

PP

Announcements

● Welcome back!
● Lecture 23 video should be posted by the

end of tonight.
● Sorry for not getting it up sooner!

● Problem session tonight in 380-380X
from 7:00PM – 7:50PM.
● Optional, but highly recommended.

It may be that since one is customarily
concerned with existence, […] finiteness,
and so forth, one is not inclined to take
seriously the question of the existence of a
better-than-finite algorithm.

- Jack Edmonds, “Paths, Trees, and Flowers”

It may be that since one is customarily
concerned with existence, […] finiteness,
and so forth, one is not inclined to take
seriously the question of the existence of a
better-than-finite algorithm.

- Jack Edmonds, “Paths, Trees, and Flowers”

It may be that since one is customarily
concerned with existence, […] finiteness,
and so forth, one is not inclined to take
seriously the question of the existence of a
better-than-finite algorithm.

- Jack Edmonds, “Paths, Trees, and Flowers”

It may be that since one is customarily
concerned with existence, […] decidability,
and so forth, one is not inclined to take
seriously the question of the existence of a
better-than-decidable algorithm.

- Jack Edmonds, “Paths, Trees, and Flowers”

A Decidable Problem
● Presburger arithmetic is a logical system for reasoning

about arithmetic.

● ∀x. x + 1 ≠ 0

● ∀x. ∀y. (x + 1 = y + 1 → x = y)

● ∀x. x + 0 = x

● ∀x. ∀y. (x + y) + 1 = x + (y + 1)

● ∀x. ((P(0) ∧ ∀y. (P(y) → P(y + 1))) → ∀x. P(x)

● Given a statement, it is decidable whether that statement can
be proven from the laws of Presburger arithmetic.

● Any Turing machine that decides whether a statement in
Presburger arithmetic is true or false has to move the tape
head at least times on some inputs of length n (for some
fixed constant c).

22
cn

For Reference

● Assume c = 1.

220

=2

221

=4

222

=16

223

=256

224

=65536

225

=18446744073709551616

226

=340282366920938463463374607431768211456

For Reference

● Assume c = 1.

220

=2

221

=4

222

=16

223

=256

224

=65536

225

=18446744073709551616

226

=340282366920938463463374607431768211456

For Reference

● Assume c = 1.

220

=2

221

=4

222

=16

223

=256

224

=65536

225

=18446744073709551616

226

=340282366920938463463374607431768211456

For Reference

● Assume c = 1.

220

=2

221

=4

222

=16

223

=256

224

=65536

225

=18446744073709551616

226

=340282366920938463463374607431768211456

For Reference

● Assume c = 1.

220

=2

221

=4

222

=16

223

=256

224

=65536

225

=18446744073709551616

226

=340282366920938463463374607431768211456

For Reference

● Assume c = 1.

220

=2

221

=4

222

=16

223

=256

224

=65536

225

=18446744073709551616

226

=340282366920938463463374607431768211456

For Reference

● Assume c = 1.

220

=2

221

=4

222

=16

223

=256

224

=65536

225

=18446744073709551616

226

=340282366920938463463374607431768211456

The Limits of Decidability

● The fact that a problem is decidable does not mean
that it is feasibly decidable.

● In computability theory, we ask the question

 Is it possible to solve problem L?

● In complexity theory, we ask the question

 Is it possible to solve problem L efficiently?

● In the remainder of this course, we will explore this
question in more detail.

Regular
Languages CFLsDCFLs

All Languages

R RE

 All Languages

RERegular
Languages CFLsDCFLs R

 Undecidable Languages

Regular
Languages CFLsDCFLs REfficiently

Decidable
Languages

The Setup

● In order to study computability, we
needed to answer these questions:
● What is “computation?”
● What is a “problem?”
● What does it mean to “solve” a problem?

● To study complexity, we need to answer
these questions:
● What does “complexity” even mean?
● What is an “efficient” solution to a problem?

Measuring Complexity

● Suppose that we have a decider D for some language L.
● How might we measure the complexity of D?

● Number of states.
● Size of tape alphabet.
● Size of input alphabet.
● Amount of tape required.
● Number of steps required.
● Number of times a given state is entered.
● Number of times a given symbol is printed.
● Number of times a given transition is taken.
● (Plus a whole lot more...)

Measuring Complexity

● Suppose that we have a decider D for some language L.
● How might we measure the complexity of D?

● Number of states.
● Size of tape alphabet.
● Size of input alphabet.
● Amount of tape required.
● Number of steps required.
● Number of times a given state is entered.
● Number of times a given symbol is printed.
● Number of times a given transition is taken.
● (Plus a whole lot more...)

Measuring Complexity

● Suppose that we have a decider D for some language L.
● How might we measure the complexity of D?

Number of states.

Size of tape alphabet.

Size of input alphabet.
● Amount of tape required.
● Number of steps required.

Number of times a given state is entered.

Number of times a given symbol is printed.

Number of times a given transition is taken.

(Plus a whole lot more...)

q
0

q
0

0 1 B

q
1

Time Complexity

● A step of a Turing machine is one event
where the TM takes a transition.

● Running a TM on different inputs might
take a different number of steps.

0 1 B

0 R q
1 reject accept

q
1 reject accept1 R q

0

q
0

q
0

0 1 B

q
1

Time Complexity

● A step of a Turing machine is one event
where the TM takes a transition.

● Running a TM on different inputs might
take a different number of steps.

0 1 0 1 0

0 1 B

0 R q
1 reject accept

q
1 reject accept1 R q

0

q
0

0 1 B
q

0

q
1

Time Complexity

● A step of a Turing machine is one event
where the TM takes a transition.

● Running a TM on different inputs might
take a different number of steps.

0 1 0 1 0

0 1 B

0 R q
1 reject accept

q
1 reject accept1 R q

0

q
0

0 1 B
q

0

q
1

Time Complexity

● A step of a Turing machine is one event
where the TM takes a transition.

● Running a TM on different inputs might
take a different number of steps.

0 1 0 1 0

0 1 B

0 R q
1 reject accept

q
1 reject accept1 R q

0

q
0

0 1 B
q

0

q
1

Time Complexity

● A step of a Turing machine is one event
where the TM takes a transition.

● Running a TM on different inputs might
take a different number of steps.

0 1 0 1 0

0 1 B

0 R q
1 reject accept

q
1 reject accept1 R q

0
0

Step Counter

0
q

0

0 1 B
q

0

q
1

Time Complexity

● A step of a Turing machine is one event
where the TM takes a transition.

● Running a TM on different inputs might
take a different number of steps.

0 1 0 1 0

1 B

0 R q
1 reject accept

q
1 reject accept1 R q

0
0

Step Counter

q

1

0
q

0

0
q

0

1 B

q
1

Time Complexity

● A step of a Turing machine is one event
where the TM takes a transition.

● Running a TM on different inputs might
take a different number of steps.

0 1 0 1 0

1 B

0 R q
1 reject accept

reject accept1 R q
0

1

Step Counter

1

q
1

0
q

0

0
q

0

1 B

q
1

Time Complexity

● A step of a Turing machine is one event
where the TM takes a transition.

● Running a TM on different inputs might
take a different number of steps.

0 1 0 1 0

B

0 R q
1 reject accept

reject accept1 R q
0

1

Step Counter

q
0

1

q
1

1

q
1

0
q

0

0 B

Time Complexity

● A step of a Turing machine is one event
where the TM takes a transition.

● Running a TM on different inputs might
take a different number of steps.

0 1 0 1 0

B

0 R q
1 reject accept

reject accept1 R q
0

2

Step Counter

0
q

0

1

q
1

1

q
1

0
q

0

B

Time Complexity

● A step of a Turing machine is one event
where the TM takes a transition.

● Running a TM on different inputs might
take a different number of steps.

0 1 0 1 0

B

0 R q
1 reject accept

reject accept1 R q
0

2

Step Counter

q

1

0
q

0

● A step of a Turing machine is one event
where the TM takes a transition.

● Running a TM on different inputs might
take a different number of steps.

0
q

0

1

q
1

1 B

Time Complexity

0 1 0 1 0

B

0 R q
1 reject accept

reject accept1 R q
0

3

Step Counter

1

q
1

0
q

0

● A step of a Turing machine is one event
where the TM takes a transition.

● Running a TM on different inputs might
take a different number of steps.

0
q

0

1

q
1

B

Time Complexity

0 1 0 1 0

B

0 R q
1 reject accept

reject accept1 R q
0

3

Step Counter

q
0

1

q
1

1

q
1

0
q

0

● A step of a Turing machine is one event
where the TM takes a transition.

● Running a TM on different inputs might
take a different number of steps.

0 B

Time Complexity

0 1 0 1 0

B

0 R q
1 reject accept

reject accept1 R q
0

4

Step Counter

0
q

0

1

q
1

1

q
1

0
q

0

● A step of a Turing machine is one event
where the TM takes a transition.

● Running a TM on different inputs might
take a different number of steps.

B

Time Complexity

0 1 0 1 0

B

0 R q
1 reject accept

reject accept1 R q
0

4

Step Counter

q

1

0
q

0

0
q

0

1

q
1

1

● A step of a Turing machine is one event
where the TM takes a transition.

● Running a TM on different inputs might
take a different number of steps.

B

Time Complexity

0 1 0 1 0

B

0 R q
1 reject accept

reject accept1 R q
0

5

Step Counter

B

q
1

0
q

0

0
q

0

1

q
1

1

● A step of a Turing machine is one event
where the TM takes a transition.

● Running a TM on different inputs might
take a different number of steps.

B

Time Complexity

0 1 0 1 0

0 R q
1 reject accept

reject accept1 R q
0

5

Step Counter

B

q
1

0
q

0

0
q

0

1

q
1

1

● A step of a Turing machine is one event
where the TM takes a transition.

● Running a TM on different inputs might
take a different number of steps.

B

Time Complexity

0 1 0 1 0

0 R q
1 reject accept

reject accept1 R q
0

6

Step Counter

B

q
1

0
q

0

0
q

0

1

q
1

1

● A step of a Turing machine is one event
where the TM takes a transition.

● Running a TM on different inputs might
take a different number of steps.

B

Time Complexity

0 1 0 1 0

0 R q
1 reject accept

reject accept1 R q
0

6

Step Counter

Accepting means
transitioning
into a special

state.

Accepting means
transitioning
into a special

state.

q
0

q
1

BB

q
1

0
q

0

0 11

● A step of a Turing machine is one event
where the TM takes a transition.

● Running a TM on different inputs might
take a different number of steps.

Time Complexity

0 1 1 1 0

0 R q
1 reject accept

reject accept1 R q
0

0

Step Counter

0
q

0

q
1

BB

q
1

0
q

0

11

● A step of a Turing machine is one event
where the TM takes a transition.

● Running a TM on different inputs might
take a different number of steps.

Time Complexity

0 1 1 1 0

0 R q
1 reject accept

reject accept1 R q
0

0

Step Counter

q

1

0
q

0

0
q

0

q
1

BB11

● A step of a Turing machine is one event
where the TM takes a transition.

● Running a TM on different inputs might
take a different number of steps.

Time Complexity

0 1 1 1 0

0 R q
1 reject accept

reject accept1 R q
0

1

Step Counter

1

q
1

0
q

0

0
q

0

q
1

BB1

● A step of a Turing machine is one event
where the TM takes a transition.

● Running a TM on different inputs might
take a different number of steps.

Time Complexity

0 1 1 1 0

0 R q
1 reject accept

reject accept1 R q
0

1

Step Counter

q
0

q
1

11

q
1

0
q

0

0 BB

● A step of a Turing machine is one event
where the TM takes a transition.

● Running a TM on different inputs might
take a different number of steps.

Time Complexity

0 1 1 1 0

0 R q
1 reject accept

reject accept1 R q
0

2

Step Counter

1
q

0

q
1

1

q
1

0
q

0

0 BB

● A step of a Turing machine is one event
where the TM takes a transition.

● Running a TM on different inputs might
take a different number of steps.

Time Complexity

0 1 1 1 0

0 R q
1 reject accept

reject accept1 R q
0

2

Step Counter

1
q

0

q
1

1

q
1

0
q

0

0 BB

● A step of a Turing machine is one event
where the TM takes a transition.

● Running a TM on different inputs might
take a different number of steps.

Time Complexity

0 1 1 1 0

0 R q
1 reject accept

reject accept1 R q
0

3

Step Counter

11
q

0

q
1

q
1

0
q

0

0 BB

● A step of a Turing machine is one event
where the TM takes a transition.

● Running a TM on different inputs might
take a different number of steps.

Time Complexity

0 R q
1 reject accept

reject accept1 R q
0

0

Step Counter

B11
q

0

q
1

q
1

0
q

0

0 B

● A step of a Turing machine is one event
where the TM takes a transition.

● Running a TM on different inputs might
take a different number of steps.

Time Complexity

0 R q
1 reject accept

reject accept1 R q
0

0

Step Counter

B11
q

0

q
1

q
1

0
q

0

0 B

● A step of a Turing machine is one event
where the TM takes a transition.

● Running a TM on different inputs might
take a different number of steps.

Time Complexity

0 R q
1 reject accept

reject accept1 R q
0

1

Step Counter

Time Complexity

● The number of steps a TM takes on some
input is sensitive to
● The structure of that input.
● The length of the input.

● How can we come up with a consistent
measure of a machine's runtime?

Time Complexity

● The time complexity of a TM M is a function (typically
denoted f(n)) that measures the worst-case number of
steps M takes on any input of length n.

● By convention, n denotes the length of the input.

● If M loops on some input of length k, then f(k) = ∞.

● The previous TM has time complexity f(n) = n + 1.

● Any input of length n of the form 01010... halts after
n + 1 steps.

● Some inputs may take less time to halt, but time
complexity considers the worst-case complexity.

A Slight Problem

● Consider the following TM over Σ = {0, 1}
for the language BALANCE = { w ∈ Σ* | w
has the same number of 0s and 1s }:
● M = “On input w:

– Scan across the tape until a 0 or 1 is found.

– If none are found, accept.
– If one is found, continue scanning until a matching 1

or 0 is found.

– If none is found, reject.
– Otherwise, cross off that symbol and repeat.”

● What is the time complexity of M?

A Loss of Precision

● When considering computability, using
high-level TM descriptions is perfectly
fine.

● When considering complexity, high-level
TM descriptions make it nearly
impossible to precisely reason about the
actual time complexity.

● What are we to do about this?

The Best We Can

M = “On input w:

● Scan across the tape until a 0 or 1
is found.

● If none are found, accept.
● If one is found, continue scanning

until a matching 1 or 0 is found.

● If none are found, reject.
● Otherwise, cross off that symbol

and repeat.”

At most n steps.

At most 1 step.

At most n
more steps.

At most 1 step

At most n steps to
get back to the

start of the tape.

At most 3n + 2 steps.

At most
n/2

loops

At most n/2 loops.

At most 3n2 / 2 + n steps.

+

×

An Easier Approach

● In complexity theory, we rarely need an exact
value for a TM's time complexity.

● Usually, we are curious with the long-term
growth rate of the time complexity.

● For example, if the time complexity is 3n + 5,
then doubling the length of the string roughly
doubles the worst-case runtime.

● If the time complexity is 2n – n2, since 2n grows
much more quickly than n2, for large values of n,
increasing the size of the input by 1 doubles the
worst-case running time.

Big-O Notation

● Ignore everything except the dominant
growth term, including constant factors.

● Examples:
● 4n + 4 = O(n)
● 137n + 271 = O(n)
● n2 + 3n + 4 = O(n2)
● 2n + n3 = O(2n)
● 137 = O(1)
● n2 log n + log5 n = O(n2 log n)

Big-O Notation, Formally

● Let f : ℕ → ℕ and g : ℕ → ℕ.
● Then f(n) = O(g(n)) iff there exist

constants c ∈ ℝ and n0 ∈ ℕ such that

For any n ≥ n0, f(n) ≤ cg(n)

● Intuitively, as n gets “large” (greater
than n0), f(n) is bounded from above by
some multiple (determined by c) of g(n).

● Theorem: If f1(n) = O(g1(n)) and f2(n) = O(g2(n)),
then f1(n) + f2(n) = O(g1(n) + g2(n)).

● Intuitively: If you run two programs one after
another, the big-O of the result is the big-O of the
sum of the two runtimes.

● Theorem: If f1(n) = O(g1(n)) and f2(n) = O(g2(n)),
then f1(n)f2(n) = O(g1(n)g2(n)).

● Intuitively: If you run one program some number of
times, the big-O of the result is the big-O of the
program times the big-O of the number of iterations.

● This makes it substantially easier to analyze time
complexity, though we do lose some precision.

Properties of Big-O Notation

Life is Easier with Big-O

O(n) steps

O(1) steps

O(n) steps

O(1) steps

O(n) steps

O(n) steps

O(n)
loops

O(n) loops

O(n2) steps

+

×

M = “On input w:

● Scan across the tape until a 0 or 1
is found.

● If none are found, accept.
● If one is found, continue scanning

until a matching 1 or 0 is found.

● If none is found, reject.
● Otherwise, cross off that symbol

and repeat.”

MTTMs

● A multitape Turing machine (MTTM)
is a Turing machine with multiple tapes.

● The input tape holds the original input.
● Each tape head can move independently

of the rest.
● Each tape head can base its transition on

the symbols under all tape heads.

An MTTM for BALANCE

● M2 = “On input w:

● Scan across the tape and copy all 1s
to a secondary tape.

● Move both tape heads back to the start
of their tapes.

● Until the end of the input is reached:
– Scan on the input tape until a 0 is found.

– Match the 0 with a 1 on the second tape.

● If an imbalance is found, reject.

● If all 0s and 1s are matched, accept.

O(n) steps

O(n) steps

O(1) steps

O(n) steps.

+ O(1) steps

O(n) steps

A Performance Comparison

● Our original 1-tape TM for BALANCE runs in O(n2)
time.

● Our MTTM can decide BALANCE in O(n) time.

● Nontrivial result: There is no single-tape TM that
can decide BALANCE in O(n) time.

● The MTTM is inherently faster than the
single-tape TM!

Complexity is Tricky

● The Church-Turing thesis states that any
feasible model of computation is no more
powerful than a TM.

● However, some models of computation
might be more efficient than the TM.

● When analyzing complexity, the model
of computation matters!

Analyzing Efficiency

● We need to reason about the efficiency of
our TM equivalents.

● Questions worth considering:
● If there is a MTTM for L that runs in time
f(n), can we find a TM for L that runs in time
f(n)? f(n)2? f(n)3?

● If there is a WB program for L that runs in
time f(n), can we find a TM for L that runs in
time f(n)? f(n)2? f(n)3?

Our Line of Reasoning

● To analyze the relative efficiencies of
MTTMs, WB programs, and TMs, we will
do the following:
● Show how much slowdown we get when

converting a WB program to a TM.
● Show how much slowdown we get when we

convert a multitape WB program to a single-
tape WB program.

● Show how much slowdown we get when we
convert a multitape TM to a multitape WB
program.

From WB to TMs

0: If reading B, go to 4.
1: If reading 1, go to 5.
2: Move right.
3: Go to 0.
4: Accept.
5: Reject.

0 1 t
12

3

4 5

t
01

t
04

0 → 0, R
1 → 1, R Γ → Γ, L

B → B, R

Γ → Γ, L

a r

t
15

1 → 1, R

Γ → Γ, L

0 → 0, R
B → B, R

2
Γ → Γ, L

t
03

Γ → Γ, R

Γ → Γ, L Γ → Γ, R

Γ → Γ, R Γ → Γ, R

start

a r

Connecting Models of Computation

● Theorem: If there is a WB program for
L whose time complexity is f(n), there is
a TM whose time complexity is at most
2f(n).

● Proof sketch: Every line in a WB
program gets converted into a set of TM
states. Executing each line makes at
most two transitions. Thus if the WB
program takes time f(n), then TM takes
time at most 2f(n).

Connecting Models of Computation

● How efficient is a multitape WB program
compared to a single-tape WB program?

● Recall: We saw how to implement a multitape
WB program with a multistack WB program
such that each operation on the multitape WB
program required O(1) stack operations.

● We can therefore analyze the efficiency of a
multitape WB program by analyzing the
efficiency of a multistack WB program.

1

1 1 0 0 1 1 0 1 0 0 1 0 0 1 1 0 0 0 …

1

1

0

0 1 1

1

1 1 0 0 1 1 0 1 0 0 1 0 0 1 1 0 0 0 …

…

…

…

…

1

1

0

0 1 1

1

1 1 0 0 1 1 0 1 0 0 1 0 0 1 1 0 0 0 …

…

…

…

…

1

1

0

0 1 1

1

1 1 0 0 1 1 0 1 0 0 1 0 0 1 1 0 0 0 …

…

…

…

…

1

1

0

0 1 1

1

1 1 0 0 1 1 0 1 0 0 1 0
> 1 1 <
> 0 1 1 <
> 1 <

0 1 1 0 0 0 …

…

…

…

…

1

1

0

0 1 1

1

1 1 0 0 1 1 0 1 0 0 1 0
> 1 1 <
> 0 1 1 <
> 1 <

0 1 1 0 0 0 …

…

…

…

…

1

1

0

0 1 1

1

1 1 0 0 1 1 0 1 0 0 1 0
> 1 1 <
> 0 1 1 <
> 1 <

0 1 1 0 0 0 …

…

…

…

…

1

1

0

0 1 1

0: Push 1 onto Stack 3.

1

1 1 0 0 1 1 0 1 0 0 1 0
> 1 1 <
> 0 1 1 <
> 1 <

0 1 1 0 0 0 …

…

…

…

…

1

1

0

0 1 1

0: Push 1 onto Stack 3.

0: Write × on track 5.

1

1 1 0 0 1 1 0 1 0 0 1 0
> 1 1 <
> 0 1 1 <
> 1 <

0 1 1 0 0 0 …

…

…

…

× …

1

1

0

0 1 1

0: Push 1 onto Stack 3.

0: Write × on track 5.

1

1 1 0 0 1 1 0 1 0 0 1 0
> 1 1 <
> 0 1 1 <
> 1 <

0 1 1 0 0 0 …

…

…

…

× …

1

1

0

0 1 1

0: Push 1 onto Stack 3.

0: Write × on track 5.

1: Move left until {>} on track 4.

1

1 1 0 0 1 1 0 1 0 0 1 0
> 1 1 <
> 0 1 1 <
> 1 <

0 1 1 0 0 0 …

…

…

…

× …

1

1

0

0 1 1

0: Push 1 onto Stack 3.

0: Write × on track 5.

1: Move left until {>} on track 4.

1

1 1 0 0 1 1 0 1 0 0 1 0
> 1 1 <
> 0 1 1 <
> 1 <

0 1 1 0 0 0 …

…

…

…

× …

1

1

0

0 1 1

0: Push 1 onto Stack 3.

0: Write × on track 5.

1: Move left until {>} on track 4.

2: Move right until {<} on track 4.

1

1 1 0 0 1 1 0 1 0 0 1 0
> 1 1 <
> 0 1 1 <
> 1 <

0 1 1 0 0 0 …

…

…

…

× …

1

1

0

0 1 1

0: Push 1 onto Stack 3.

0: Write × on track 5.

1: Move left until {>} on track 4.

2: Move right until {<} on track 4.

1

1 1 0 0 1 1 0 1 0 0 1 0
> 1 1 <
> 0 1 1 <
> 1 <

0 1 1 0 0 0 …

…

…

…

× …

1

1

0

0 1 1

0: Push 1 onto Stack 3.

0: Write × on track 5.

1: Move left until {>} on track 4.

2: Move right until {<} on track 4.

3: Write 1 on track 4.

1

1 1 0 0 1 1 0 1 0 0 1 0
> 1 1 <
> 0 1 1 <
> 1 1

0 1 1 0 0 0 …

…

…

…

× …

1

1

0

0 1 1

0: Push 1 onto Stack 3.

0: Write × on track 5.

1: Move left until {>} on track 4.

2: Move right until {<} on track 4.

3: Write 1 on track 4.

1

1

1 1 0 0 1 1 0 1 0 0 1 0
> 1 1 <
> 0 1 1 <
> 1 1

0 1 1 0 0 0 …

…

…

…

× …

1

1

0

0 1 1

0: Push 1 onto Stack 3.

0: Write × on track 5.

1: Move left until {>} on track 4.

2: Move right until {<} on track 4.

3: Write 1 on track 4.

1
4: Move right.

1

1 1 0 0 1 1 0 1 0 0 1 0
> 1 1 <
> 0 1 1 <
> 1 1

0 1 1 0 0 0 …

…

…

…

× …

1

1

0

0 1 1

0: Push 1 onto Stack 3.

0: Write × on track 5.

1: Move left until {>} on track 4.

2: Move right until {<} on track 4.

3: Write 1 on track 4.

1
4: Move right.

1

1 1 0 0 1 1 0 1 0 0 1 0
> 1 1 <
> 0 1 1 <
> 1 1

0 1 1 0 0 0 …

…

…

…

× …

1

1

0

0 1 1

0: Push 1 onto Stack 3.

0: Write × on track 5.

1: Move left until {>} on track 4.

2: Move right until {<} on track 4.

3: Write 1 on track 4.

1
4: Move right.

5: Write < on track 4

1

1 1 0 0 1 1 0 1 0 0 1 0
> 1 1 <
> 0 1 1 <
> 1 1 <

0 1 1 0 0 0 …

…

…

…

× …

1

1

0

0 1 1

0: Push 1 onto Stack 3.

0: Write × on track 5.

1: Move left until {>} on track 4.

2: Move right until {<} on track 4.

3: Write 1 on track 4.

1
4: Move right.

5: Write < on track 4

1

1 1 0 0 1 1 0 1 0 0 1 0
> 1 1 <
> 0 1 1 <
> 1 1 <

0 1 1 0 0 0 …

…

…

…

× …

1

1

0

0 1 1

0: Push 1 onto Stack 3.

0: Write × on track 5.

1: Move left until {>} on track 4.

2: Move right until {<} on track 4.

3: Write 1 on track 4.

1
4: Move right.

5: Write < on track 4

6: Move left until {>} on track 4.

1

1 1 0 0 1 1 0 1 0 0 1 0
> 1 1 <
> 0 1 1 <
> 1 1 <

0 1 1 0 0 0 …

…

…

…

× …

1

1

0

0 1 1

0: Push 1 onto Stack 3.

0: Write × on track 5.

1: Move left until {>} on track 4.

2: Move right until {<} on track 4.

3: Write 1 on track 4.

1
4: Move right.

5: Write < on track 4

6: Move left until {>} on track 4.

1

1 1 0 0 1 1 0 1 0 0 1 0
> 1 1 <
> 0 1 1 <
> 1 1 <

0 1 1 0 0 0 …

…

…

…

× …

1

1

0

0 1 1

0: Push 1 onto Stack 3.

0: Write × on track 5.

1: Move left until {>} on track 4.

2: Move right until {<} on track 4.

3: Write 1 on track 4.

1
4: Move right.

5: Write < on track 4

6: Move left until {>} on track 4.

7: Move right until {×} on track 5.

1

1 1 0 0 1 1 0 1 0 0 1 0
> 1 1 <
> 0 1 1 <
> 1 1 <

0 1 1 0 0 0 …

…

…

…

× …

1

1

0

0 1 1

0: Push 1 onto Stack 3.

0: Write × on track 5.

1: Move left until {>} on track 4.

2: Move right until {<} on track 4.

3: Write 1 on track 4.

1
4: Move right.

5: Write < on track 4

6: Move left until {>} on track 4.

7: Move right until {×} on track 5.

1

1 1 0 0 1 1 0 1 0 0 1 0
> 1 1 <
> 0 1 1 <
> 1 1 <

0 1 1 0 0 0 …

…

…

…

× …

1

1

0

0 1 1

0: Push 1 onto Stack 3.

0: Write × on track 5.

1: Move left until {>} on track 4.

2: Move right until {<} on track 4.

3: Write 1 on track 4.

1
4: Move right.

5: Write < on track 4

6: Move left until {>} on track 4.

7: Move right until {×} on track 5.

8: Write B on track 5.

1

1 1 0 0 1 1 0 1 0 0 1 0
> 1 1 <
> 0 1 1 <
> 1 1 <

0 1 1 0 0 0 …

…

…

…

…

1

1

0

0 1 1

0: Push 1 onto Stack 3.

0: Write × on track 5.

1: Move left until {>} on track 4.

2: Move right until {<} on track 4.

3: Write 1 on track 4.

1
4: Move right.

5: Write < on track 4

6: Move left until {>} on track 4.

7: Move right until {×} on track 5.

8: Write B on track 5.

Multitape TM Efficiency

● Time to push or pop a stack is determined by
● how many elements are on that stack and
● where the tape head is on the tape.

● Important Fact #1: After running for n steps, a
multistack program can have at most n elements
on any stack.

● Important Fact #2: After running for n steps,
the read head of a TM can be at most n cells to
the right of where it started.

Multitape TM Efficiency

● Lemma: The time required to simulate the kth step of
a multitape TM is O(k).

● Proof sketch: We need to do at most O(k) work to
seek back to the start of the tape, at most O(k) work
to seek to the end of the stack, at most O(1) work
manipulating the stack, and at most O(k) work
moving the tape head back to where it started.

● Theorem: If there is a multitape TM for L with time
complexity f(n), there is a single-tape TM for L with
time complexity O(f(n)2).

● Proof Sketch: At most O(f(n)) work is required to
simulate any move of the multitape TM, because
there are at most f(n) moves made. Doing O(f(n))
work f(n) times requires time at most O(f(n)2). ■

What This Result Means

● We have shown that if it's possible to find
an f(n)-time MTTM for some language L,
we can also find an O(f(n)2)-time single-
tape TM for L.

● It might be possible to do better, though
there's no guarantee.

More Impressive Results

● What is the connection between the big-O
notation we're used to for real computers and
the time complexity of Turing machines?

● Theorem: Any algorithm written on a
standard computer that runs in time f(n) can
be simulated by a single-tape TM in time
O(f(n)6).

● Proof involves building up a simulator for
standard computers using TMs; talk to me if
you'd like a reference.

Why All This Matters

● Different models of computation have
different efficiencies.

● TMs, MTTMs, WB programs, and computers
can all solve the same problems, but may do
so at different speeds.

● In many theoretical results, these differences
do not matter.
● We'll see why in a minute.

Time Complexity Classes

Time Complexity

● Armed with big-O notation, we can start to
define different complexity classes.

● The time complexity class TIME(f(n)) is
the set of languages decidable by a single-
tape TM with runtime O(f(n)).

● For example:
● TIME(n) is the set of all languages decidable in

time O(n).
● TIME(2n) is the set of all languages decidable

in time O(2n).

TIME(n)

● All regular languages are in TIME(n)
● Build a DFA for a regular language.
● Convert the DFA into a TM.
● Accepts in time at most n + 1.

● Nontrivial result: A language is regular
iff it is in TIME(n).
● (This is why we can't build a single-tape TM

for BALANCE that runs in O(n) time.)

TIME(n2)

● The language of palindromes is in TIME(n2)

● Snake back and forth across the tape checking whether
the ends match.

● The language of balanced parentheses is in TIME(n2).

● Use an MTTM to track unmatched open parentheses on a
second tape.

● All DCFLs are in TIME(n2).

● Simulate a DCFL with a multitape TM in time O(n).

● Convert to a single-tape TM in O(n2).

● Any language in TIME(n) is also in TIME(n2).

● Since it takes at most O(n) time, it also takes at most
O(n2) time as well.

TIME(n18)

● All CFLs are in TIME(n18).
● Given a grammar G, there exists an

algorithm on a standard computer that can
decide whether G generates w in time O(n3).

● Since an f(n)-time computer program can be
simulated in time O(f(n)6) on a TM, this
means all CFLs are in TIME(n18).

What is Efficiency?

 0

2

4

6

8

10

12

14

16

Growth Rates, Part One

O(1)
O(log n)
O(n)

 0

50

100

150

200

250

Growth Rates, Part Two

O(n)
O(n log n)
O(n^2)

 0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Growth Rates, Part Three

O(n^2)
O(n^3)
O(2^n)

 0

1000

2000

3000

4000

5000

6000

7000

8000

9000

To Give You A Better Sense...

O(1)
O(log n)
O(n)
O(n log n)
O(n^2)
O(n^3)
O(2^n)

 1

10

100

1000

10000

Once More with Logarithms

O(1)
O(log n)
O(n)
O(n log n)
O(n^2)
O(n^3)
O(2^n)

Size 1 lg n n n log n n2 n3 2n

100 1μs 7μs 100μs 0.7ms 10ms <1min 40 quadrillion yrs

200 1μs 8μs 200μs 1.5ms 40ms <1min More than that

300 1μs 8μs 300μs 2.5ms 90ms 1min

400 1μs 9μs 400μs 3.5ms 160ms 2min

500 1μs 9μs 500μs 4.5ms 250ms 4min

600 1μs 9μs 600μs 5.5ms 360ms 6min

700 1μs 9μs 700μs 6.6ms 490ms 9min

800 1μs 10μs 800μs 7.7ms 640ms 12min

900 1μs 10μs 900μs 8.8ms 810ms 17min

1000 1μs 10μs 1000μs 10ms 1000ms 22min

1100 1μs 10μs 1100μs 11ms 1200ms 29min

1200 1μs 10μs 1200μs 12ms 1400ms 37min

1300 1μs 10μs 1300μs 13ms 1700ms 45min

1400 1μs 10μs 1400μs 15ms 2000ms 56min

Comparison of Runtimes
(1 operation = 1 microsecond)

Polynomials and Exponentials

● Polynomial functions “scale well.”
● Small changes to the size of the input do not

typically induce enormous changes to the
overall runtime.

● Exponential functions scale terribly.
● Small changes to the size of the input induce

huge changes in the overall runtime.

The Cobham-Edmonds Thesis

A language L can be decided efficiently
iff there is a TM that decides it in

polynomial time.

Equivalently, L can be decided in
time O(nk) for some k ∈ ℕ.

Equivalently, L ∈ TIME(nk) for some k ∈ ℕ

The Cobham-Edmonds Thesis

● Efficient runtimes:
● 4n + 13
● n3 – 2n2 + 4n
● n log log n

● “Efficient” runtimes:
● n1,000,000,000,000

● 10500

● Inefficient runtimes:
● 2n

● n!
● nn

● “Inefficient” runtimes:
● n0.0001 log n

● 1.000000001n

The Complexity Class P

● The complexity class P contains all
problems that can be solved in
polynomial time.

● Formally:

● Using our definition, a problem can be
solved efficiently iff it is in P.

∪∞ TIME(nk)P =
k = 0

Examples of Problems in P

● All regular languages are in P.
● Contained in TIME(n).

● All DCFLs are in P.
● Contained in TIME(n2).

● All CFLs are in P.
● Contained in TIME(n18)

● Many other problems are in P.
● POWER2
● SEARCH

 Undecidable Languages

Regular
Languages CFLsDCFLs REfficiently

Decidable
Languages

 Undecidable Languages

Regular
Languages CFLsDCFLs RP

Problems in P

● Graph connectivity:

Given a graph G and nodes s and t,
is there a path from s to t?

● Primality testing:

Given a number n, is n prime? (Best known
TM for this takes time O(n72).)

● Maximum matching:

Given a set of tasks and workers who can
perform those tasks, can all of the tasks be

completed in under n hours?

Problems in P

● Remoteness testing:

Given a graph G, are all of the nodes in G
within distance at most k of one another?

● Linear programming:

Given a linear set of constraints
and linear objective function, is the

optimal solution at least n?

● Edit distance:

Given two strings, can the strings be
transformed into one another in at most n

single-character edits?

Other Models of Computation

● All models of computation that we've
talked about so far (except for the
nondeterministic TM) can be reduced to a
TM in polynomial time.

● Theorem: L ∈ P iff there is a polynomial-
time TM, WBn program, multitape TM, or
normal computer program for it.

● Essentially – a problem is in P iff you could
solve it on a normal computer in
polynomial time.

A Feel For Polynomial Time

● What can you do in polynomial time?
● What can you not do in polynomial time?
● Let's see some examples.

Closure under Addition

● Theorem: O(nk) + O(nr) = O(nmax{k, r}).
● The sum of two polynomial-bounded functions is

itself a polynomial-bounded function.
● If you have two programs that each run in

polynomial time, running them in sequence still
stays within polynomial time.

 function newCode() {

 polynomialFunctionOne();

 polynomialFunctionTwo();

 }

Closure under Multiplication

● Theorem: O(nk) O(nr) = O(nk+r).
● The product of two polynomial-bounded

functions is itself a polynomial-bounded function
● Doing polynomial work polynomially many

times stays polynomial.

 for (int i = 0; i < poly(); i++) {

 polynomialFunction();

 }

Closure under Composition

● Theorem: If f(n) = O(nk) and g(n) = O(nr), then
f(g(n)) = O(nkr).
● The composition of polynomials (applying one

polynomial to another) is itself a polynomial.
● Calling one polynomial function on the result of

another stays polynomial:

 function newCode() {

 polynomial2(polynomial1());

 }

Proving Languages are in P

● To prove that a language is regular, we could
● Design a DFA for it.
● Design an NFA for it.
● Design a regular expression for it.
● Use closure properties.

● To prove that a language is a CFL, we could
● Design a CFG for it.
● Design a PDA for it.
● Use closure properties.

● How do we prove that a language is in P?

Proving Languages are in P

● Directly prove the language is in P.
● Build a decider for the language L.
● Prove that the decider runs in time O(nk).

● Use closure properties.
● Prove that the language can be formed by

appropriate transformations of languages in P.

● Reduce the language to a language in P.
● Show how a polynomial-time decider for some

language L' can be used to decide L.

Proving Languages are in P

● Directly prove the language is in P.
● Build a decider for the language L.
● Prove that the decider runs in time O(nk).

Use closure properties.

Prove that the language can be formed by
appropriate transformations of languages in P.

Reduce the language to a language in P.

Show how a polynomial-time decider for some
language L' can be used to decide L.

Proving Languages are in P

Directly prove the language is in P.

Build a decider for the language L.

Prove that the decider runs in time O(nk).

● Use closure properties.
● Prove that the language can be formed by

appropriate transformations of languages in P.

Reduce the language to a language in P.

Show how a polynomial-time decider for some
language L' can be used to decide L.

Proving Languages are in P

Directly prove the language is in P.

Build a decider for the language L.

Prove that the decider runs in time O(nk).

● Use closure properties.
● Prove that the language can be formed by

appropriate transformations of languages in P.

Reduce the language to a language in P.

Show how a polynomial-time decider for some
language L' can be used to decide L.

Proving Languages are in P

Directly prove the language is in P.

Build a decider for the language L.

Prove that the decider runs in time O(nk).

Use closure properties.

Prove that the language can be formed by
appropriate transformations of languages in P.

● Reduce the language to a language in P.
● Show how a polynomial-time decider for some

language L' can be used to decide L.

Reductions

Problem A Problem B

Can be converted to

Can be used to solve

If any instance of A can be
converted into an instance of B,

we say that A reduces to B.

Mapping Reductions and P

● When studying whether problems were
in R, RE, or co-RE, we used mapping
reductions.

● We cannot use mapping reductions when
talking about the class P.
● The reduction can do more than polynomial

work.

● We will need to introduce a new kind of
reduction.

Polynomial-Time Reductions

● Let A ⊆ Σ1* and B ⊆ Σ2* be languages.

● A polynomial-time mapping reduction is a function
f : Σ1* → Σ2* with the following properties:

● f(w) can be computed in polynomial time.
● w ∈ A iff f(w) ∈ B.

● Informally:
● A way of turning inputs to A into inputs to B
● that can be computed in polynomial time
● that preserves the correct answer.

● Notation: A ≤P B iff there is a polynomial-time
mapping reduction from A to B.

Next Time

● Polynomial-Time Reductions
● What do these reductions look like?

● NP
● What can we verify quickly?

● P ≟ NP
● How are these classes related?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136

