co-RE and Beyond

Friday Four Square! Today at 4:15PM, Outside Gates

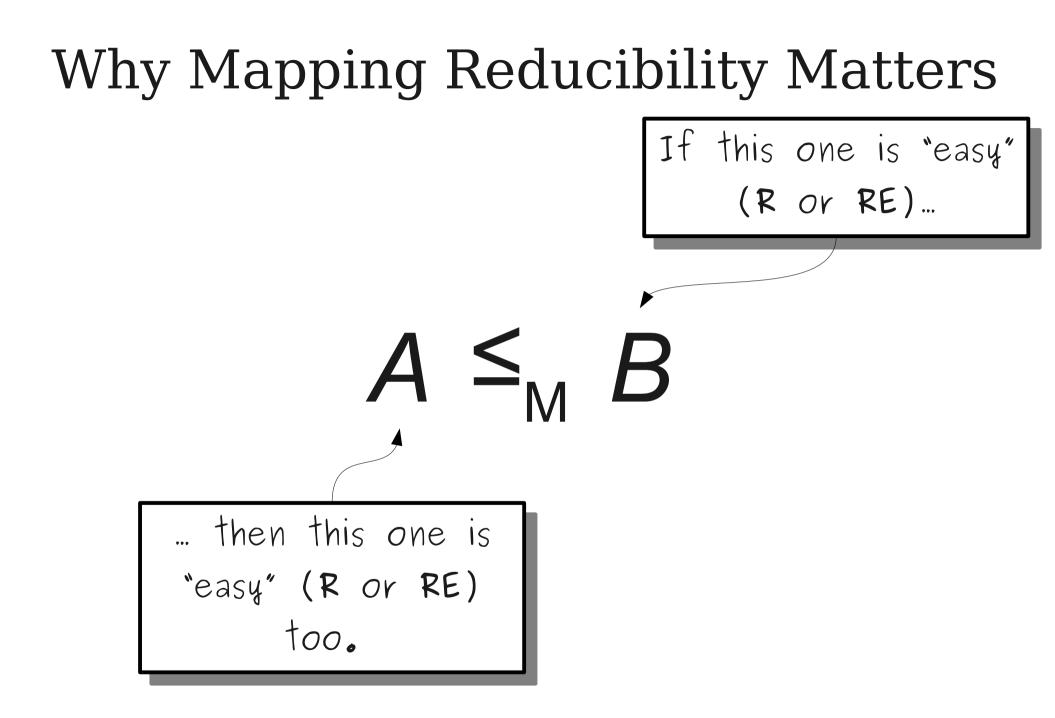
Announcements

- Problem Set 7 due right now.
 - With a late day, due this Monday at 2:15PM.
- Problem Set 8 out, due Friday, November 30.
 - Explore properties of **R**, **RE**, and co-**RE**.
 - Play around with mapping reductions.
 - Find problems far beyond the realm of computers.
 - **No checkpoint**, even though the syllabus says there is one.
- Most (but not all Problem Set 6 graded; will be returned at end of lecture).

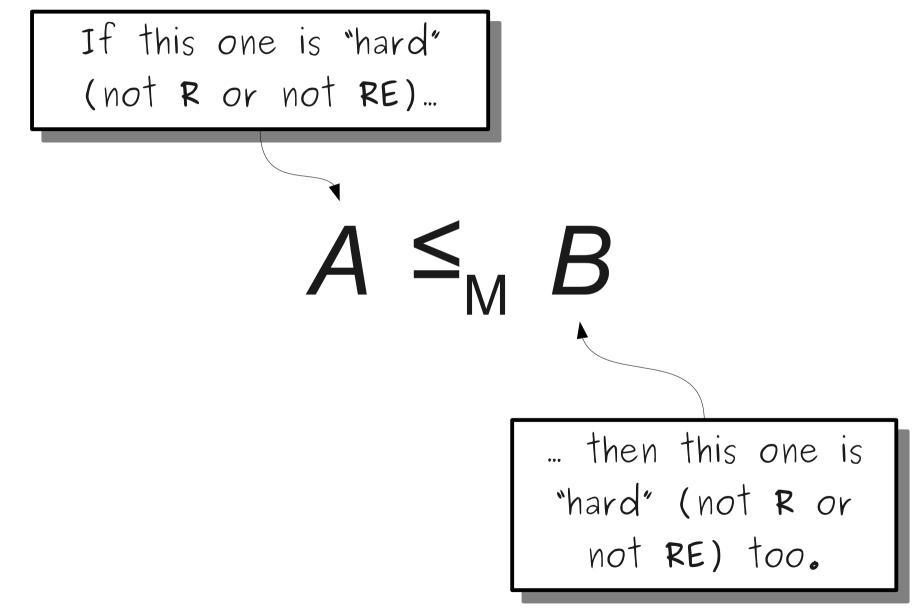
Recap From Last Time

Mapping Reducibility

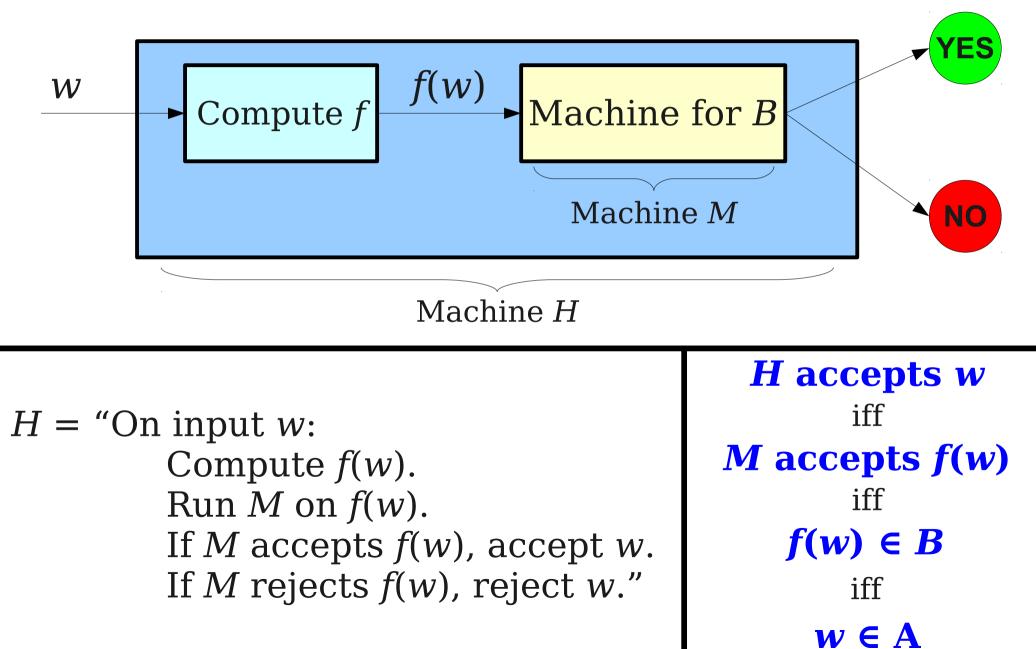
- A **mapping reduction** from *A* to *B* is a function *f* such that
 - *f* is computable, and
 - For any $w, w \in A$ iff $f(w) \in B$.
- If there is a mapping reduction from *A* to *B*, we say that *A* is **mapping reducible** to *B*.
- Notation: $A \leq_{M} B$ iff A is mapping reducible to B.



Why Mapping Reducibility Matters



Sketch of the Proof



More Unsolvable Problems

A More Elaborate Reduction

- Since $HALT \notin \mathbf{R}$, there is no algorithm for determining whether a TM will halt on some particular input.
- It seems, therefore, that we shouldn't be able to decide whether a TM halts on all possible inputs.
- Consider the language
 DECIDER = { (M) | M is a decider }
- How would we prove that *DECIDER* is, itself, undecidable?

$HALT \leq_{_{\mathrm{M}}} DECIDER$

- We will prove that *DECIDER* is undecidable by reducing *HALT* to *DECIDER*.
- Want to find a function *f* such that

 $\langle M, w \rangle \in HALT$ iff $f(\langle M, w \rangle) \in DECIDER$.

- Assuming that $f(\langle M, w \rangle) = \langle M' \rangle$ for some TM M', we have that
 - $\langle M, w \rangle \in HALT$ iff $\langle M' \rangle \in DECIDER.$ M halts on wiffM' is a decider.M halts on wiffM' halts on all inputs.

The Reduction

- Find a TM M' such that M' halts on all inputs iff M halts on w.
- **Key idea:** Build *M*' such that running *M*' on any input runs *M* on *w*.
- Here is one choice of *M*':

M' = "On input *x*:

Ignore *x*.

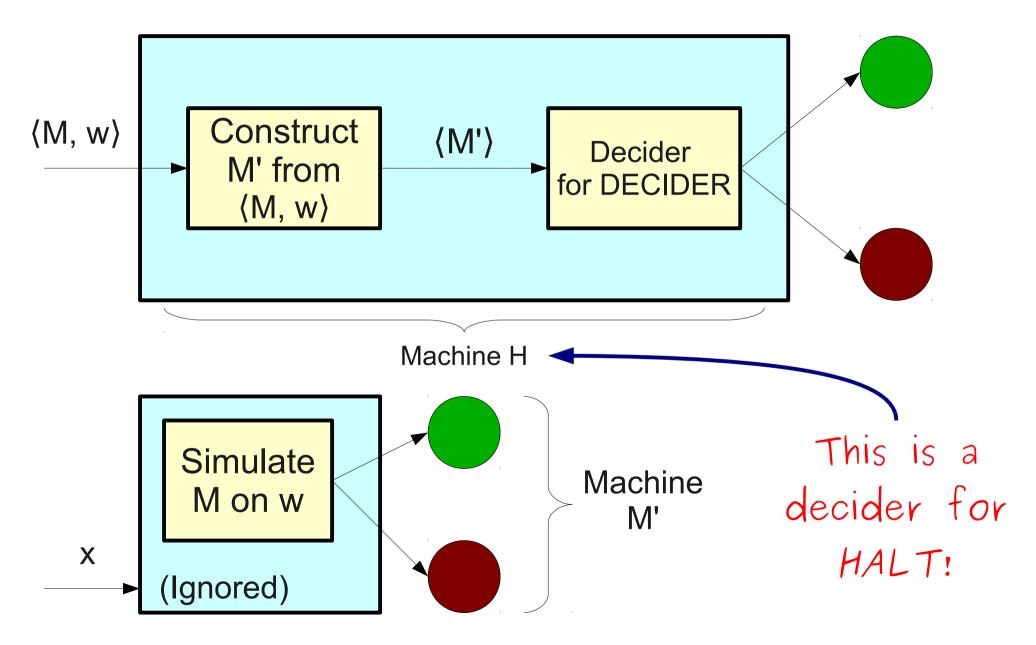
Run M on w.

If *M* accepts *w*, accept.

If *M* rejects *w*, reject."

- Notice that *M*' "amplifies" what *M* does on *w*:
 - If *M* halts on *w*, *M*' halts on every input.
 - If *M* loops on *w*, *M*' loops on every input.

DECIDER is Undecidable



Justifying M'

- Notice that our machine M' has the machine M and string w built into it!
- This is different from the machines we have constructed in the past.
- How do we justify that it's possible for some TM to construct a new TM at all?

M' = "On input x: Ignore x. Run M on w. If M accepts w, accept. If M rejects w, reject."

The Parameterization Theorem

Theorem: Let *M* be a TM of the form

 $M = \text{``On input } \langle x_1, x_2, \dots, x_n \rangle \text{:}$ Do something with x_1, x_2, \dots, x_n ''

and any value p for parameter x_1 , then a TM can construct the following TM M':

 $M' = "On input \langle x_2, ..., x_n \rangle$:

Do something with $p, x_2, ..., x_n$ "

Justifying M'

• Consider this machine *X*:

X = "On input $\langle N, z, x \rangle$:

Ignore *x*.

Run N on z.

If N accepts z, accept.

If N rejects z, reject."

• Applying the parameterization theorem twice with the values M and w produces the machine

M' = "On input x:Ignore x. Run M on w. If M accepts w, accept. If M rejects w, reject.

The Takeaway Point

- It is possible for a mapping reduction to take in a TM or TM/string pair and construct a new TM with that TM embedded within it.
- The parameterization theorem is just a formal way of justifying this.

Theorem: $HALT \leq_{M} DECIDER$.

Proof: We exhibit a mapping reduction from *HALT* to *DECIDER*. For any TM/string pair $\langle M, w \rangle$, let $f(\langle M, w \rangle) = \langle M' \rangle$, where $\langle M' \rangle$ is defined in terms of M and w as follows:

M' = "On input x: Ignore x. Run M on w. If M accepts w, accept. If M rejects w, reject."

By the parameterization theorem, f is a computable function. We further claim that $\langle M, w \rangle \in HALT$ iff $f(\langle M, w \rangle) \in DECIDER$. To see this, note that $f(\langle M, w \rangle) = \langle M' \rangle \in DECIDER$ iff M' halts on all inputs. We claim that M' halts on all inputs iff M halts on w. To see this, note that when M' is run on any input, it halts iff M halts on w. Thus if M halts on w, then M' halts on all inputs, and if M loops on w, M' loops on all inputs. Finally, note that M halts on w iff $\langle M, w \rangle \in HALT$. Thus $\langle M, w \rangle \in HALT$ iff $f(\langle M, w \rangle) \in DECIDER$. Therefore, f is a mapping reduction from HALT to DECIDER, so $HALT \leq_M DECIDER$.

Other Hard Languages

- We can't tell if a TM accepts a specific string.
- Could we determine whether or not a TM accepts one of many different strings with specific properties?
- For example, could we build a TM that determines whether some other TM accepts a string of all 1s?
- Let $\mathsf{ONES}_{\mathsf{TM}}$ be the following language:

ONES_{TM} = { (*M*) | *M* is a TM that accepts at least one string of the form 1ⁿ }

• Is $ONES_{TM} \in \mathbf{R}$? Is it \mathbf{RE} ?

$ONES_{TM}$

- Unfortunately, $\mathsf{ONES}_{\scriptscriptstyle \mathsf{TM}}$ is undecidable.
- However, $\mathsf{ONES}_{\mathsf{TM}}$ is recognizable.
 - Intuition: Nondeterministically guess the string of the form 1ⁿ that M will accept, then deterministically check that M accepts it.
- We'll show that $ONES_{TM}$ is undecidable by showing that $A_{TM} \leq_M ONES$.

 $A_{TM} \leq_{M} ONES_{TM}$

- As before, let's try to find a function f such that $(M, w) \in A_{TM}$ iff $f((M, w)) \in ONES_{TM}$.
- Let's let $f(\langle M, w \rangle) = \langle M' \rangle$ for some TM *M*'. Then we want to pick *M*' such that
 - $\langle M, w \rangle \in A_{TM}$ iff $f(\langle M, w \rangle) \in ONES_{TM}$ $\langle M, w \rangle \in A_{TM}$ iff $\langle M' \rangle \in ONES_{TM}$
 - **M** accepts w iff **M**' accepts 1^n for some n

The Reduction

- Goal: construct M' so M' accepts 1^n for some n iff M accepts w.
- Here is one possible option:

M' = "On input x: Ignore x. Run M on w. If M accepts w, accept x. If M rejects w, reject x."

- As with before, we can justify the construction of M' using the parameterization theorem.
- If *M* accepts *w*, then *M*' accepts all strings, including 1^n for any *n*.
- If M does not accept w, then M' does not accept any strings, so it certainly does not accept any strings of the form 1^n .

Theorem: $A_{TM} \leq_M ONES_{TM}$.

Proof: We exhibit a mapping reduction from A_{TM} to $ONES_{TM}$. For any TM/string pair $\langle M, w \rangle$, let $f(\langle M, w \rangle) = \langle M' \rangle$, where M' is defined in terms of M and w as follows:

M' = "On input x:Ignore x. Run M on w. If M accepts w, accept x. If M rejects w, reject x."

By the parameterization theorem, f is a computable function. We further claim that $\langle M, w \rangle \in A_{TM}$ iff $f(\langle M, w \rangle) \in ONES_{TM}$. To see this, note that $f(\langle M, w \rangle) = \langle M' \rangle \in ONES_{TM}$ iff M' accepts at least one string of the form 1^n . We claim that M' accepts at least one string of the form 1^n iff M accepts w. To see this, note that if M accepts w, then M' accepts 1, and if M does not accept w, then M' rejects all strings, including all strings of the form 1^n . Finally, M accepts w iff $\langle M, w \rangle \in A_{TM}$. Thus $\langle M, w \rangle \in A_{TM}$ iff $f(\langle M, w \rangle) \in ONES_{TM}$. Consequently, f is a mapping reduction from A_{TM} to $ONES_{TM}$, so $A_{TM} \leq_M ONES_{TM}$ as required.

A Slightly Modified Question

- We cannot determine whether or not a TM will accept at least one string of all 1s.
- Can we determine whether a TM *only* accepts strings of all 1s?
- In other words, for a TM M, is $\mathscr{L}(M) \subseteq \mathbf{1}^*$?
- Let $ONLYONES_{TM}$ be the language

ONLYONES_{TM} = { $\langle M \rangle \mid \mathscr{L}(M) \subseteq 1^*$ }

• IS ONLYONES_{TM} $\in \mathbf{R}$? How about **RE**?

$\mathsf{ONLYONES}_{\mathsf{TM}} \notin \mathbf{RE}$

- It turns out that the language ONLYONES $_{\rm TM}$ is unrecognizable.
- We can prove this by reducing $L_{\rm D}$ to ${\rm ONLYONES}_{\rm TM}.$
- If $L_{D} \leq_{M} \text{ONLYONES}_{TM}$, then we have that $\text{ONLYONES}_{TM} \notin \mathbf{RE}$.

$L_{\rm D} \leq_{\rm M} {\rm ONLYONES}_{\rm TM}$

• We want to find a computable function *f* such that

$(M) \in L_{D}$ iff $f((M)) \in ONLYONES_{TM}$.

• We want to set $f(\langle M \rangle) = \langle M' \rangle$ for some suitable choice of M'. This means

 $\langle M \rangle \in L_{D}$ iff $\langle M' \rangle \in ONLYONES_{TM}$ $\langle M \rangle \notin \mathscr{L}(M)$ iff $\mathscr{L}(M') \subseteq 1^{*}$

• How would we pick our machine *M*'?

One Possible Reduction

- We want to build M' from M such that $\langle M \rangle \notin \mathscr{L}(M)$ iff $\mathscr{L}(M') \subseteq \mathbf{1}^*$.
- In other words, we construct M' such that
 - If $\langle M \rangle \in \mathscr{L}(M)$, then $\mathscr{L}(M')$ is not a subset of 1^* .
 - If $\langle M \rangle \notin \mathscr{L}(M)$, then $\mathscr{L}(M')$ is a subset of **1***.
- One option: Come up with some languages with these properties, then construct our machine M' such that its language changes based on whether $\langle M \rangle \in \mathscr{L}(M)$.
 - If $\langle M \rangle \in \mathscr{G}(M)$, then $\mathscr{G}(M') = \Sigma^*$, which isn't a subset of **1**^{*}.
 - If $\langle M \rangle \notin \mathscr{L}(M)$, then $\mathscr{L}(M') = \emptyset$, which is a subset of **1**^{*}.

One Possible Reduction

- We want
 - If $\langle M \rangle \in \mathscr{L}(M)$, then $\mathscr{L}(M') = \Sigma^*$
 - If $\langle M \rangle \notin \mathscr{L}(M)$, then $\mathscr{L}(M') = \emptyset$
- Here is one possible M' that does this:

M' = "On input x:Ignore x. Run M on $\langle M \rangle$. If M accepts $\langle M \rangle$, accept x. If M rejects $\langle M \rangle$, reject x." Theorem: $L_{\rm D} \leq_{\rm M} \text{ONLYONES}_{\rm TM}$.

Proof: We exhibit a mapping reduction from L_D to ONLYONES_{TM}. For any TM *M*, let $f(\langle M \rangle) = \langle M' \rangle$, where *M*' is defined in terms of *M* as follows:

M' = "On input x:Ignore x. Run M on $\langle M \rangle$. If M accepts $\langle M \rangle$, accept x. If M rejects $\langle M \rangle$, reject x."

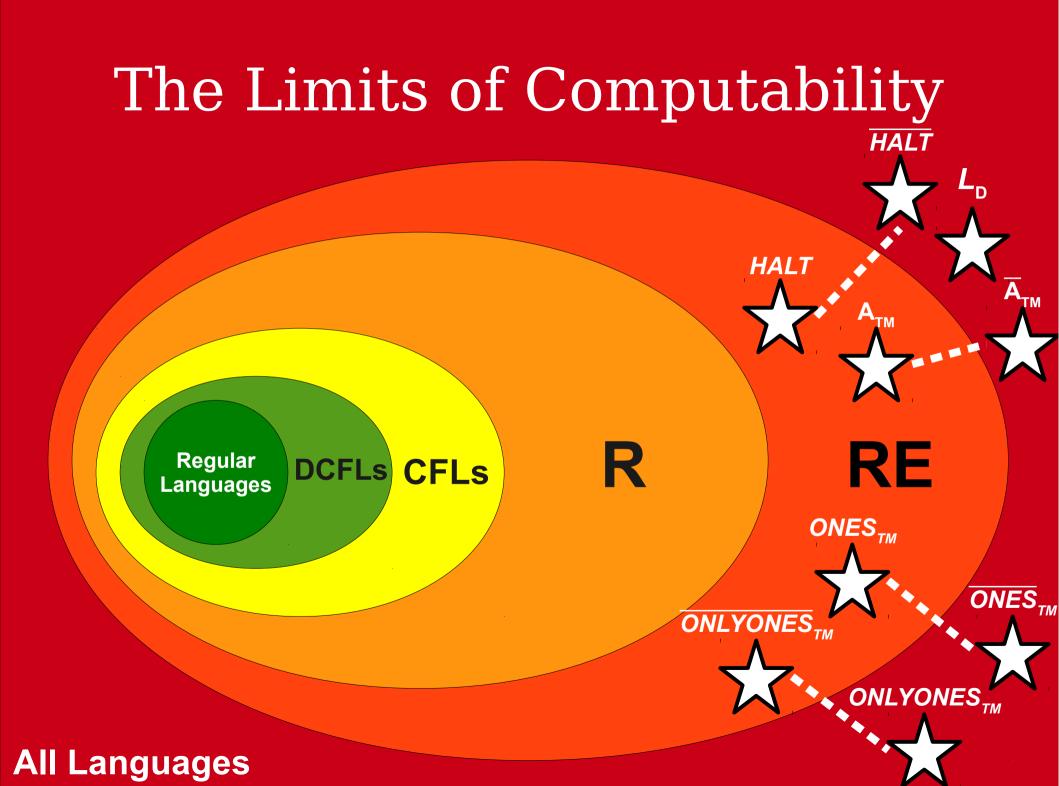
By the parameterization theorem, f is a computable function. We further claim that $\langle M \rangle \in L_{\rm D}$ iff $f(\langle M \rangle) \in \text{ONLYONES}_{\rm TM}$. To see this, note that $f(\langle M \rangle) = \langle M' \rangle \in \text{ONLYONES}_{\rm TM}$ iff $\mathscr{L}(M') \subseteq \mathbf{1}^*$. We claim that $\mathscr{L}(M') \subseteq \mathbf{1}^*$ iff M does not accept $\langle M \rangle$. To see this, note that if M does not accept $\langle M \rangle$, then M' never accepts any strings, so $\mathscr{L}(M') = \emptyset \subseteq \mathbf{1}^*$. Otherwise, if M accepts $\langle M \rangle$, then M' accepts all strings, so $\mathscr{L}(M) = \Sigma^*$, which is not a subset of $\mathbf{1}^*$. Finally, M does not accept $\langle M \rangle$ iff $\langle M \rangle \in L_{\rm D}$. Thus $\langle M \rangle \in L_{\rm D}$ iff $f(\langle M \rangle) \in \text{ONLYONES}_{\rm TM}$. Consequently, f is a mapping reduction from $L_{\rm D}$ to ONLYONES_{TM}, so $L_{\rm D} \leq_{\rm M}$ ONLYONES_{TM} as required.

ONLYONES_{TM}

• Although ONLYONES_{TM} is not **RE**, its complement ($\overline{ONLYONES}_{TM}$) is **RE**:

{ (M) | $\mathcal{L}(M)$ is not a subset of 1* }

 Intuition: Can nondeterministically guess a string in *L(M)* that is not of the form 1ⁿ, then check that M accepts it.



RE and co-**RE**

- The class **RE** is the set of languages that are recognized by a TM.
- The class **co-RE** is the set of languages whose *complements* are recognized by a TM.
- In other words:

 $L \in \text{co-RE}$ iff $\overline{L} \in \text{RE}$ $\overline{L} \in \text{co-RE}$ iff $L \in \text{RE}$

 Languages in co-RE are called corecognizable. Languages not in co-RE are called co-unrecognizable.

Intuiting **RE** and co-**RE**

- A language *L* is in **RE** iff there is a recognizer for it.
 - If $w \in L$, the recognizer accepts.
 - If $w \notin L$, the recognizer does not accept.
- A language *L* is in co-**RE** iff there is a **refuter** for it.
 - If $w \notin L$, the refuter rejects.
 - If $w \in L$, the refuter does not reject.

RE, and co-RE

- **RE** and co-**RE** are fundamental classes of problems.
 - **RE** is the class of problems where a computer can always verify "yes" instances.
 - co-**RE** is the class of problems where a computer can always refute "no" instances.
- **RE** and co-**RE** are, in a sense, the weakest possible conditions for which a problem can be approached by computers.

R, RE, and co-RE

• Recall:

If $L \in \mathbf{RE}$ and $\overline{L} \in \mathbf{RE}$, then $L \in \mathbf{R}$

• Rewritten in terms of co-**RE**:

If $L \in \mathbf{RE}$ and $L \in \text{co-RE}$, then $L \in \mathbf{R}$

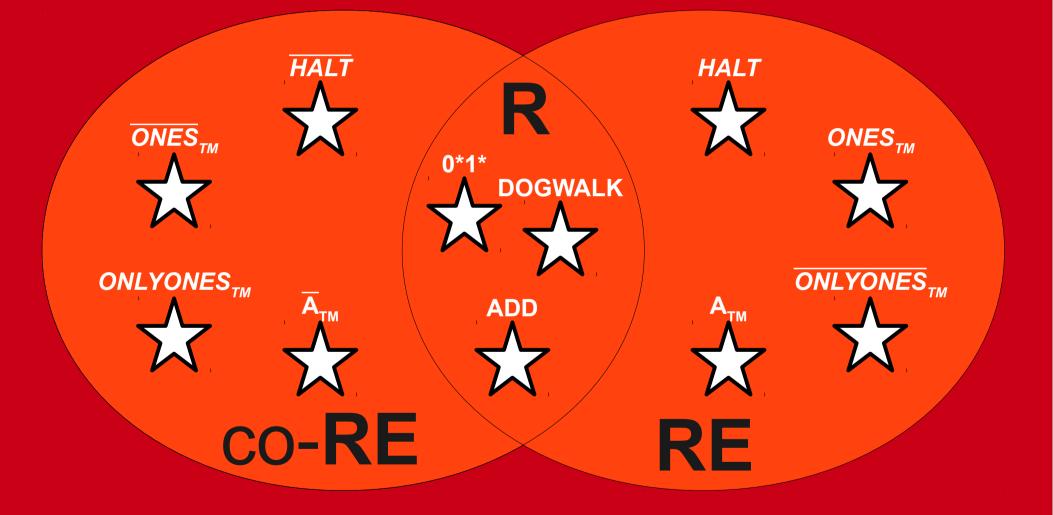
• In other words:

$\mathbf{RE} \cap \mathbf{co}\mathbf{-RE} \subseteq \mathbf{R}$

• We also know that $\mathbf{R}\subseteq\mathbf{RE}$ and $\mathbf{R}\subseteq\mathsf{co}\text{-}\mathbf{RE}$, so

 $\mathbf{R} = \mathbf{R}\mathbf{E} \cap \operatorname{co-}\mathbf{R}\mathbf{E}$

The Limits of Computability



All Languages

$L_{\rm\scriptscriptstyle D}$ Revisited

- The diagonalization language $L_{\rm D}$ is the language

$L_{\rm D} = \{ \langle M \rangle \mid M \text{ is a TM and } M \notin \mathscr{L}(M) \}$

- As we saw before, $L_{\rm D} \notin \mathbf{RE}$.
- So where is L_{D} ? Is it in $L_{D} \in co$ -**RE**? Or is it someplace else?

$\overline{L}_{\mathrm{D}}$

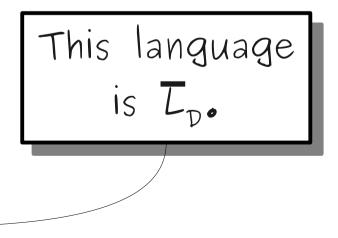
- To see whether $L_{\rm D} \in \text{co-RE}$, we will see whether $\overline{L}_{\rm D} \in \text{RE}$.
- The language $\overline{L}_{
 m D}$ is the language

$\overline{L}_{D} = \{ \langle M \rangle \mid M \text{ is a TM and } \langle M \rangle \in \mathcal{L}(M) \}$

- Two questions:
 - What is this language?
 - Is this language **RE**?

	(Μ ₀)	(Μ ₁)	$\langle M_2 \rangle$	$\langle M_{3} \rangle$	$\langle M_4 \rangle$	$\langle M_{5} \rangle$	
M_0	Acc	No	No	Acc	Acc	No	••••
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	

 $\{ \langle M \rangle | M \text{ is a TM}$ and $\langle M \rangle \in \mathscr{L}(M)$



Acc Acc Acc No Acc No .

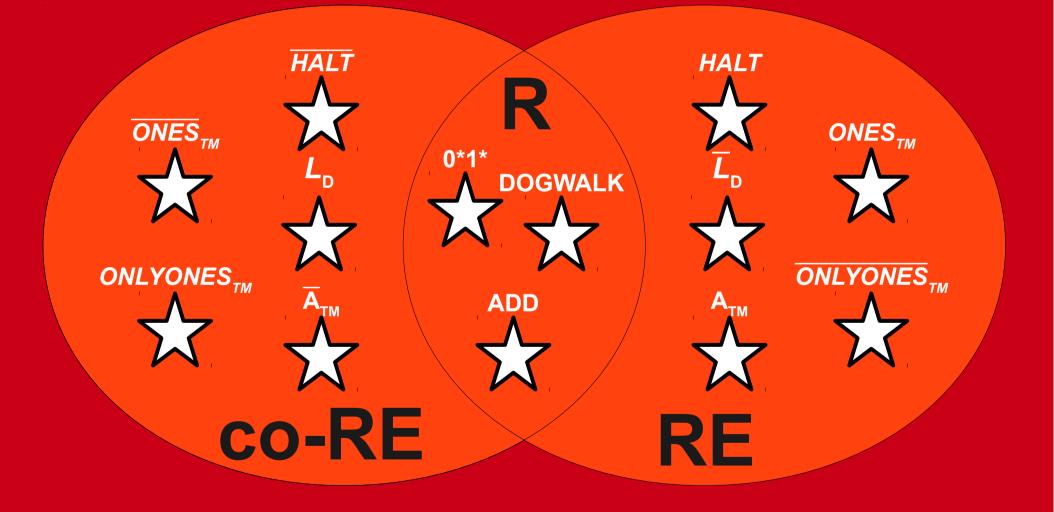
$L_{\rm D} \in \text{co-RE}$

• Here's an TM for \overline{L}_{D} :

 $R = \text{``On input } \langle M \rangle:$ Run *M* on $\langle M \rangle$. If *M* accepts $\langle M \rangle$, accept. If *M* rejects $\langle M \rangle$, reject.'' *R* accepts $\langle M \rangle$ iff $\langle M \rangle \in \mathscr{A}(M)$ iff

• Then *R* accepts $\langle M \rangle$ iff $\langle M \rangle \in \mathscr{D}(M)$ iff $\langle M \rangle \in \mathscr{L}_{\mathbb{D}}$, so $\mathscr{D}(R) = \overline{L}_{\mathbb{D}}$.

The Limits of Computability



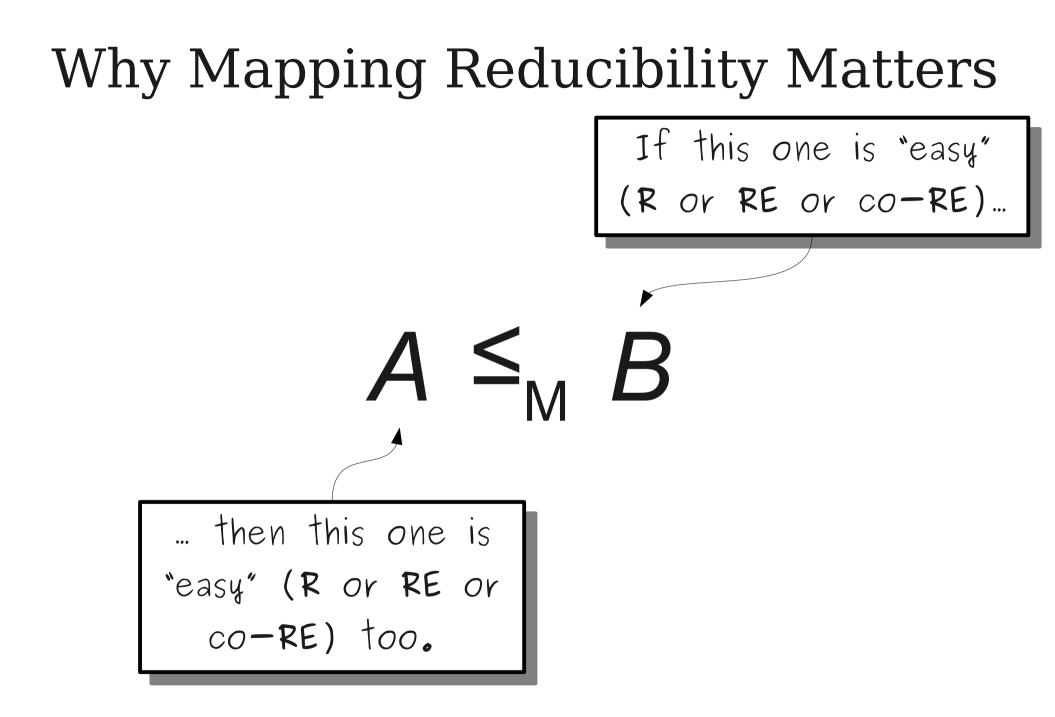
All Languages

Theorem: If $A \leq_{M} B$, then $\overline{A} \leq_{M} \overline{B}$. *Proof:* Suppose that $A \leq_{M} B$. Then there exists a computable function f such that $w \in A$ iff $f(w) \in B$. Note that $w \in A$ iff $w \notin \overline{A}$ and $f(w) \in B$ iff $f(w) \notin \overline{B}$. Consequently, we have that $w \notin \overline{A}$ iff $f(w) \notin \overline{B}$. Thus $w \in \overline{A}$ iff $f(w) \in \overline{B}$. Since f is computable, $\overline{A} \leq_{M} \overline{B}$. \blacksquare

co-RE Reductions

- Corollary: If $A \leq_{M} B$ and $B \in \text{co-RE}$, then $A \in \text{co-RE}$.
 - *Proof*: Since $A \leq_{M} B$, $\overline{A} \leq_{M} \overline{B}$. Since $B \in \text{co-RE}$, $\overline{B} \in \mathbb{RE}$. Thus $\overline{A} \in \mathbb{RE}$, so $A \in \text{co-RE}$. ■
- **Corollary:** If $A \leq_{M} B$ and $A \notin co-\mathbf{RE}$, then $B \notin co-\mathbf{RE}$.

Proof: Take the contrapositive of the above.



Why Mapping Reducibility Matters

If this one is "hard" (not R or not RE or not co-RE)... $A \leq_{M} B$... then this one is "hard" (not R or not RE or not co-RE) too.

The Limits of Computability Is there anything out here? HALT HALT ONES **ONES**_{TM} 0*1* DOGWALK ONLYONES **ONLYONES**_{TM} ADD

RF

co-RE

All Languages

RE \cup co-**RE** is Not Everything

- Using the same reasoning as the first day of lecture, we can show that there must be problems that are neither **RE** nor co-**RE**.
- There are more sets of strings than TMs.
- There are more sets of strings than twice the number of TMs.
- What do these languages look like?

An Extremely Hard Problem

- Recall: All regular languages are also $\mathbf{RE}.$
- This means that some TMs accept regular languages and some TMs do not.
- Let REGULAR_{TM} be the language of all TM descriptions that accept regular languages:
 REGULAR_{TM} = { (M) | L(M) is regular }
- Is $\text{REGULAR}_{\text{TM}} \in \mathbf{R}$? How about \mathbf{RE} ?

$\mathbf{REGULAR}_{\mathrm{TM}} \notin \mathbf{RE}$

- It turns out that $\operatorname{REGULAR}_{\operatorname{IM}}$ is unrecognizable, meaning that there is no computer program that can even verify that another TM's language is regular!
- To do this, we'll do another reduction from L_{D} and prove that $L_{D} \leq_{M} \text{REGULAR}_{M}$.

$L_{\rm D} \leq_{\rm M} {\rm REGULAR}_{\rm TM}$

- We want to find a computable function $f \mbox{ such }$ that

$\langle M \rangle \in L_{\rm D}$ iff $f(\langle M \rangle) \in {\rm REGULAR}_{\rm TM}$.

• We need to choose M' such that $f(\langle M\rangle)=\langle M'\rangle$ for some TM M'. Then

$\langle M \rangle \in L_{\rm D}$	iff	$f(\langle M \rangle) \in \text{REGULAR}_{TM}$
$\langle M \rangle \in L_{\rm D}$	iff	$\langle M' \rangle \in \operatorname{REGULAR}_{\operatorname{TM}}$
⟨M⟩ ∉ ℒ(M)	iff	(M') is regular.

$L_{\rm D} \leq_{\rm M} {\rm REGULAR}_{\rm TM}$

- We want to construct some M' out of M such that
 - If $\langle M \rangle \in \mathscr{L}(M)$, then $\mathscr{L}(M')$ is not regular.
 - If $\langle M \rangle \notin \mathscr{L}(M)$, then $\mathscr{L}(M')$ is regular.
- One option: choose two languages, one regular and one nonregular, then construct M' so its language switches from regular to nonregular based on whether $\langle M \rangle \notin \mathscr{L}(M)$.
 - If $\langle M \rangle \in \mathscr{L}(M)$, then $\mathscr{L}(M') = \{ \mathbf{0}^{n}\mathbf{1}^{n} \mid n \in \mathbb{N} \}$
 - If $\langle M \rangle \notin \mathscr{L}(M)$, then $\mathscr{L}(M') = \emptyset$

The Reduction

- We want to build M' from M such that
 - If $\langle M \rangle \in \mathscr{L}(M)$, then $\mathscr{L}(M') = \{ \mathbf{0}^n \mathbf{1}^n \mid n \in \mathbb{N} \}$
 - If $\langle M \rangle \notin \mathscr{L}(M)$, then $\mathscr{L}(M') = \emptyset$
- Here is one way to do this:

M' = "On input *x*:

If x does not have the form $0^{n}1^{n}$, reject.

Run *M* on $\langle M \rangle$.

If *M* accepts, accept *x*.

If *M* rejects, reject *x*."

Theorem: $L_{\rm D} \leq_{\rm M} \text{REGULAR}_{\rm TM}$.

Proof: We exhibit a mapping reduction from $L_{\rm D}$ to REGULAR_{TM}.

For any TM *M*, let $f(\langle M \rangle) = \langle M' \rangle$, where *M*' is defined in terms of *M* as follows:

M' = "On input x:If x does not have the form $0^n 1^n$, reject x. Run M on $\langle M \rangle$. If M accepts $\langle M \rangle$, accept x. If M rejects $\langle M \rangle$, reject x."

By the parameterization theorem, *f* is a computable function. We further claim that $\langle M \rangle \in L_{D}$ iff $f(\langle M \rangle) \in \text{REGULAR}_{TM}$. To see this, note that $f(\langle M \rangle) = \langle M' \rangle \in \text{REGULAR}_{TM}$ iff $\mathscr{L}(M')$ is regular. We claim that $\mathscr{L}(M')$ is regular iff $\langle M \rangle \notin \mathscr{L}(M)$. To see this, note that if $\langle M \rangle \notin \mathscr{L}(M)$, then M' never accepts any strings. Thus $\mathscr{L}(M') = \emptyset$, which is regular. Otherwise, if $\langle M \rangle \in \mathscr{L}(M)$, then M' accepts all strings of the form $0^{n}1^{n}$, so we have that $\mathscr{L}(M) = \{ \mathbf{0}^{n} \mathbf{1}^{n} \mid n \in \mathbb{N} \}, \text{ which is not regular. Finally,}$ $\langle M \rangle \notin \mathscr{L}(\langle M \rangle)$ iff $\langle M \rangle \in L_{D}$. Thus $\langle M \rangle \in L_{D}$ iff $f(\langle M \rangle) \in \text{REGULAR}_{TM}$, so *f* is a mapping reduction from L_{D} to REGULAR_{TM}. Therefore, $L_{\rm D} \leq_{\rm M} \text{REGULAR}_{\rm TM}$.

$REGULAR_{TM} \notin co-RE$

- Not only is REGULAR_{TM} ∉ RE, but REGULAR_{TM} ∉ co-RE.
- Before proving this, take a minute to think about just how ridiculously hard this problem is.
 - No computer can confirm that an arbitrary TM has a regular language.
 - No computer can confirm that an arbitrary TM has a nonregular language.
 - This is vastly beyond the limits of what computers could ever hope to solve.

$\overline{L}_{\rm D} \leq_{\rm M} {\rm REGULAR}_{\rm TM}$

- To prove that $\operatorname{REGULAR}_{TM}$ is not co-**RE**, we will prove that $\overline{L}_{D} \leq_{M} \operatorname{REGULAR}_{TM}$.
- Since \overline{L}_{D} is not co-**RE**, this proves that REGULAR_{TM} is not co-**RE** either.
- Goal: Find a function f such that $(M) \in \overline{L}_{D}$ iff $f((M)) \in \text{REGULAR}_{TM}$
- Let $f(\langle M \rangle) = \langle M' \rangle$ for some TM M'. Then we want $\langle M \rangle \in \overline{L}_D$ iff $\langle M' \rangle \in \text{REGULAR}_{TM}$ $\langle M \rangle \in \mathscr{L}(M)$ iff $\mathscr{L}(M')$ is regular

$\overline{L}_{\rm D} \leq_{\rm M} {\rm REGULAR}_{\rm TM}$

- We want to construct some M' out of M such that
 - If $\langle M \rangle \in \mathscr{L}(M)$, then $\mathscr{L}(M')$ is regular.
 - If $\langle M \rangle \notin \mathscr{L}(M)$, then $\mathscr{L}(M')$ is not regular.
- One option: choose two languages, one regular and one nonregular, then construct M' so its language switches from regular to nonregular based on whether $\langle M \rangle \in \mathscr{L}(M)$.
 - If $\langle M \rangle \in \mathscr{G}(M)$, then $\mathscr{G}(M') = \Sigma^*$.
 - If $\langle M \rangle \notin \mathscr{L}(M)$, then $\mathscr{L}(M') = \{ \mathbf{0}^n \mathbf{1}^n \mid n \in \mathbb{N} \}$

$\overline{L}_{\rm D} \leq_{\rm M} {\rm REGULAR}_{\rm TM}$

- We want to build M' from M such that
 - If $\langle M \rangle \in \mathscr{L}(M)$, then $\mathscr{L}(M') = \Sigma^*$
 - If $\langle M \rangle \notin \mathscr{L}(M)$, then $\mathscr{L}(M') = \{ \mathbf{0}^{n}\mathbf{1}^{n} \mid n \in \mathbb{N} \}$
- Here is one way to do this:

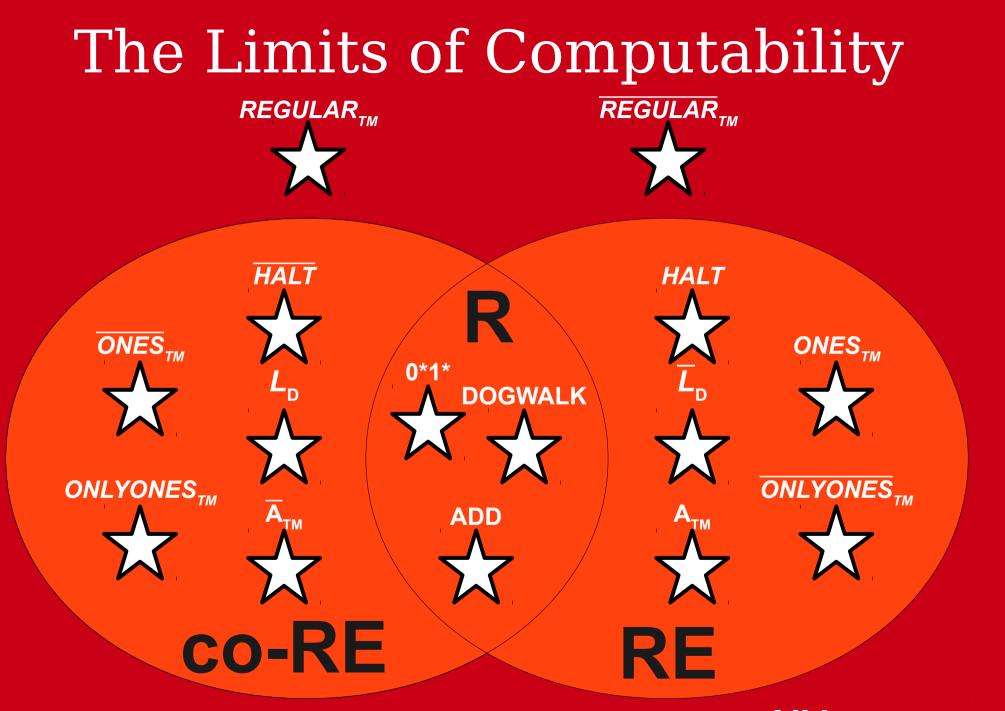
M' = "On input x: If x has the form $0^n 1^n$, accept. Run M on $\langle M \rangle$. If M accepts, accept x. If M rejects, reject x." Theorem: $\overline{L}_{\rm D} \leq_{\rm M} {\rm REGULAR}_{\rm TM}$.

Proof: We exhibit a mapping reduction from \overline{L}_D to REGULAR_{TM}. For any TM *M*, let $f(\langle M \rangle) = \langle M' \rangle$, where *M*' is defined in terms of *M* as follows:

M' = "On input *x*:

If x has the form $0^n 1^n$, accept x. Run M on $\langle M \rangle$. If M accepts $\langle M \rangle$, accept x. If M rejects $\langle M \rangle$, reject x."

By the parameterization theorem, f is a computable function. We further claim that $\langle M \rangle \in \overline{L}_{\rm D}$ iff $f(\langle M \rangle) \in \operatorname{REGULAR}_{\rm TM}$. To see this, note that $f(\langle M \rangle) = \langle M' \rangle \in \operatorname{REGULAR}_{\rm TM}$ iff $\mathscr{L}(M')$ is regular. We claim that $\mathscr{L}(M')$ is regular iff $\langle M \rangle \in \mathscr{L}(M)$. To see this, note that if $\langle M \rangle \in \mathscr{L}(M)$, then M' accepts all strings, either because that string is of the form $0^{n}1^{n}$ or because M eventually accepts $\langle M \rangle$. Thus $\mathscr{L}(M') = \Sigma^*$, which is regular. Otherwise, if $\langle M \rangle \notin \mathscr{L}(M)$, then M' only accepts strings of the form $0^{n}1^{n}$, so $\mathscr{L}(M) = \{ 0^{n}1^{n} \mid n \in \mathbb{N} \}$, which is not regular. Finally, $\langle M \rangle \in \mathscr{L}(\langle M \rangle)$ iff $\langle M \rangle \in \overline{L}_{\rm D}$. Thus $\langle M \rangle \in \overline{L}_{\rm D}$ iff $f(\langle M \rangle) \in \operatorname{REGULAR}_{\rm TM}$, so f is a mapping reduction from $\overline{L}_{\rm D}$ to $\operatorname{REGULAR}_{\rm TM}$. Therefore, $\overline{L}_{\rm D} \leq_{\rm M} \operatorname{REGULAR}_{\rm TM}$.



All Languages

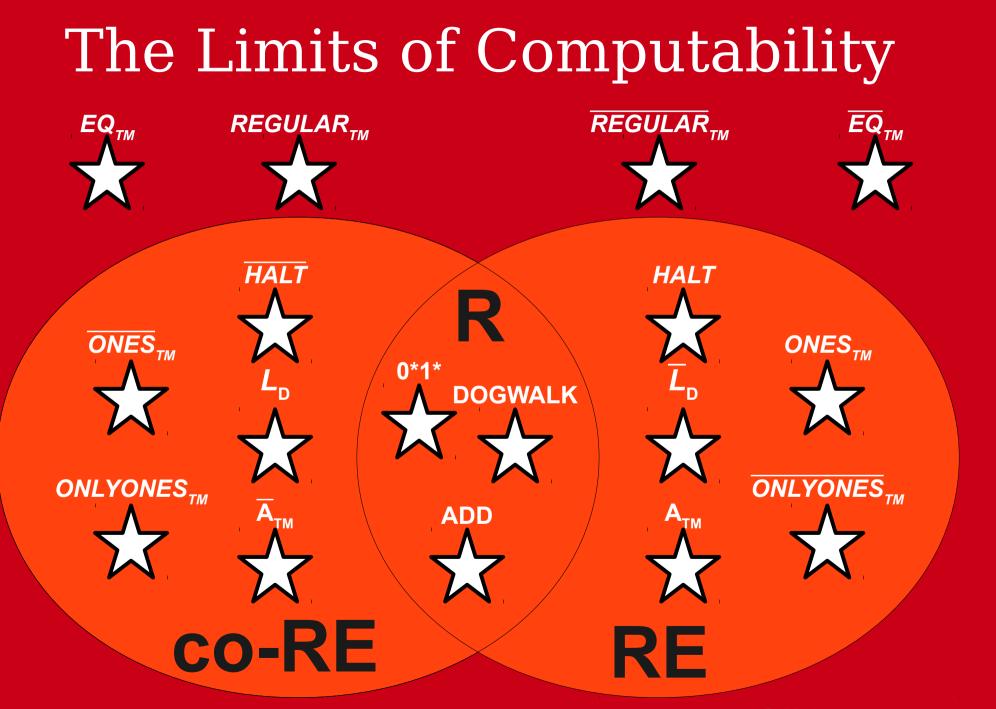
Beyond **RE** and co-**RE**

- The most famous problem that is neither ${\bf RE}$ nor co- ${\bf RE}$ is the TM equality problem:

 $\mathbf{EQ}_{\mathrm{TM}} = \{ \langle M_1, M_2 \rangle \mid \mathscr{L}(M_1) = \mathscr{L}(M_2) \}$

- This is why we have to write testing code; there's no way to have a computer prove or disprove that two programs always have the same output.
- This is related to Q6.ii from Problem Set 7.

Why All This Matters



All Languages

What problems can be solved **efficiently** a computer?

Where We're Going

- The class ${\bf P}$ represents problems that can be solved ${\it efficiently}$ by a computer.
- The class **NP** represents problems where answers can be verified *efficiently* by a computer.
- The class co-NP represents problems where answers can be *efficiently* refuted by a computer.
- The *polynomial-time* mapping reduction can be used to find connections between problems.

Next Time

Introduction to Complexity Theory

- How do you define efficiency?
- How do you measure it?
- What tools will we need?
- Complexity Class P
 - What problems can be solved efficiently?
 - How do we reason about them?

Have a wonderful Thanksgiving!