

co-RE and Beyond

Friday Four Square!
Today at 4:15PM, Outside Gates

Announcements

● Problem Set 7 due right now.
● With a late day, due this Monday at 2:15PM.

● Problem Set 8 out, due Friday, November 30.
● Explore properties of R, RE, and co-RE.
● Play around with mapping reductions.
● Find problems far beyond the realm of

computers.
● No checkpoint, even though the syllabus says

there is one.
● Most (but not all Problem Set 6 graded; will be

returned at end of lecture).

Recap From Last Time

Mapping Reducibility

● A mapping reduction from A to B is a
function f such that
● f is computable, and
● For any w, w ∈ A iff f(w) ∈ B.

● If there is a mapping reduction from A to
B, we say that A is mapping reducible
to B.

● Notation: A ≤M B iff A is mapping
reducible to B.

Why Mapping Reducibility Matters

≤
MA B

If this one is “easy”
(R or RE)…

If this one is “easy”
(R or RE)…

… then this one is
“easy” (R or RE)

too.

… then this one is
“easy” (R or RE)

too.

Why Mapping Reducibility Matters

≤
MA B

If this one is “hard”
(not R or not RE)…
If this one is “hard”
(not R or not RE)…

… then this one is
“hard” (not R or
not RE) too.

… then this one is
“hard” (not R or
not RE) too.

Machine for B

Machine M

YES

NO

Compute f
f(w)w

H = “On input w:
 Compute f(w).
 Run M on f(w).
 If M accepts f(w), accept w.
 If M rejects f(w), reject w.”

Machine H

H accepts w

iff

M accepts f(w)

 iff

f(w) ∈ B

iff

w ∈ A

Sketch of the Proof

More Unsolvable Problems

A More Elaborate Reduction

● Since HALT ∉ R, there is no algorithm for
determining whether a TM will halt on some
particular input.

● It seems, therefore, that we shouldn't be able
to decide whether a TM halts on all possible
inputs.

● Consider the language

DECIDER = { ⟨M⟩ | M is a decider }
● How would we prove that DECIDER is, itself,

undecidable?

HALT ≤M DECIDER

● We will prove that DECIDER is undecidable by
reducing HALT to DECIDER.

● Want to find a function f such that

⟨M, w⟩ ∈ HALT iff f(⟨M, w⟩) ∈ DECIDER.

● Assuming that f(⟨M, w⟩) = ⟨M'⟩ for some TM M', we
have that

⟨M, w⟩ ∈ HALT iff ⟨M'⟩ ∈ DECIDER.

M halts on w iff M' is a decider.

 M halts on w iff M' halts on all inputs.

The Reduction
● Find a TM M' such that M' halts on all inputs iff M halts on w.

● Key idea: Build M' such that running M' on any input runs M
on w.

● Here is one choice of M':

 M' = “On input x:

 Ignore x.

 Run M on w.

 If M accepts w, accept.

 If M rejects w, reject.”

● Notice that M' “amplifies” what M does on w:

● If M halts on w, M' halts on every input.

● If M loops on w, M' loops on every input.

DECIDER is Undecidable

Simulate
M on w

 x
(Ignored)

Machine
M'

Decider
for DECIDER

Construct
M' from
⟨M, w⟩

⟨M'⟩ ⟨M, w ⟩

This is a
decider for

HALT!

Machine H

Justifying M'

● Notice that our
machine M' has the
machine M and string
w built into it!

● This is different from
the machines we
have constructed in
the past.

● How do we justify
that it's possible for
some TM to construct
a new TM at all?

M' = “On input x:

 Ignore x.

 Run M on w.

 If M accepts w, accept.

 If M rejects w, reject.”

The Parameterization Theorem

Theorem: Let M be a TM of the form

 M = “On input ⟨x1, x2, …, xn⟩:

 Do something with x1, x2, …, xn”

and any value p for parameter x1, then a
TM can construct the following TM M':

 M' = “On input ⟨x2, …, xn⟩:

 Do something with p, x2, …, xn”

Justifying M'

● Consider this machine X:

 X = “On input ⟨N, z, x⟩:

 Ignore x.

 Run N on z.

 If N accepts z, accept.

 If N rejects z, reject.”
● Applying the parameterization theorem twice with the values

M and w produces the machine

 M' = “On input x:

 Ignore x.

 Run M on w.

 If M accepts w, accept.

 If M rejects w, reject.

The Takeaway Point

● It is possible for a mapping reduction to
take in a TM or TM/string pair and
construct a new TM with that TM
embedded within it.

● The parameterization theorem is just a
formal way of justifying this.

Theorem: HALT ≤M DECIDER.
Proof: We exhibit a mapping reduction from HALT to DECIDER.

For any TM/string pair ⟨M, w⟩, let f(⟨M, w⟩) = ⟨M'⟩, where ⟨M'⟩ is
defined in terms of M and w as follows:

M' = “On input x:
Ignore x.
Run M on w.
If M accepts w, accept.
If M rejects w, reject.”

By the parameterization theorem, f is a computable function.
We further claim that ⟨M, w⟩ ∈ HALT iff f(⟨M, w⟩) ∈ DECIDER.
To see this, note that f(⟨M, w⟩) = ⟨M'⟩ ∈ DECIDER iff M' halts on
all inputs. We claim that M' halts on all inputs iff M halts on w.
To see this, note that when M' is run on any input, it halts iff
M halts on w. Thus if M halts on w, then M' halts on all inputs,
and if M loops on w, M' loops on all inputs. Finally, note that
M halts on w iff ⟨M, w⟩ ∈ HALT. Thus ⟨M, w⟩ ∈ HALT iff
f(⟨M, w⟩) ∈ DECIDER. Therefore, f is a mapping reduction from
HALT to DECIDER, so HALT ≤M DECIDER. ■

Other Hard Languages

● We can't tell if a TM accepts a specific string.

● Could we determine whether or not a TM accepts one
of many different strings with specific properties?

● For example, could we build a TM that determines
whether some other TM accepts a string of all 1s?

● Let ONESTM be the following language:

ONESTM = { ⟨M⟩ | M is a TM that accepts at
 least one string of the form 1n }

● Is ONESTM ∈ R? Is it RE?

ONESTM

● Unfortunately, ONESTM is undecidable.

● However, ONESTM is recognizable.

● Intuition: Nondeterministically guess the
string of the form 1n that M will accept, then
deterministically check that M accepts it.

● We'll show that ONESTM is undecidable
by showing that ATM ≤M ONES.

ATM ≤M ONESTM

● As before, let's try to find a function f such that

⟨M, w⟩ ∈ ATM iff f(⟨M, w⟩) ∈ ONESTM.

● Let's let f(⟨M, w⟩) = ⟨M'⟩ for some TM M'. Then we
want to pick M' such that

⟨M, w⟩ ∈ ATM iff f(⟨M, w⟩) ∈ ONESTM

⟨M, w⟩ ∈ ATM iff ⟨M'⟩ ∈ ONESTM

M accepts w iff M' accepts 1n for some n

The Reduction

● Goal: construct M' so M' accepts 1n for some n iff M accepts w.

● Here is one possible option:

 M' = “On input x:

 Ignore x.

 Run M on w.

 If M accepts w, accept x.

 If M rejects w, reject x.”

● As with before, we can justify the construction of M' using the
parameterization theorem.

● If M accepts w, then M' accepts all strings, including 1n for any n.

● If M does not accept w, then M' does not accept any strings, so it
certainly does not accept any strings of the form 1n.

Theorem: ATM ≤M ONESTM.
Proof: We exhibit a mapping reduction from ATM to ONESTM. For

any TM/string pair ⟨M, w⟩, let f(⟨M, w⟩) = ⟨M'⟩, where M' is
defined in terms of M and w as follows:

M' = “On input x:
Ignore x.
Run M on w.
If M accepts w, accept x.
If M rejects w, reject x.”

By the parameterization theorem, f is a computable function.
We further claim that ⟨M, w⟩ ∈ ATM iff f(⟨M, w⟩) ∈ ONESTM. To
see this, note that f(⟨M, w⟩) = ⟨M'⟩ ∈ ONESTM iff M' accepts at
least one string of the form 1n. We claim that M' accepts at
least one string of the form 1n iff M accepts w. To see this, note
that if M accepts w, then M' accepts 1, and if M does not accept
w, then M' rejects all strings, including all strings of the form
1n. Finally, M accepts w iff ⟨M, w⟩ ∈ ATM. Thus ⟨M, w⟩ ∈ ATM iff
f(⟨M, w⟩) ∈ ONESTM. Consequently, f is a mapping reduction
from ATM to ONESTM, so ATM ≤M ONESTM as required. ■

A Slightly Modified Question

● We cannot determine whether or not a TM will
accept at least one string of all 1s.

● Can we determine whether a TM only accepts
strings of all 1s?

● In other words, for a TM M, is (ℒ M) ⊆ 1*?

● Let ONLYONESTM be the language

ONLYONESTM = { ⟨M⟩ | ℒ(M) ⊆ 1* }

● Is ONLYONESTM ∈ R? How about RE?

ONLYONESTM ∉ RE

● It turns out that the language
ONLYONESTM is unrecognizable.

● We can prove this by reducing LD to
ONLYONESTM.

● If LD ≤M ONLYONESTM, then we have that
ONLYONESTM ∉ RE.

LD ≤M ONLYONESTM

● We want to find a computable function f such
that

⟨M⟩ ∈ LD iff f(⟨M⟩) ∈ ONLYONESTM.

● We want to set f(⟨M⟩) = ⟨M'⟩ for some suitable
choice of M'. This means

⟨M⟩ ∈ LD iff ⟨M'⟩ ∈ ONLYONESTM

⟨M⟩ ∉ ℒ(M) iff ℒ(M') ⊆ 1*

● How would we pick our machine M'?

One Possible Reduction

● We want to build M' from M such that ⟨M⟩ ∉ (ℒ M) iff
(ℒ M') ⊆ 1*.

● In other words, we construct M' such that

● If ⟨M⟩ ∈ (ℒ M), then (ℒ M') is not a subset of 1*.

● If ⟨M⟩ ∉ (ℒ M), then (ℒ M') is a subset of 1*.

● One option: Come up with some languages with these
properties, then construct our machine M' such that its
language changes based on whether ⟨M⟩ ∈ (ℒ M).

● If ⟨M⟩ ∈ (ℒ M), then (ℒ M') = Σ*, which isn't a subset of 1*.

● If ⟨M⟩ ∉ (ℒ M), then (ℒ M') = Ø, which is a subset of 1*.

One Possible Reduction

● We want
● If ⟨M⟩ ∈ (ℒ M), then (ℒ M') = Σ*
● If ⟨M⟩ ∉ (ℒ M), then (ℒ M') = Ø

● Here is one possible M' that does this:

 M' = “On input x:

 Ignore x.

 Run M on ⟨M⟩.

 If M accepts ⟨M⟩, accept x.

 If M rejects ⟨M⟩, reject x.”

Theorem: LD ≤M ONLYONESTM.
Proof: We exhibit a mapping reduction from LD to ONLYONESTM.

For any TM M, let f(⟨M⟩) = ⟨M'⟩, where M' is defined in terms of
M as follows:

M' = “On input x:
Ignore x.
Run M on ⟨M⟩.
If M accepts ⟨M⟩, accept x.
If M rejects ⟨M⟩, reject x.”

By the parameterization theorem, f is a computable function.
We further claim that ⟨M⟩ ∈ LD iff f(⟨M⟩) ∈ ONLYONESTM. To
see this, note that f(⟨M⟩) = ⟨M'⟩ ∈ ONLYONESTM iff (ℒ M') ⊆ 1*.
We claim that (ℒ M') ⊆ 1* iff M does not accept ⟨M⟩. To see this,
note that if M does not accept ⟨M⟩, then M' never accepts any
strings, so (ℒ M') = Ø ⊆ 1*. Otherwise, if M accepts ⟨M⟩, then
M' accepts all strings, so (ℒ M) = Σ*, which is not a subset of 1*.
Finally, M does not accept ⟨M⟩ iff ⟨M⟩ ∈ LD. Thus ⟨M⟩ ∈ LD iff
f(⟨M⟩) ∈ ONLYONESTM. Consequently, f is a mapping reduction
from LD to ONLYONESTM, so LD ≤M ONLYONESTM as required. ■

ONLYONESTM

● Although ONLYONESTM is not RE, its
complement (ONLYONESTM) is RE:

{ ⟨M⟩ | ℒ(M) is not a subset of 1* }
● Intuition: Can nondeterministically guess

a string in (ℒ M) that is not of the form 1n,
then check that M accepts it.

Regular
Languages CFLsDCFLs

All Languages

R RE

The Limits of Computability

A
TM

L
D

HALT

HALT

A
TM

ONES
TM

ONES
TM

ONLYONES
TM

ONLYONES
TM

RE and co-RE

● The class RE is the set of languages that are
recognized by a TM.

● The class co-RE is the set of languages whose
complements are recognized by a TM.

● In other words:

L ∈ co-RE iff L ∈ RE

L ∈ co-RE iff L ∈ RE
● Languages in co-RE are called co-

recognizable. Languages not in co-RE are
called co-unrecognizable.

Intuiting RE and co-RE

● A language L is in RE iff there is a
recognizer for it.
● If w ∈ L, the recognizer accepts.
● If w ∉ L, the recognizer does not accept.

● A language L is in co-RE iff there is a
refuter for it.
● If w ∉ L, the refuter rejects.
● If w ∈ L, the refuter does not reject.

RE, and co-RE

● RE and co-RE are fundamental classes of
problems.
● RE is the class of problems where a

computer can always verify “yes” instances.
● co-RE is the class of problems where a

computer can always refute “no” instances.

● RE and co-RE are, in a sense, the
weakest possible conditions for which a
problem can be approached by
computers.

R, RE, and co-RE

● Recall:

If L ∈ RE and L ∈ RE, then L ∈ R
● Rewritten in terms of co-RE:

If L ∈ RE and L ∈ co-RE, then L ∈ R
● In other words:

RE ∩ co-RE ⊆ R
● We also know that R ⊆ RE and R ⊆ co-RE, so

R = RE ∩ co-RE

 All Languages

RE

The Limits of Computability

co-RE

R

A
TM

HALTHALT

A
TM

0*1*
DOGWALK

ADD

ONES
TM

ONES
TM

ONLYONES
TM

ONLYONES
TM

LD Revisited

● The diagonalization language LD is the
language

LD = {⟨M⟩ | M is a TM and M ∉ ℒ(M)}

● As we saw before, LD ∉ RE.

● So where is LD? Is it in LD ∈ co-RE? Or
is it someplace else?

LD

● To see whether LD ∈ co-RE, we will see
whether LD ∈ RE.

● The language LD is the language

LD = {⟨M⟩ | M is a TM and ⟨M⟩ ∈ ℒ(M)}

● Two questions:
● What is this language?
● Is this language RE?

M
1

M
2

M
0

M
3

M
4

M
5

w
0

w
1

w
2

w
3

w
4

w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

This language
is LD.

This language
is LD.

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

Acc Acc Acc No Acc No …

…

No

Acc

Acc

Acc

Acc

No

Acc Acc Acc No Acc No …

{ ⟨M⟩ | M is a TM
and ⟨M⟩ ∈ ℒ(M) }

LD ∈ co-RE

● Here's an TM for LD:

 R = “On input ⟨M⟩:

 Run M on ⟨M⟩.

 If M accepts ⟨M⟩, accept.

 If M rejects ⟨M⟩, reject.”
● Then R accepts ⟨M⟩ iff ⟨M⟩ ∈ (ℒ M) iff

⟨M⟩ ∈ LD, so (ℒ R) = LD.

 All Languages

RE

The Limits of Computability

co-RE

R

A
TM

HALTHALT

A
TM

L
D

0*1*
DOGWALK

ADD

L
D

ONES
TM

ONES
TM

ONLYONES
TM

ONLYONES
TM

Theorem: If A ≤M B, then A ≤M B.
Proof: Suppose that A ≤M B. Then there exists a

computable function f such that w ∈ A iff
f(w) ∈ B. Note that w ∈ A iff w ∉ A and
f(w) ∈ B iff f(w) ∉ B. Consequently, we have
that w ∉ A iff f(w) ∉ B. Thus w ∈ A iff f(w) ∈ B.
Since f is computable, A ≤M B. ■

co-RE Reductions

● Corollary: If A ≤M B and B ∈ co-RE, then
 A ∈ co-RE.

Proof: Since A ≤M B, A ≤M B. Since B ∈ co-RE,
 B ∈ RE. Thus A ∈ RE, so A ∈ co-RE. ■

● Corollary: If A ≤M B and A ∉ co-RE,
 then B ∉ co-RE.

Proof: Take the contrapositive of the above. ■

Why Mapping Reducibility Matters

≤
MA B

If this one is “easy”
(R or RE or co-RE)…
If this one is “easy”
(R or RE or co-RE)…

… then this one is
“easy” (R or RE or

co-RE) too.

… then this one is
“easy” (R or RE or

co-RE) too.

Why Mapping Reducibility Matters

≤
MA B

If this one is “hard” (not R
or not RE or not co-RE)…
If this one is “hard” (not R
or not RE or not co-RE)…

… then this one is
“hard” (not R or

not RE or not co-
RE) too.

… then this one is
“hard” (not R or

not RE or not co-
RE) too.

All Languages

RE

The Limits of Computability

co-RE

R

A
TM

HALTHALT

A
TM

0*1*
DOGWALK

ADD

Is there anything
out here?

L
D

L
D

ONES
TM

ONES
TM

ONLYONES
TM

ONLYONES
TM

RE ∪ co-RE is Not Everything

● Using the same reasoning as the first day
of lecture, we can show that there must
be problems that are neither RE nor co-
RE.

● There are more sets of strings than TMs.
● There are more sets of strings than twice

the number of TMs.
● What do these languages look like?

An Extremely Hard Problem

● Recall: All regular languages are also RE.
● This means that some TMs accept regular

languages and some TMs do not.

● Let REGULARTM be the language of all TM
descriptions that accept regular languages:

REGULARTM = { ⟨M⟩ | ℒ(M) is regular }

● Is REGULARTM ∈ R? How about RE?

REGULARTM ∉ RE

● It turns out that REGULARTM is
unrecognizable, meaning that there is no
computer program that can even verify
that another TM's language is regular!

● To do this, we'll do another reduction
from LD and prove that LD ≤M REGULARTM.

LD ≤M REGULARTM

● We want to find a computable function f such
that

 ⟨M⟩ ∈ LD iff f(⟨M⟩) ∈ REGULARTM.

● We need to choose M' such that f(⟨M⟩) = ⟨M'⟩
for some TM M'. Then

 ⟨M⟩ ∈ LD iff f(⟨M⟩) ∈ REGULARTM

⟨M⟩ ∈ LD iff ⟨M'⟩ ∈ REGULARTM

⟨M⟩ ∉ ℒ(M) iff ℒ(M') is regular.

LD ≤M REGULARTM

● We want to construct some M' out of M
such that
● If ⟨M⟩ ∈ (ℒ M), then (ℒ M') is not regular.
● If ⟨M⟩ ∉ (ℒ M), then (ℒ M') is regular.

● One option: choose two languages, one
regular and one nonregular, then construct
M' so its language switches from regular to
nonregular based on whether ⟨M⟩ ∉ (ℒ M).
● If ⟨M⟩ ∈ (ℒ M), then (ℒ M') = { 0n1n | n ∈ ℕ }
● If ⟨M⟩ ∉ (ℒ M), then (ℒ M') = Ø

The Reduction

● We want to build M' from M such that
● If ⟨M⟩ ∈ (ℒ M), then (ℒ M') = { 0n1n | n ∈ ℕ }
● If ⟨M⟩ ∉ (ℒ M), then (ℒ M') = Ø

● Here is one way to do this:

 M' = “On input x:

 If x does not have the form 0n1n, reject.

 Run M on ⟨M⟩.

 If M accepts, accept x.

 If M rejects, reject x.”

Theorem: LD ≤M REGULARTM.
Proof: We exhibit a mapping reduction from LD to REGULARTM.

For any TM M, let f(⟨M⟩) = ⟨M'⟩, where M' is defined in terms of
M as follows:

M' = “On input x:
If x does not have the form 0n1n, reject x.
Run M on ⟨M⟩.
If M accepts ⟨M⟩, accept x.
If M rejects ⟨M⟩, reject x.”

By the parameterization theorem, f is a computable function.
We further claim that ⟨M⟩ ∈ LD iff f(⟨M⟩) ∈ REGULARTM. To
see this, note that f(⟨M⟩) = ⟨M'⟩ ∈ REGULARTM iff (ℒ M') is
regular. We claim that (ℒ M') is regular iff ⟨M⟩ ∉ (ℒ M). To see
this, note that if ⟨M⟩ ∉ (ℒ M), then M' never accepts any strings.
Thus (ℒ M') = Ø, which is regular. Otherwise, if ⟨M⟩ ∈ (ℒ M),
then M' accepts all strings of the form 0n1n, so we have that
ℒ(M) = { 0n1n | n ∈ ℕ }, which is not regular. Finally,
⟨M⟩ ∉ (⟨ℒ M⟩) iff ⟨M⟩ ∈ LD. Thus ⟨M⟩ ∈ LD iff f(⟨M⟩) ∈ REGULARTM,
so f is a mapping reduction from LD to REGULARTM. Therefore,
LD ≤M REGULARTM. ■

REGULARTM ∉ co-RE

● Not only is REGULARTM ∉ RE, but
REGULARTM ∉ co-RE.

● Before proving this, take a minute to think
about just how ridiculously hard this problem
is.
● No computer can confirm that an arbitrary TM has a

regular language.
● No computer can confirm that an arbitrary TM has a

nonregular language.
● This is vastly beyond the limits of what computers

could ever hope to solve.

LD ≤M REGULARTM

● To prove that REGULARTM is not co-RE, we will
prove that LD ≤M REGULARTM.

● Since LD is not co-RE, this proves that
REGULARTM is not co-RE either.

● Goal: Find a function f such that

⟨M⟩ ∈ LD iff f(⟨M⟩) ∈ REGULARTM

● Let f(⟨M⟩) = ⟨M'⟩ for some TM M'. Then we want

⟨M⟩ ∈ LD iff ⟨M'⟩ ∈ REGULARTM

⟨M⟩ ∈ ℒ(M) iff ℒ(M') is regular

LD ≤M REGULARTM

● We want to construct some M' out of M
such that
● If ⟨M⟩ ∈ (ℒ M), then (ℒ M') is regular.
● If ⟨M⟩ ∉ (ℒ M), then (ℒ M') is not regular.

● One option: choose two languages, one
regular and one nonregular, then construct
M' so its language switches from regular to
nonregular based on whether ⟨M⟩ ∈ (ℒ M).
● If ⟨M⟩ ∈ (ℒ M), then (ℒ M') = Σ*.
● If ⟨M⟩ ∉ (ℒ M), then (ℒ M') = {0n1n | n ∈ ℕ}

LD ≤M REGULARTM

● We want to build M' from M such that
● If ⟨M⟩ ∈ (ℒ M), then (ℒ M') = Σ*
● If ⟨M⟩ ∉ (ℒ M), then (ℒ M') = { 0n1n | n ∈ ℕ }

● Here is one way to do this:

 M' = “On input x:

 If x has the form 0n1n, accept.

 Run M on ⟨M⟩.

 If M accepts, accept x.

 If M rejects, reject x.”

Theorem: LD ≤M REGULARTM.
Proof: We exhibit a mapping reduction from LD to REGULARTM. For any

TM M, let f(⟨M⟩) = ⟨M'⟩, where M' is defined in terms of M as follows:

M' = “On input x:
If x has the form 0n1n, accept x.
Run M on ⟨M⟩.
If M accepts ⟨M⟩, accept x.
If M rejects ⟨M⟩, reject x.”

By the parameterization theorem, f is a computable function. We
further claim that ⟨M⟩ ∈ LD iff f(⟨M⟩) ∈ REGULARTM. To see this, note
that f(⟨M⟩) = ⟨M'⟩ ∈ REGULARTM iff (ℒ M') is regular. We claim that
ℒ(M') is regular iff ⟨M⟩ ∈ (ℒ M). To see this, note that if ⟨M⟩ ∈ (ℒ M),
then M' accepts all strings, either because that string is of the form
0n1n or because M eventually accepts ⟨M⟩. Thus (ℒ M') = Σ*, which is
regular. Otherwise, if ⟨M⟩ ∉ (ℒ M), then M' only accepts strings of the
form 0n1n, so (ℒ M) = { 0n1n | n ∈ ℕ }, which is not regular. Finally,
⟨M⟩ ∈ (⟨ℒ M⟩) iff ⟨M⟩ ∈ LD. Thus ⟨M⟩ ∈ LD iff f(⟨M⟩) ∈ REGULARTM, so f
is a mapping reduction from LD to REGULARTM. Therefore,
LD ≤M REGULARTM. ■

All Languages

RE

The Limits of Computability

co-RE

R

A
TM

HALTHALT

A
TM

0*1*
DOGWALK

ADD

REGULAR
TM

L
D

L
D

ONES
TM

ONES
TM

ONLYONES
TM

ONLYONES
TM

REGULAR
TM

Beyond RE and co-RE

● The most famous problem that is neither RE
nor co-RE is the TM equality problem:

EQTM = { ⟨M1, M2⟩ | ℒ(M1) = ℒ(M2) }

● This is why we have to write testing code;
there's no way to have a computer prove or
disprove that two programs always have the
same output.

● This is related to Q6.ii from Problem Set 7.

Why All This Matters

All Languages

RE

The Limits of Computability

co-RE

R

A
TM

HALTHALT

A
TM

0*1*
DOGWALK

ADD

REGULAR
TM

L
D

L
D

ONES
TM

ONES
TM

ONLYONES
TM

ONLYONES
TM

REGULAR
TM

EQ
TM

EQ
TM

What problems can be
solved efficiently a computer?

Where We're Going

● The class P represents problems that can be
solved efficiently by a computer.

● The class NP represents problems where
answers can be verified efficiently by a
computer.

● The class co-NP represents problems where
answers can be efficiently refuted by a
computer.

● The polynomial-time mapping reduction can be
used to find connections between problems.

Next Time

● Introduction to Complexity Theory
● How do you define efficiency?
● How do you measure it?
● What tools will we need?

● Complexity Class P
● What problems can be solved efficiently?
● How do we reason about them?

Have a wonderful Thanksgiving!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

