there are at most f(n) moves made.  Doing O(f(n)) 
work f(n) times requires time at most O(f(n)2). ■



  

What This Result Means

● We have shown that if it's possible to find 
an f(n)-time MTTM for some language L, 
we can also find an O(f(n)2)-time single-
tape TM for L.

● It might be possible to do better, though 
there's no guarantee.



  

More Impressive Results

● What is the connection between the big-O 
notation we're used to for real computers and 
the time complexity of Turing machines?

● Theorem: Any algorithm written on a 
standard computer that runs in time f(n) can 
be simulated by a single-tape TM in time 
O(f(n)6).

● Proof involves building up a simulator for 
standard computers using TMs; talk to me if 
you'd like a reference.



  

Why All This Matters

● Different models of computation have 
different efficiencies.

● TMs, MTTMs, WB programs, and computers 
can all solve the same problems, but may do 
so at different speeds.

● In many theoretical results, these differences 
do not matter.
● We'll see why in a minute.



  

Time Complexity Classes



  

Time Complexity

● Armed with big-O notation, we can start to 
define different complexity classes.

● The time complexity class TIME(f(n)) is 
the set of languages decidable by a single-
tape TM with runtime O(f(n)).

● For example:
● TIME(n) is the set of all languages decidable in 

time O(n).
● TIME(2n) is the set of all languages decidable 

in time O(2n).



  

TIME(n)

● All regular languages are in TIME(n)
● Build a DFA for a regular language.
● Convert the DFA into a TM.
● Accepts in time at most n + 1.

● Nontrivial result: A language is regular 
iff it is in TIME(n).
● (This is why we can't build a single-tape TM 

for BALANCE that runs in O(n) time.)



  

TIME(n2)

● The language of palindromes is in TIME(n2)

● Snake back and forth across the tape checking whether 
the ends match.

● The language of balanced parentheses is in TIME(n2).

● Use an MTTM to track unmatched open parentheses on a 
second tape.

● All DCFLs are in TIME(n2).

● Simulate a DCFL with a multitape TM in time O(n).

● Convert to a single-tape TM in O(n2).

● Any language in TIME(n) is also in TIME(n2).

● Since it takes at most O(n) time, it also takes at most 
O(n2) time as well.



  

TIME(n18)

● All CFLs are in TIME(n18).
● Given a grammar G, there exists an 

algorithm on a standard computer that can 
decide whether G generates w in time O(n3).

● Since an f(n)-time computer program can be 
simulated in time O(f(n)6) on a TM, this 
means all CFLs are in TIME(n18).



  

What is Efficiency?
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Size 1 lg n n n log n n2 n3 2n

100 1μs 7μs 100μs 0.7ms 10ms <1min 40 quadrillion yrs

200 1μs 8μs 200μs 1.5ms 40ms <1min More than that

300 1μs 8μs 300μs 2.5ms 90ms 1min

400 1μs 9μs 400μs 3.5ms 160ms 2min

500 1μs 9μs 500μs 4.5ms 250ms 4min

600 1μs 9μs 600μs 5.5ms 360ms 6min

700 1μs 9μs 700μs 6.6ms 490ms 9min

800 1μs 10μs 800μs 7.7ms 640ms 12min

900 1μs 10μs 900μs 8.8ms 810ms 17min

1000 1μs 10μs 1000μs 10ms 1000ms 22min

1100 1μs 10μs 1100μs 11ms 1200ms 29min

1200 1μs 10μs 1200μs 12ms 1400ms 37min

1300 1μs 10μs 1300μs 13ms 1700ms 45min

1400 1μs 10μs 1400μs 15ms 2000ms 56min

Comparison of Runtimes
(1 operation = 1 microsecond)



  

Polynomials and Exponentials

● Polynomial functions “scale well.”
● Small changes to the size of the input do not 

typically induce enormous changes to the 
overall runtime.

● Exponential functions scale terribly.
● Small changes to the size of the input induce 

huge changes in the overall runtime.



  

The Cobham-Edmonds Thesis

A language L can be decided efficiently 
iff there is a TM that decides it in 

polynomial time.

Equivalently, L can be decided in
time O(nk) for some k ∈ ℕ.

Equivalently, L ∈ TIME(nk) for some k ∈ ℕ



  

The Cobham-Edmonds Thesis

● Efficient runtimes:
● 4n + 13
● n3 – 2n2 + 4n
● n log log n

● “Efficient” runtimes:
● n1,000,000,000,000

● 10500

● Inefficient runtimes:
● 2n

● n!
● nn

● “Inefficient” runtimes:
● n0.0001 log n

● 1.000000001n



  

The Complexity Class P

● The complexity class P contains all 
problems that can be solved in 
polynomial time.

● Formally:

● Using our definition, a problem can be 
solved efficiently iff it is in P.

∪∞            TIME(nk)P =
k = 0



  

Examples of Problems in P

● All regular languages are in P.
● Contained in TIME(n).

● All DCFLs are in P.
● Contained in TIME(n2).

● All CFLs are in P.
● Contained in TIME(n18)

● Many other problems are in P.
● POWER2
● SEARCH



  Undecidable Languages

Regular
Languages CFLsDCFLs REfficiently

Decidable
Languages



  Undecidable Languages

Regular
Languages CFLsDCFLs RP



  

Problems in P

● Graph connectivity:

Given a graph G and nodes s and t,     
is there a path from s to t?      

● Primality testing:

Given a number n, is n prime?  (Best known 
TM for this takes time O(n72).)

● Maximum matching:

Given a set of tasks and workers who can 
perform those tasks, can all of the tasks be 

completed in under n hours?    



  

Problems in P

● Remoteness testing:

Given a graph G, are all of the nodes in G
within distance at most k of one another?

● Linear programming:

Given a linear set of constraints
and linear objective function, is the

optimal solution at least n?  

● Edit distance:

Given two strings, can the strings be 
transformed into one another in at most n 

single-character edits? 



  

Other Models of Computation

● All models of computation that we've 
talked about so far (except for the 
nondeterministic TM) can be reduced to a 
TM in polynomial time.

● Theorem: L ∈ P iff there is a polynomial-
time TM, WBn program, multitape TM, or 
normal computer program for it.

● Essentially – a problem is in P iff you could 
solve it on a normal computer in 
polynomial time.



  

A Feel For Polynomial Time

● What can you do in polynomial time?
● What can you not do in polynomial time?
● Let's see some examples.



  

Closure under Addition

● Theorem: O(nk) + O(nr) = O(nmax{k, r}).
● The sum of two polynomial-bounded functions is 

itself a polynomial-bounded function.
● If you have two programs that each run in 

polynomial time, running them in sequence still 
stays within polynomial time.

     function newCode() {

         polynomialFunctionOne();

         polynomialFunctionTwo();

     }



  

Closure under Multiplication

● Theorem: O(nk) O(nr) = O(nk+r).
● The product of two polynomial-bounded 

functions is itself a polynomial-bounded function
● Doing polynomial work polynomially many 

times stays polynomial.

 for (int i = 0; i < poly(); i++) {

     polynomialFunction();

 }



  

Closure under Composition

● Theorem: If f(n) = O(nk) and g(n) = O(nr), then 
f(g(n)) = O(nkr).
● The composition of polynomials (applying one 

polynomial to another) is itself a polynomial.
● Calling one polynomial function on the result of 

another stays polynomial:

   function newCode() {

       polynomial2(polynomial1());

   }



  

Proving Languages are in P

● To prove that a language is regular, we could
● Design a DFA for it.
● Design an NFA for it.
● Design a regular expression for it.
● Use closure properties.

● To prove that a language is a CFL, we could
● Design a CFG for it.
● Design a PDA for it.
● Use closure properties.

● How do we prove that a language is in P?



  

Proving Languages are in P

● Directly prove the language is in P.
● Build a decider for the language L.
● Prove that the decider runs in time O(nk).

● Use closure properties.
● Prove that the language can be formed by 

appropriate transformations of languages in P.

● Reduce the language to a language in P.
● Show how a polynomial-time decider for some 

language L' can be used to decide L.
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Reductions

Problem A Problem B

Can be converted to

Can be used to solve

If any instance of A can be 
converted into an instance of B, 

we say that A reduces to B.



  

Mapping Reductions and P

● When studying whether problems were 
in R, RE, or co-RE, we used mapping 
reductions.

● We cannot use mapping reductions when 
talking about the class P.
● The reduction can do more than polynomial 

work.

● We will need to introduce a new kind of 
reduction.



  

Polynomial-Time Reductions

● Let A ⊆ Σ1* and B ⊆ Σ2* be languages.

● A polynomial-time mapping reduction is a function
f : Σ1* → Σ2* with the following properties:

● f(w) can be computed in polynomial time.
● w ∈ A iff f(w) ∈ B.

● Informally:
● A way of turning inputs to A into inputs to B
● that can be computed in polynomial time
● that preserves the correct answer.

● Notation: A ≤P B iff there is a polynomial-time 
mapping reduction from A to B.



  

Next Time

● Polynomial-Time Reductions
● What do these reductions look like?

● NP
● What can we verify quickly?

● P ≟ NP
● How are these classes related?
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