
  

co-RE and Beyond



  

Friday Four Square!
Today at 4:15PM, Outside Gates



  

Announcements

● Problem Set 7 due right now.
● With a late day, due this Monday at 2:15PM.

● Problem Set 8 out, due Friday, November 30.
● Explore properties of R, RE, and co-RE.
● Play around with mapping reductions.
● Find problems far beyond the realm of 

computers.
● No checkpoint, even though the syllabus says 

there is one.
● Most (but not all Problem Set 6 graded; will be 

returned at end of lecture).



  

Recap From Last Time



  

Mapping Reducibility

● A mapping reduction from A to B is a 
function f such that
● f is computable, and
● For any w, w ∈ A iff f(w) ∈ B.

● If there is a mapping reduction from A to 
B, we say that A is mapping reducible 
to B.

● Notation: A ≤M B iff A is mapping 
reducible to B.



  

Why Mapping Reducibility Matters

≤
MA B

If this one is “easy” 
(R or RE)…

If this one is “easy” 
(R or RE)…

… then this one is 
“easy” (R or RE) 

too. 

… then this one is 
“easy” (R or RE) 

too. 



  

Why Mapping Reducibility Matters

≤
MA B

If this one is “hard” 
(not R or not RE)…
If this one is “hard” 
(not R or not RE)…

… then this one is 
“hard” (not R or 
not RE) too.

… then this one is 
“hard” (not R or 
not RE) too.



  

Machine for B

Machine M

YES

NO

Compute f
f(w)w        

H = “On input w:
              Compute f(w).
              Run M on f(w).
              If M accepts f(w), accept w.
              If M rejects f(w), reject w.”

Machine H

H accepts w
  

iff
  

M accepts f(w)
  

 iff 
  

f(w) ∈ B 

   

iff 

   

w ∈ A

Sketch of the Proof



  

More Unsolvable Problems



  

A More Elaborate Reduction

● Since HALT ∉ R, there is no algorithm for 
determining whether a TM will halt on some 
particular input.

● It seems, therefore, that we shouldn't be able 
to decide whether a TM halts on all possible 
inputs.

● Consider the language

DECIDER = { ⟨M⟩ | M is a decider } 
● How would we prove that DECIDER is, itself, 

undecidable?



  

HALT ≤M DECIDER

● We will prove that DECIDER is undecidable by 
reducing HALT to DECIDER.

● Want to find a function f such that

⟨M, w⟩ ∈ HALT     iff     f(⟨M, w⟩) ∈ DECIDER.

● Assuming that f(⟨M, w⟩) = ⟨M'⟩ for some TM M', we 
have that

⟨M, w⟩ ∈ HALT     iff     ⟨M'⟩ ∈ DECIDER.      

M halts on w     iff     M' is a decider.      

     M halts on w     iff     M' halts on all inputs.



  

The Reduction
● Find a TM M' such that M' halts on all inputs iff M halts on w.

● Key idea: Build M' such that running M' on any input runs M 
on w.

● Here is one choice of M':

             M' = “On input x:

                          Ignore x.

                          Run M on w.

                          If M accepts w, accept.

                          If M rejects w, reject.”

● Notice that M' “amplifies” what M does on w:

● If M halts on w, M' halts on every input.

● If M loops on w, M' loops on every input.



  

DECIDER is Undecidable

Simulate
M on w

             x              
(Ignored)

Machine 
M'

Decider 
for DECIDER

Construct
M' from
⟨M, w⟩

⟨M'⟩               ⟨M, w                         ⟩

This is a 
decider for 

HALT!

Machine H



  

Justifying M'

● Notice that our 
machine M' has the 
machine M and string 
w built into it!

● This is different from 
the machines we 
have constructed in 
the past.

● How do we justify 
that it's possible for 
some TM to construct 
a new TM at all?

M' = “On input x:

     Ignore x.

     Run M on w.

     If M accepts w, accept.

     If M rejects w, reject.”



  

The Parameterization Theorem

Theorem: Let M be a TM of the form

      M = “On input ⟨x1, x2, …, xn⟩:

                 Do something with x1, x2, …, xn”

and any value p for parameter x1, then a 
TM can construct the following TM M':

      M' = “On input ⟨x2, …, xn⟩:

                 Do something with p, x2, …, xn”



  

Justifying M'

● Consider this machine X:

             X = “On input ⟨N, z, x⟩:

                          Ignore x.

                          Run N on z.

                          If N accepts z, accept.

                          If N rejects z, reject.”
● Applying the parameterization theorem twice with the values 

M and w produces the machine

            M' = “On input x:

                          Ignore x.

                          Run M on w.

                          If M accepts w, accept.

                          If M rejects w, reject.



  

The Takeaway Point

● It is possible for a mapping reduction to 
take in a TM or TM/string pair and 
construct a new TM with that TM 
embedded within it.

● The parameterization theorem is just a 
formal way of justifying this.



  

Theorem: HALT ≤M DECIDER.
Proof: We exhibit a mapping reduction from HALT to DECIDER. 

For any TM/string pair ⟨M, w⟩, let f(⟨M, w⟩) = ⟨M'⟩, where ⟨M'⟩ is
defined in terms of M and w as follows:

 

M' = “On input x:
Ignore x.
Run M on w.
If M accepts w, accept.
If M rejects w, reject.”

 

By the parameterization theorem, f is a computable function. 
We further claim that ⟨M, w⟩ ∈ HALT iff f(⟨M, w⟩) ∈ DECIDER. 
To see this, note that f(⟨M, w⟩) = ⟨M'⟩ ∈ DECIDER iff M' halts on
all inputs.  We claim that M' halts on all inputs iff M halts on w. 
To see this, note that when M' is run on any input, it halts iff 
M halts on w.  Thus if M halts on w, then M' halts on all inputs,
and if M loops on w, M' loops on all inputs.  Finally, note that 
M halts on w iff ⟨M, w⟩ ∈ HALT.  Thus ⟨M, w⟩ ∈ HALT iff 
f(⟨M, w⟩) ∈ DECIDER.  Therefore, f is a mapping reduction from
HALT to DECIDER, so HALT ≤M DECIDER. ■



  

Other Hard Languages

● We can't tell if a TM accepts a specific string.

● Could we determine whether or not a TM accepts one 
of many different strings with specific properties?

● For example, could we build a TM that determines 
whether some other TM accepts a string of all 1s?

● Let ONESTM be the following language:

ONESTM = { ⟨M⟩ | M is a TM that accepts at           
                             least one string of the form 1n }  

● Is ONESTM ∈ R?  Is it RE?



  

ONESTM

● Unfortunately, ONESTM is undecidable.

● However, ONESTM is recognizable.

● Intuition: Nondeterministically guess the 
string of the form 1n that M will accept, then 
deterministically check that M accepts it.

● We'll show that ONESTM is undecidable 
by showing that ATM ≤M ONES.



  

ATM ≤M ONESTM

● As before, let's try to find a function f such that

⟨M, w⟩ ∈ ATM     iff     f(⟨M, w⟩) ∈ ONESTM.  

● Let's let f(⟨M, w⟩) = ⟨M'⟩ for some TM M'.  Then we 
want to pick M' such that

⟨M, w⟩ ∈ ATM     iff     f(⟨M, w⟩) ∈ ONESTM        

⟨M, w⟩ ∈ ATM     iff     ⟨M'⟩ ∈ ONESTM                

M accepts w     iff     M' accepts 1n for some n



  

The Reduction

● Goal: construct M' so M' accepts 1n for some n iff M accepts w.

● Here is one possible option:

             M' = “On input x:

                          Ignore x.

                          Run M on w.

                          If M accepts w, accept x.

                          If M rejects w, reject x.”

● As with before, we can justify the construction of M' using the 
parameterization theorem.

● If M accepts w, then M' accepts all strings, including 1n for any n.

● If M does not accept w, then M' does not accept any strings, so it 
certainly does not accept any strings of the form 1n.



  

Theorem: ATM ≤M ONESTM.
Proof: We exhibit a mapping reduction from ATM to ONESTM.  For

any TM/string pair ⟨M, w⟩, let f(⟨M, w⟩) = ⟨M'⟩, where M' is
defined in terms of M and w as follows:

 

M' = “On input x:
Ignore x.
Run M on w.
If M accepts w, accept x.
If M rejects w, reject x.”

 

By the parameterization theorem, f is a computable function.
We further claim that ⟨M, w⟩ ∈ ATM iff f(⟨M, w⟩) ∈ ONESTM.  To
see this, note that f(⟨M, w⟩) = ⟨M'⟩ ∈ ONESTM iff M' accepts at
least one string of the form 1n.  We claim that M' accepts at
least one string of the form 1n iff M accepts w.  To see this, note
that if M accepts w, then M' accepts 1, and if M does not accept
w, then M' rejects all strings, including all strings of the form
1n.  Finally, M accepts w iff ⟨M, w⟩ ∈ ATM.  Thus ⟨M, w⟩ ∈ ATM iff
f(⟨M, w⟩) ∈ ONESTM.  Consequently, f is a mapping reduction
from ATM to ONESTM, so ATM ≤M ONESTM as required. ■



  

A Slightly Modified Question

● We cannot determine whether or not a TM will 
accept at least one string of all 1s.

● Can we determine whether a TM only accepts 
strings of all 1s?

● In other words, for a TM M, is (ℒ M) ⊆ 1*?

● Let ONLYONESTM be the language

ONLYONESTM = { ⟨M⟩ | ℒ(M) ⊆ 1* }    

● Is ONLYONESTM ∈ R?  How about RE?



  

ONLYONESTM ∉ RE

● It turns out that the language 
ONLYONESTM is unrecognizable.

● We can prove this by reducing LD to 
ONLYONESTM.

● If LD ≤M ONLYONESTM, then we have that 
ONLYONESTM ∉ RE.



  

LD ≤M ONLYONESTM

● We want to find a computable function f such 
that

⟨M⟩ ∈ LD     iff     f(⟨M⟩) ∈ ONLYONESTM.

● We want to set f(⟨M⟩) = ⟨M'⟩ for some suitable 
choice of M'.  This means

⟨M⟩ ∈ LD     iff     ⟨M'⟩ ∈ ONLYONESTM

⟨M⟩ ∉ ℒ(M)     iff     ℒ(M') ⊆ 1*                    

● How would we pick our machine M'?



  

One Possible Reduction

● We want to build M' from M such that ⟨M⟩ ∉ (ℒ M) iff
(ℒ M') ⊆ 1*.

● In other words, we construct M' such that

● If ⟨M⟩ ∈ (ℒ M), then (ℒ M') is not a subset of 1*.

● If ⟨M⟩ ∉ (ℒ M), then (ℒ M') is a subset of 1*.

● One option: Come up with some languages with these 
properties, then construct our machine M' such that its 
language changes based on whether ⟨M⟩ ∈ (ℒ M).

● If ⟨M⟩ ∈ (ℒ M), then (ℒ M') = Σ*, which isn't a subset of 1*.

● If ⟨M⟩ ∉ (ℒ M), then (ℒ M') = Ø, which is a subset of 1*.



  

One Possible Reduction

● We want
● If ⟨M⟩ ∈ (ℒ M), then (ℒ M') = Σ*
● If ⟨M⟩ ∉ (ℒ M), then (ℒ M') = Ø

● Here is one possible M' that does this:

             M' = “On input x:

                          Ignore x.

                          Run M on ⟨M⟩.

                          If M accepts ⟨M⟩, accept x.

                          If M rejects ⟨M⟩, reject x.”



  

Theorem: LD ≤M ONLYONESTM.
Proof: We exhibit a mapping reduction from LD to ONLYONESTM. 

For any TM M, let f(⟨M⟩) = ⟨M'⟩, where M' is defined in terms of
M as follows:

 

M' = “On input x:
Ignore x.
Run M on ⟨M⟩.
If M accepts ⟨M⟩, accept x.
If M rejects ⟨M⟩, reject x.”

 

By the parameterization theorem, f is a computable function.
We further claim that ⟨M⟩ ∈ LD iff f(⟨M⟩) ∈ ONLYONESTM.  To
see this, note that f(⟨M⟩) = ⟨M'⟩ ∈ ONLYONESTM iff (ℒ M') ⊆ 1*.
We claim that (ℒ M') ⊆ 1* iff M does not accept ⟨M⟩.  To see this,
note that if M does not accept ⟨M⟩, then M' never accepts any
strings, so (ℒ M') = Ø ⊆ 1*.  Otherwise, if M accepts ⟨M⟩, then
M' accepts all strings, so (ℒ M) = Σ*, which is not a subset of 1*. 
Finally, M does not accept ⟨M⟩ iff ⟨M⟩ ∈ LD.  Thus ⟨M⟩ ∈ LD iff
f(⟨M⟩) ∈ ONLYONESTM.  Consequently, f is a mapping reduction
from LD to ONLYONESTM, so LD ≤M ONLYONESTM as required. ■



  

ONLYONESTM

● Although ONLYONESTM is not RE, its 
complement (ONLYONESTM) is RE:

{ ⟨M⟩ | ℒ(M) is not a subset of 1* }    
● Intuition: Can nondeterministically guess 

a string in (ℒ M) that is not of the form 1n, 
then check that M accepts it.



  

Regular
Languages CFLsDCFLs

All Languages

R RE

The Limits of Computability

A
TM

L
D

HALT

HALT

A
TM

ONES
TM

ONES
TM

ONLYONES
TM

ONLYONES
TM



  

RE and co-RE

● The class RE is the set of languages that are 
recognized by a TM.

● The class co-RE is the set of languages whose 
complements are recognized by a TM.

● In other words:

L ∈ co-RE     iff     L ∈ RE    

L ∈ co-RE     iff     L ∈ RE    
● Languages in co-RE are called co-

recognizable. Languages not in co-RE are 
called co-unrecognizable.



  

Intuiting RE and co-RE

● A language L is in RE iff there is a 
recognizer for it.
● If w ∈ L, the recognizer accepts.
● If w ∉ L, the recognizer does not accept.

● A language L is in co-RE iff there is a 
refuter for it.
● If w ∉ L, the refuter rejects.
● If w ∈ L, the refuter does not reject.



  

RE, and co-RE

● RE and co-RE are fundamental classes of 
problems.
● RE is the class of problems where a 

computer can always verify “yes” instances.
● co-RE is the class of problems where a 

computer can always refute “no” instances.

● RE and co-RE are, in a sense, the 
weakest possible conditions for which a 
problem can be approached by 
computers.



  

R, RE, and co-RE

● Recall:

If L ∈ RE and L ∈ RE, then L ∈ R
● Rewritten in terms of co-RE:

If L ∈ RE and L ∈ co-RE, then L ∈ R
● In other words:

RE ∩ co-RE ⊆ R    
● We also know that R ⊆ RE and R ⊆ co-RE, so

R = RE ∩ co-RE    



  All Languages
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LD Revisited

● The diagonalization language LD is the 
language

LD = {⟨M⟩ | M is a TM and M ∉ ℒ(M)} 

● As we saw before, LD ∉ RE.

● So where is LD?  Is it in LD ∈ co-RE?  Or 
is it someplace else?



  

LD

● To see whether LD ∈ co-RE, we will see 
whether LD ∈ RE.

● The language LD is the language

LD = {⟨M⟩ | M is a TM and ⟨M⟩ ∈ ℒ(M)}

● Two questions:
● What is this language?
● Is this language RE?



  

M
1

M
2

M
0

M
3

M
4

M
5

w
0

w
1

w
2

w
3

w
4

w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

This language 
is LD.

This language 
is LD.

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

Acc Acc Acc No Acc No …

…

No

Acc

Acc

Acc

Acc

No

Acc Acc Acc No Acc No …

{ ⟨M⟩ | M is a TM  
and ⟨M⟩ ∈ ℒ(M) }



  

LD ∈ co-RE

● Here's an TM for LD:

           R = “On input ⟨M⟩:

                      Run M on ⟨M⟩.

                      If M accepts ⟨M⟩, accept.

                      If M rejects ⟨M⟩, reject.”
● Then R accepts ⟨M⟩ iff ⟨M⟩ ∈ (ℒ M) iff 

⟨M⟩ ∈ LD, so (ℒ R) = LD.



  All Languages
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Theorem: If A ≤M B, then A ≤M B.
Proof: Suppose that A ≤M B.  Then there exists a

computable function f such that w ∈ A iff
f(w) ∈ B.  Note that w ∈ A iff w ∉ A and
f(w) ∈ B iff f(w) ∉ B.  Consequently, we have
that w ∉ A iff f(w) ∉ B.  Thus w ∈ A iff f(w) ∈ B.
Since f is computable, A ≤M B. ■



  

co-RE Reductions

● Corollary: If A ≤M B and B ∈ co-RE, then
                  A ∈ co-RE.

Proof: Since A ≤M B, A ≤M B.  Since B ∈ co-RE,
           B ∈ RE. Thus A ∈ RE, so A ∈ co-RE. ■

● Corollary: If A ≤M B and A ∉ co-RE,
                  then B ∉ co-RE.

Proof: Take the contrapositive of the above. ■



  

Why Mapping Reducibility Matters

≤
MA B

If this one is “easy” 
(R or RE or co-RE)…
If this one is “easy” 
(R or RE or co-RE)…

… then this one is 
“easy” (R or RE or 

co-RE) too. 

… then this one is 
“easy” (R or RE or 

co-RE) too. 



  

Why Mapping Reducibility Matters

≤
MA B

If this one is “hard” (not R 
or not RE or not co-RE)…
If this one is “hard” (not R 
or not RE or not co-RE)…

… then this one is 
“hard” (not R or 

not RE or not co-
RE) too.

… then this one is 
“hard” (not R or 

not RE or not co-
RE) too.



  

All Languages

RE

The Limits of Computability

co-RE

R

A
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L
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L
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RE ∪ co-RE is Not Everything

● Using the same reasoning as the first day 
of lecture, we can show that there must 
be problems that are neither RE nor co-
RE.

● There are more sets of strings than TMs.
● There are more sets of strings than twice 

the number of TMs.
● What do these languages look like?



  

An Extremely Hard Problem

● Recall: All regular languages are also RE.
● This means that some TMs accept regular 

languages and some TMs do not.

● Let REGULARTM be the language of all TM 
descriptions that accept regular languages:

REGULARTM = { ⟨M⟩ | ℒ(M) is regular }  

● Is REGULARTM ∈ R?  How about RE?



  

REGULARTM ∉ RE

● It turns out that REGULARTM is 
unrecognizable, meaning that there is no 
computer program that can even verify 
that another TM's language is regular!

● To do this, we'll do another reduction 
from LD and prove that LD ≤M REGULARTM.



  

LD ≤M REGULARTM

● We want to find a computable function f such 
that

   ⟨M⟩ ∈ LD     iff     f(⟨M⟩) ∈ REGULARTM.

● We need to choose M' such that f(⟨M⟩) = ⟨M'⟩ 
for some TM M'. Then

    ⟨M⟩ ∈ LD     iff     f(⟨M⟩) ∈ REGULARTM     

⟨M⟩ ∈ LD     iff     ⟨M'⟩ ∈ REGULARTM

⟨M⟩ ∉ ℒ(M)     iff     ℒ(M') is regular.          



  

LD ≤M REGULARTM

● We want to construct some M' out of M 
such that
● If ⟨M⟩ ∈ (ℒ M), then (ℒ M') is not regular.
● If ⟨M⟩ ∉ (ℒ M), then (ℒ M') is regular.

● One option: choose two languages, one 
regular and one nonregular, then construct 
M' so its language switches from regular to 
nonregular based on whether ⟨M⟩ ∉ (ℒ M).
● If ⟨M⟩ ∈ (ℒ M), then (ℒ M') = { 0n1n | n ∈ ℕ }
● If ⟨M⟩ ∉ (ℒ M), then (ℒ M') = Ø



  

The Reduction

● We want to build M' from M such that
● If ⟨M⟩ ∈ (ℒ M), then (ℒ M') = { 0n1n | n ∈ ℕ }
● If ⟨M⟩ ∉ (ℒ M), then (ℒ M') = Ø

● Here is one way to do this:

    M' = “On input x:

                If x does not have the form 0n1n, reject.

                Run M on ⟨M⟩.

                If M accepts, accept x.

                If M rejects, reject x.”



  

Theorem: LD ≤M REGULARTM.
Proof: We exhibit a mapping reduction from LD to REGULARTM. 

For any TM M, let f(⟨M⟩) = ⟨M'⟩, where M' is defined in terms of
M as follows:

 

M' = “On input x:
If x does not have the form 0n1n, reject x.
Run M on ⟨M⟩.
If M accepts ⟨M⟩, accept x.
If M rejects ⟨M⟩, reject x.”

 

By the parameterization theorem, f is a computable function.
We further claim that ⟨M⟩ ∈ LD iff f(⟨M⟩) ∈ REGULARTM.  To
see this, note that f(⟨M⟩) = ⟨M'⟩ ∈ REGULARTM iff (ℒ M') is
regular.  We claim that (ℒ M') is regular iff ⟨M⟩ ∉ (ℒ M).  To see
this, note that if ⟨M⟩ ∉ (ℒ M), then M' never accepts any strings.
Thus (ℒ M') = Ø, which is regular.  Otherwise, if ⟨M⟩ ∈ (ℒ M),
then M' accepts all strings of the form 0n1n, so we have that
ℒ(M) = { 0n1n | n ∈ ℕ }, which is not regular.  Finally,
⟨M⟩ ∉ (⟨ℒ M⟩) iff ⟨M⟩ ∈ LD. Thus ⟨M⟩ ∈ LD iff f(⟨M⟩) ∈ REGULARTM, 
so f is a mapping reduction from LD to REGULARTM.  Therefore,
LD ≤M REGULARTM. ■



  

REGULARTM ∉ co-RE

● Not only is REGULARTM ∉ RE, but
REGULARTM ∉ co-RE.

● Before proving this, take a minute to think 
about just how ridiculously hard this problem 
is.
● No computer can confirm that an arbitrary TM has a 

regular language.
● No computer can confirm that an arbitrary TM has a 

nonregular language.
● This is vastly beyond the limits of what computers 

could ever hope to solve.



  

LD ≤M REGULARTM

● To prove that REGULARTM is not co-RE, we will 
prove that LD ≤M REGULARTM.

● Since LD is not co-RE, this proves that 
REGULARTM is not co-RE either.

● Goal: Find a function f such that

⟨M⟩ ∈ LD     iff    f(⟨M⟩) ∈ REGULARTM

● Let f(⟨M⟩) = ⟨M'⟩ for some TM M'.  Then we want

⟨M⟩ ∈ LD     iff    ⟨M'⟩ ∈ REGULARTM

⟨M⟩ ∈ ℒ(M)    iff    ℒ(M') is regular           



  

LD ≤M REGULARTM

● We want to construct some M' out of M 
such that
● If ⟨M⟩ ∈ (ℒ M), then (ℒ M') is regular.
● If ⟨M⟩ ∉ (ℒ M), then (ℒ M') is not regular.

● One option: choose two languages, one 
regular and one nonregular, then construct 
M' so its language switches from regular to 
nonregular based on whether ⟨M⟩ ∈ (ℒ M).
● If ⟨M⟩ ∈ (ℒ M), then (ℒ M') = Σ*.
● If ⟨M⟩ ∉ (ℒ M), then (ℒ M') = {0n1n | n ∈ ℕ}



  

LD ≤M REGULARTM

● We want to build M' from M such that
● If ⟨M⟩ ∈ (ℒ M), then (ℒ M') = Σ*
● If ⟨M⟩ ∉ (ℒ M), then (ℒ M') = { 0n1n | n ∈ ℕ }

● Here is one way to do this:

    M' = “On input x:

                If x has the form 0n1n, accept.

                Run M on ⟨M⟩.

                If M accepts, accept x.

                If M rejects, reject x.”



  

Theorem: LD ≤M REGULARTM.
Proof: We exhibit a mapping reduction from LD to REGULARTM.  For any

TM M, let f(⟨M⟩) = ⟨M'⟩, where M' is defined in terms of M as follows:
 

M' = “On input x:
If x has the form 0n1n, accept x.
Run M on ⟨M⟩.
If M accepts ⟨M⟩, accept x.
If M rejects ⟨M⟩, reject x.”

 

By the parameterization theorem, f is a computable function.  We
further claim that ⟨M⟩ ∈ LD iff f(⟨M⟩) ∈ REGULARTM.  To see this, note
that f(⟨M⟩) = ⟨M'⟩ ∈ REGULARTM iff (ℒ M') is regular.  We claim that
ℒ(M') is regular iff ⟨M⟩ ∈ (ℒ M).  To see this, note that if ⟨M⟩ ∈ (ℒ M),
then M' accepts all strings, either because that string is of the form
0n1n or because M eventually accepts ⟨M⟩.  Thus (ℒ M') = Σ*, which is
regular.  Otherwise, if ⟨M⟩ ∉ (ℒ M), then M' only accepts strings of the
form 0n1n, so (ℒ M) = { 0n1n | n ∈ ℕ }, which is not regular.  Finally,
⟨M⟩ ∈ (⟨ℒ M⟩) iff ⟨M⟩ ∈ LD. Thus ⟨M⟩ ∈ LD iff f(⟨M⟩) ∈ REGULARTM, so f
is a mapping reduction from LD to REGULARTM.  Therefore, 
LD ≤M REGULARTM. ■
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Beyond RE and co-RE

● The most famous problem that is neither RE 
nor co-RE is the TM equality problem:

EQTM = { ⟨M1, M2⟩ | ℒ(M1) = ℒ(M2) }

● This is why we have to write testing code; 
there's no way to have a computer prove or 
disprove that two programs always have the 
same output.

● This is related to Q6.ii from Problem Set 7.



  

Why All This Matters
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What problems can be
solved efficiently a computer?



  

Where We're Going

● The class P represents problems that can be 
solved efficiently by a computer.

● The class NP represents problems where 
answers can be verified efficiently by a 
computer.

● The class co-NP represents problems where 
answers can be efficiently refuted by a 
computer.

● The polynomial-time mapping reduction can be 
used to find connections between problems.



  

Next Time

● Introduction to Complexity Theory
● How do you define efficiency?
● How do you measure it?
● What tools will we need?

● Complexity Class P
● What problems can be solved efficiently?
● How do we reason about them?



  

Have a wonderful Thanksgiving!
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