co-RE and Beyond

Friday Four Square! Today at 4:15PM, Outside Gates

Announcements

- Problem Set 7 due right now.
 - With a late day, due this Monday at 2:15PM.
- Problem Set 8 out, due Friday, November 30.
 - Explore properties of R, RE, and co-RE.
 - Play around with mapping reductions.
 - Find problems far beyond the realm of computers.
 - **No checkpoint**, even though the syllabus says there is one.
- Most (but not all Problem Set 6 graded; will be returned at end of lecture).

Recap From Last Time

Mapping Reducibility

- A mapping reduction from A to B is a function f such that
 - f is computable, and
 - For any $w, w \in A$ iff $f(w) \in B$.
- If there is a mapping reduction from A to B, we say that A is mapping reducible to B.
- Notation: $A \leq_{M} B$ iff A is mapping reducible to B.

Why Mapping Reducibility Matters

Why Mapping Reducibility Matters

If this one is "hard" (not R or not RE)...

$$A \leq_{\mathsf{M}} B$$

... then this one is "hard" (not R or not RE) too.

Sketch of the Proof

H = "On input w:
 Compute f(w).
 Run M on f(w).
 If M accepts f(w), accept w.
 If M rejects f(w), reject w."

H accepts wiff M accepts f(w)iff $f(w) \in B$ iff $w \in A$

More Unsolvable Problems

A More Elaborate Reduction

- Since $HALT \notin \mathbf{R}$, there is no algorithm for determining whether a TM will halt on some particular input.
- It seems, therefore, that we shouldn't be able to decide whether a TM halts on all possible inputs.
- Consider the language

$DECIDER = \{ \langle M \rangle \mid M \text{ is a decider } \}$

• How would we prove that *DECIDER* is, itself, undecidable?

$HALT \leq_{_{\mathrm{M}}} DECIDER$

- We will prove that *DECIDER* is undecidable by reducing *HALT* to *DECIDER*.
- Want to find a function *f* such that

```
\langle M, w \rangle \in HALT iff f(\langle M, w \rangle) \in DECIDER.
```

• Assuming that $f(\langle M, w \rangle) = \langle M' \rangle$ for some TM M', we have that

```
\langle M, w \rangle \in HALT iff \langle M' \rangle \in DECIDER.
```

M halts on w iff M' is a decider.

M halts on w iff M' halts on all inputs.

The Reduction

- Find a TM M' such that M' halts on all inputs iff M halts on w.
- **Key idea:** Build M' such that running M' on any input runs M on w.
- Here is one choice of M':

M' = "On input x:

Ignore x.

Run *M* on *w*.

If *M* accepts *w*, accept.

If M rejects w, reject."

- Notice that M' "amplifies" what M does on w:
 - If M halts on w, M' halts on every input.
 - If M loops on w, M' loops on every input.

Justifying M'

- Notice that our machine M' has the machine M and string w built into it!
- This is different from the machines we have constructed in the past.
- How do we justify that it's possible for some TM to construct a new TM at all?

M' ="On input x:

Ignore *x*.

Run M on w.

If M accepts w, accept.

If M rejects w, reject."

The Parameterization Theorem

Theorem: Let *M* be a TM of the form

$$M = \text{"On input } \langle x_1, x_2, ..., x_n \rangle$$
:

Do something with $x_1, x_2, ..., x_n$ "

and any value p for parameter x_1 , then a TM can construct the following TM M':

$$M' = \text{"On input } \langle x_2, ..., x_n \rangle$$
:

Do something with $p, x_2, ..., x_n$ "

Justifying M'

• Consider this machine *X*:

X = "On input $\langle N, z, x \rangle$:

Ignore x.

Run N on z.

If N accepts z, accept.

If N rejects z, reject."

• Applying the parameterization theorem twice with the values M and w produces the machine

M' ="On input x:

Ignore x.

Run M on w.

If M accepts w, accept.

If M rejects w, reject.

Ignore x.

Run M on w.

If M accepts w, accept.

If M rejects w, reject.

The Takeaway Point

- It is possible for a mapping reduction to take in a TM or TM/string pair and construct a new TM with that TM embedded within it.
- The parameterization theorem is just a formal way of justifying this.

The Takeaway Point

 It is possible for a take in a TM or T construct a new T embedded within

 The parameteriza formal way of just

Theorem: $HALT \leq_{\scriptscriptstyle{\mathbf{M}}} DECIDER$.

Proof: We exhibit a mapping reduction from HALT to DECIDER. For any TM/string pair $\langle M, w \rangle$, let $f(\langle M, w \rangle) = \langle M' \rangle$, where $\langle M' \rangle$ is defined in terms of M and w as follows:

By the parameterization theorem, f is a computable function. We further claim that $\langle M, w \rangle \in HALT$ iff $f(\langle M, w \rangle) \in DECIDER$. To see this, note that $f(\langle M, w \rangle) = \langle M' \rangle \in DECIDER$ iff M' halts on all inputs. We claim that M' halts on all inputs iff M halts on w. To see this, note that when M' is run on any input, it halts iff M halts on w. Thus if M halts on w, then M' halts on all inputs, and if M loops on w, M' loops on all inputs. Finally, note that M halts on w iff $\langle M, w \rangle \in HALT$. Thus $\langle M, w \rangle \in HALT$ iff $f(\langle M, w \rangle) \in DECIDER$. Therefore, f is a mapping reduction from HALT to DECIDER, so $HALT \leq_M DECIDER$.

Other Hard Languages

- We can't tell if a TM accepts a specific string.
- Could we determine whether or not a TM accepts one of many different strings with specific properties?
- For example, could we build a TM that determines whether some other TM accepts a string of all 1s?
- Let ONES_{TM} be the following language:
 - ONES_{TM} = { $\langle M \rangle \mid M \text{ is a TM that accepts at least one string of the form } 1^n }$
- Is $ONES_{TM} \in \mathbb{R}$? Is it \mathbb{RE} ?

ONES

- Unfortunately, $ONES_{TM}$ is undecidable.
- However, $ONES_{TM}$ is recognizable.
 - Intuition: Nondeterministically guess the string of the form $\mathbf{1}^n$ that M will accept, then deterministically check that M accepts it.
- We'll show that $ONES_{TM}$ is undecidable by showing that $A_{TM} \leq_M ONES$.

$$A_{TM} \leq_{M} ONES_{TM}$$

• As before, let's try to find a function *f* such that

$$\langle M, w \rangle \in A_{TM}$$
 iff $f(\langle M, w \rangle) \in ONES_{TM}$.

• Let's let $f(\langle M, w \rangle) = \langle M' \rangle$ for some TM M'. Then we want to pick M' such that

```
\langle M, w \rangle \in A_{TM} iff f(\langle M, w \rangle) \in ONES_{TM} \langle M, w \rangle \in A_{TM} iff \langle M' \rangle \in ONES_{TM} M accepts w iff M' accepts 1^n for some n
```

The Reduction

- Goal: construct M' so M' accepts $\mathbf{1}^n$ for some n iff M accepts w.
- Here is one possible option:

M' = "On input x:

Ignore *x*.

Run M on w.

If M accepts w, accept x.

If M rejects w, reject x."

- As with before, we can justify the construction of M' using the parameterization theorem.
- If M accepts w, then M' accepts all strings, including $\mathbf{1}^n$ for any n.
- If M does not accept w, then M' does not accept any strings, so it certainly does not accept any strings of the form $\mathbf{1}^n$.

Theorem: $A_{TM} \leq_M ONES_{TM}$.

Proof: We exhibit a mapping reduction from A_{TM} to $ONES_{TM}$. For any TM/string pair $\langle M, w \rangle$, let $f(\langle M, w \rangle) = \langle M' \rangle$, where M' is defined in terms of M and w as follows:

By the parameterization theorem, f is a computable function. We further claim that $\langle M, w \rangle \in A_{TM}$ iff $f(\langle M, w \rangle) \in ONES_{TM}$. To see this, note that $f(\langle M, w \rangle) = \langle M' \rangle \in ONES_{TM}$ iff M' accepts at least one string of the form $\mathbf{1}^n$. We claim that M' accepts at least one string of the form $\mathbf{1}^n$ iff M accepts w. To see this, note that if M accepts w, then M' accepts $\mathbf{1}$, and if M does not accept w, then M' rejects all strings, including all strings of the form $\mathbf{1}^n$. Finally, M accepts w iff $\langle M, w \rangle \in A_{TM}$. Thus $\langle M, w \rangle \in A_{TM}$ iff $f(\langle M, w \rangle) \in ONES_{TM}$. Consequently, f is a mapping reduction from A_{TM} to $ONES_{TM}$, so $A_{TM} \leq_M ONES_{TM}$ as required.

A Slightly Modified Question

- We cannot determine whether or not a TM will accept at least one string of all 1s.
- Can we determine whether a TM *only* accepts strings of all 1s?
- In other words, for a TM M, is $\mathcal{L}(M) \subseteq 1^*$?
- Let ONLYONES_{TM} be the language

ONLYONES_{TM} = {
$$\langle M \rangle \mid \mathcal{L}(M) \subseteq 1^*$$
 }

• Is ONLYONES_{TM} $\in \mathbb{R}$? How about \mathbb{RE} ?

ONLYONES_{TM} ∉ **RE**

- It turns out that the language $ONLYONES_{TM}$ is unrecognizable.
- We can prove this by reducing $L_{\rm D}$ to ONLYONES_{TM}.
- If $L_{\rm D} \leq_{\rm M} {\rm ONLYONES}_{\rm TM}$, then we have that ${\rm ONLYONES}_{\rm TM} \notin {\bf RE}$.

$$L_{\rm D} \leq_{\rm M} {\rm ONLYONES}_{\rm TM}$$

 We want to find a computable function f such that

$$\langle M \rangle \in L_D$$
 iff $f(\langle M \rangle) \in ONLYONES_{TM}$.

• We want to set $f(\langle M \rangle) = \langle M' \rangle$ for some suitable choice of M'. This means

$$\langle M \rangle \in L_{\rm D}$$
 iff $\langle M' \rangle \in {\rm ONLYONES}_{\rm TM}$
 $\langle M \rangle \notin \mathcal{L}(M)$ iff $\mathcal{L}(M') \subseteq 1^*$

• How would we pick our machine M'?

One Possible Reduction

- We want to build M' from M such that $\langle M \rangle \notin \mathcal{L}(M)$ iff $\mathcal{L}(M') \subseteq \mathbf{1}^*$.
- In other words, we construct M' such that
 - If $\langle M \rangle \in \mathcal{L}(M)$, then $\mathcal{L}(M')$ is not a subset of **1***.
 - If $\langle M \rangle \notin \mathcal{L}(M)$, then $\mathcal{L}(M')$ is a subset of **1***.
- One option: Come up with some languages with these properties, then construct our machine M' such that its language changes based on whether $\langle M \rangle \in \mathcal{L}(M)$.
 - If $\langle M \rangle \in \mathcal{L}(M)$, then $\mathcal{L}(M') = \Sigma^*$, which isn't a subset of **1***.
 - If $\langle M \rangle \notin \mathcal{L}(M)$, then $\mathcal{L}(M') = \emptyset$, which is a subset of **1***.

One Possible Reduction

- We want.
 - If $\langle M \rangle \in \mathcal{L}(M)$, then $\mathcal{L}(M') = \Sigma^*$
 - If $\langle M \rangle \notin \mathcal{L}(M)$, then $\mathcal{L}(M') = \emptyset$
- Here is one possible M' that does this:

```
M' = "On input x:
```

Ignore *x*.

Run M on $\langle M \rangle$.

If M accepts $\langle M \rangle$, accept x.

If M rejects $\langle M \rangle$, reject x."

Theorem: $L_{D} \leq_{M} ONLYONES_{TM}$.

Proof: We exhibit a mapping reduction from $L_{\rm D}$ to ONLYONES_{TM}. For any TM M, let $f(\langle M \rangle) = \langle M' \rangle$, where M' is defined in terms of M as follows:

By the parameterization theorem, f is a computable function. We further claim that $\langle M \rangle \in L_{\rm D}$ iff $f(\langle M \rangle) \in {\sf ONLYONES_{\rm TM}}$. To see this, note that $f(\langle M \rangle) = \langle M' \rangle \in {\sf ONLYONES_{\rm TM}}$ iff $\mathscr{L}(M') \subseteq \mathbf{1}^*$. We claim that $\mathscr{L}(M') \subseteq \mathbf{1}^*$ iff M does not accept $\langle M \rangle$. To see this, note that if M does not accept $\langle M \rangle$, then M' never accepts any strings, so $\mathscr{L}(M') = \emptyset \subseteq \mathbf{1}^*$. Otherwise, if M accepts $\langle M \rangle$, then M' accepts all strings, so $\mathscr{L}(M) = \Sigma^*$, which is not a subset of $\mathbf{1}^*$. Finally, M does not accept $\langle M \rangle$ iff $\langle M \rangle \in L_{\rm D}$. Thus $\langle M \rangle \in L_{\rm D}$ iff $f(\langle M \rangle) \in {\sf ONLYONES_{\rm TM}}$. Consequently, f is a mapping reduction from $L_{\rm D}$ to ${\sf ONLYONES_{\rm TM}}$, so $L_{\rm D} \leq_{\rm M} {\sf ONLYONES_{\rm TM}}$ as required.

$\overline{\text{ONLYONES}_{\text{TM}}}$

• Although ONLYONES_{TM} is not **RE**, its complement ($\overline{ONLYONES}_{TM}$) is **RE**:

 $\{ \langle M \rangle \mid \mathcal{L}(M) \text{ is not a subset of } 1^* \}$

• Intuition: Can nondeterministically guess a string in $\mathcal{L}(M)$ that is not of the form $\mathbf{1}^n$, then check that M accepts it.

The Limits of Computability

RE and co-RE

- The class **RE** is the set of languages that are recognized by a TM.
- The class **co-RE** is the set of languages whose *complements* are recognized by a TM.
- In other words:

$$L \in \text{co-RE}$$
 iff $\overline{L} \in \text{RE}$
 $\overline{L} \in \text{co-RE}$ iff $L \in \text{RE}$

 Languages in co-RE are called corecognizable. Languages not in co-RE are called co-unrecognizable.

Intuiting **RE** and co-**RE**

- A language *L* is in **RE** iff there is a recognizer for it.
 - If $w \in L$, the recognizer accepts.
 - If $w \notin L$, the recognizer does not accept.
- A language *L* is in co-**RE** iff there is a **refuter** for it.
 - If $w \notin L$, the refuter rejects.
 - If $w \in L$, the refuter does not reject.

RE, and co-RE

- **RE** and co-**RE** are fundamental classes of problems.
 - **RE** is the class of problems where a computer can always verify "yes" instances.
 - co-**RE** is the class of problems where a computer can always refute "no" instances.
- RE and co-RE are, in a sense, the weakest possible conditions for which a problem can be approached by computers.

R, RE, and co-RE

• Recall:

If
$$L \in \mathbf{RE}$$
 and $\overline{L} \in \mathbf{RE}$, then $L \in \mathbf{R}$

• Rewritten in terms of co-**RE**:

If
$$L \in \mathbf{RE}$$
 and $L \in \text{co-}\mathbf{RE}$, then $L \in \mathbf{R}$

In other words:

$$RE \cap co-RE \subseteq R$$

• We also know that $\mathbf{R} \subseteq \mathbf{RE}$ and $\mathbf{R} \subseteq \text{co-}\mathbf{RE}$, so

$$\mathbf{R} = \mathbf{RE} \cap \mathbf{co} \cdot \mathbf{RE}$$

The Limits of Computability

$L_{\scriptscriptstyle \mathrm{D}}$ Revisited

• The diagonalization language $L_{\scriptscriptstyle D}$ is the language

 $L_{\rm D} = \{ \langle M \rangle \mid M \text{ is a TM and } \langle M \rangle \notin \mathcal{L}(M) \}$

- As we saw before, $L_{\rm D} \notin \mathbf{RE}$.
- So where is $L_{\rm D}$? Is it in $L_{\rm D} \in \text{co-}\mathbf{RE}$? Or is it someplace else?

$$\overline{L}_{ ext{D}}$$

- To see whether $L_{\rm D} \in \text{co-}\mathbf{RE}$, we will see whether $\overline{L}_{\rm D} \in \mathbf{RE}$.
- The language $\overline{L}_{\scriptscriptstyle \mathrm{D}}$ is the language

$$\overline{L}_{D} = \{ \langle M \rangle \mid M \text{ is a TM and } \langle M \rangle \in \mathcal{L}(M) \}$$

- Two questions:
 - What is this language?
 - Is this language **RE**?

 M_0

 M_1

 M_2

 M_3

 M_4

 M_5

. . .

$\langle M_0 \rangle \langle M_1 \rangle \langle M_2 \rangle$	$\langle M_3 \rangle \langle N$	$ M_4\rangle \langle M_5\rangle$	
---	---------------------------------	-----------------------------------	--

 M_0

M₁

 M_2

 M_4

 M_5

. . .

	$\langle M_0 \rangle$	(M ₁)	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_5 \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M ₁							
M_2							
M_3							
M_4							
M_5							

	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_5 \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2							
M_3							
M_4							
M_5							

. . .

	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_5 \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	

 M_3 M_4 M_5

	$\langle M_0 \rangle$	(M ₁)	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_5 \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	

M₄
M₅

. . .

	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_5 \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M ₁	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	

 M_5

. . .

	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_5 \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	

...

	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_5 \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	

	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_5 \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	

	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_5 \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	

	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_5 \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	

	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_5 \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M ₁	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	

Acc Acc Acc No Acc No

"The language of all TMs that accept their own description."

	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_5 \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	

 $\{\langle M \rangle \mid M \text{ is a TM} \}$ that accepts $\langle M \rangle \}$

	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_5 \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	

 $\{\langle M \rangle \mid M \text{ is a TM} \}$ and $\langle M \rangle \in \mathcal{L}(M)$

	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_5 \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	
• • •							

 $\{ \langle M \rangle \mid M \text{ is a TM} \}$ and $\langle M \rangle \in \mathcal{L}(M) \}$

This language is \overline{L}_{D} .

$L_{\rm D} \in \text{co-RE}$

• Here's an TM for $\overline{L}_{\scriptscriptstyle \mathbb{D}}$:

 $R = \text{"On input } \langle M \rangle$:

Run M on $\langle M \rangle$.

If M accepts $\langle M \rangle$, accept.

If M rejects $\langle M \rangle$, reject."

• Then R accepts $\langle M \rangle$ iff $\langle M \rangle \in \mathcal{L}(M)$ iff $\langle M \rangle \in \overline{L}_{\mathbb{D}}$, so $\mathcal{L}(R) = \overline{L}_{\mathbb{D}}$.

The Limits of Computability

Theorem: If $A \leq_{\mathrm{M}} B$, then $\overline{A} \leq_{\mathrm{M}} \overline{B}$.

Theorem: If $A \leq_{\mathrm{M}} B$, then $\overline{A} \leq_{\mathrm{M}} \overline{B}$.

Proof: Suppose that $A \leq_{M} B$.

Theorem: If $A \leq_{M} B$, then $\overline{A} \leq_{M} \overline{B}$.

Proof: Suppose that $A \leq_M B$. Then there exists a computable function f such that $w \in A$ iff $f(w) \in B$.

Theorem: If $A \leq_{\operatorname{M}} B$, then $\overline{A} \leq_{\operatorname{M}} \overline{B}$. Proof: Suppose that $A \leq_{\operatorname{M}} B$. Then there exists a computable function f such that $w \in A$ iff $f(w) \in B$. Note that $w \in A$ iff $w \notin \overline{A}$ and $f(w) \in B$ iff $f(w) \notin \overline{B}$. Theorem: If $A \leq_{\mathrm{M}} B$, then $\overline{A} \leq_{\mathrm{M}} \overline{B}$.

Proof: Suppose that $A \leq_M B$. Then there exists a computable function f such that $w \in A$ iff $f(w) \in B$. Note that $w \in A$ iff $w \notin \overline{A}$ and $f(w) \in B$ iff $f(w) \notin \overline{B}$. Consequently, we have that $w \notin \overline{A}$ iff $f(w) \notin \overline{B}$.

Theorem: If $A \leq_M B$, then $\overline{A} \leq_M \overline{B}$. Proof: Suppose that $A \leq_M B$. Then there exists a computable function f such that $w \in A$ iff $f(w) \in B$. Note that $w \in A$ iff $w \notin \overline{A}$ and $f(w) \in B$ iff $f(w) \notin \overline{B}$. Consequently, we have that $w \notin \overline{A}$ iff $f(w) \notin \overline{B}$. Thus $w \in \overline{A}$ iff $f(w) \in \overline{B}$. Theorem: If $A \leq_M B$, then $\overline{A} \leq_M \overline{B}$. Proof: Suppose that $A \leq_M B$. Then there exists a computable function f such that $w \in A$ iff $f(w) \in B$. Note that $w \in A$ iff $w \notin \overline{A}$ and $f(w) \in B$ iff $f(w) \notin \overline{B}$. Consequently, we have that $w \notin \overline{A}$ iff $f(w) \notin \overline{B}$. Thus $w \in \overline{A}$ iff $f(w) \in \overline{B}$. Since f is computable, $\overline{A} \leq_M \overline{B}$. Theorem: If $A \leq_M B$, then $\overline{A} \leq_M \overline{B}$.

Proof: Suppose that $A \leq_M B$. Then there exists a computable function f such that $w \in A$ iff $f(w) \in B$. Note that $w \in A$ iff $w \notin \overline{A}$ and $f(w) \in B$ iff $f(w) \notin \overline{B}$. Consequently, we have that $w \notin \overline{A}$ iff $f(w) \notin \overline{B}$. Thus $w \in \overline{A}$ iff $f(w) \in \overline{B}$. Since f is computable, $\overline{A} \leq_M \overline{B}$. ■

co-RE Reductions

• Corollary: If $A \leq_{\mathrm{M}} B$ and $B \in \text{co-RE}$, then $A \in \text{co-RE}$.

Proof: Since $A \leq_M B$, $\overline{A} \leq_M \overline{B}$. Since $B \in \text{co-RE}$, $\overline{B} \in \text{RE}$. Thus $\overline{A} \in \text{RE}$, so $A \in \text{co-RE}$. ■

• Corollary: If $A \leq_{M} B$ and $A \notin \text{co-RE}$, then $B \notin \text{co-RE}$.

Proof: Take the contrapositive of the above. \blacksquare

Why Mapping Reducibility Matters

If this one is "easy" (R or RE or co-RE)...

 $A \leq_{\mathsf{M}} B$

... then this one is "easy" (R or RE or co-RE) too.

Why Mapping Reducibility Matters

If this one is "hard" (not R or not RE or not co-RE)...

$$A \leq_{M} B$$

... then this one is "hard" (not R or not RE or not co-RE) too.

The Limits of Computability

All Languages

RE ∪ co-**RE** is Not Everything

- Using the same reasoning as the first day of lecture, we can show that there must be problems that are neither **RE** nor co-**RE**.
- There are more sets of strings than TMs.
- There are more sets of strings than twice the number of TMs.
- What do these languages look like?

An Extremely Hard Problem

- Recall: All regular languages are also **RE**.
- This means that some TMs accept regular languages and some TMs do not.
- Let $REGULAR_{TM}$ be the language of all TM descriptions that accept regular languages:

 $REGULAR_{TM} = \{ \langle M \rangle \mid \mathcal{L}(M) \text{ is regular } \}$

• Is REGULAR_{TM} \in **R**? How about **RE**?

REGULAR_™ ∉ **RE**

- It turns out that REGULAR $_{\mathbb{IM}}$ is unrecognizable, meaning that there is no computer program that can even verify that another TM's language is regular!
- To do this, we'll do another reduction from $L_{\mathbb{D}}$ and prove that $L_{\mathbb{D}} \leq_{\mathbb{M}} \text{REGULAR}_{\mathbb{TM}}$.

$$L_{\rm D} \leq_{\rm M} {\rm REGULAR}_{\rm TM}$$

 We want to find a computable function f such that

$$\langle M \rangle \in L_{\rm D}$$
 iff $f(\langle M \rangle) \in \text{REGULAR}_{\text{TM}}$.

• We need to choose M' such that $f(\langle M \rangle) = \langle M' \rangle$ for some TM M'. Then

$$\langle M \rangle \in L_{\rm D}$$
 iff $f(\langle M \rangle) \in {\rm REGULAR_{TM}}$ $\langle M \rangle \in L_{\rm D}$ iff $\langle M' \rangle \in {\rm REGULAR_{TM}}$ $\langle M \rangle \notin \mathcal{L}(M)$ iff $\mathcal{L}(M')$ is regular.

$L_{\rm D} \leq_{\rm M} {\rm REGULAR}_{\rm TM}$

- We want to construct some M' out of M such that
 - If $\langle M \rangle \in \mathcal{L}(M)$, then $\mathcal{L}(M')$ is not regular.
 - If $\langle M \rangle \notin \mathcal{L}(M)$, then $\mathcal{L}(M')$ is regular.
- One option: choose two languages, one regular and one nonregular, then construct M' so its language switches from regular to nonregular based on whether $\langle M \rangle \notin \mathcal{L}(M)$.
 - If $\langle M \rangle \in \mathcal{L}(M)$, then $\mathcal{L}(M') = \{ 0^n 1^n \mid n \in \mathbb{N} \}$
 - If $\langle M \rangle \notin \mathcal{L}(M)$, then $\mathcal{L}(M') = \emptyset$

The Reduction

- We want to build M' from M such that
 - If $\langle M \rangle \in \mathcal{L}(M)$, then $\mathcal{L}(M') = \{ \mathbf{0}^n \mathbf{1}^n \mid n \in \mathbb{N} \}$
 - If $\langle M \rangle \notin \mathcal{L}(M)$, then $\mathcal{L}(M') = \emptyset$
- Here is one way to do this:

```
M' = "On input x:
```

If x does not have the form $0^{n}1^{n}$, reject.

Run M on $\langle M \rangle$.

If M accepts, accept x.

If *M* rejects, reject *x*."

Theorem: $L_{D} \leq_{M} REGULAR_{TM}$.

Proof: We exhibit a mapping reduction from $L_{\rm D}$ to REGULAR_{TM}. For any TM M, let $f(\langle M \rangle) = \langle M' \rangle$, where M' is defined in terms of M as follows:

M' = "On input x:
 If x does not have the form $\mathbf{0}^{n}\mathbf{1}^{n}$, reject x.
 Run M on $\langle M \rangle$.
 If M accepts $\langle M \rangle$, accept x.
 If M rejects $\langle M \rangle$, reject x."

By the parameterization theorem, f is a computable function. We further claim that $\langle M \rangle \in L_{\scriptscriptstyle D}$ iff $f(\langle M \rangle) \in \text{REGULAR}_{\scriptscriptstyle \text{TM}}$. To see this, note that $f(\langle M \rangle) = \langle M' \rangle \in REGULAR_{TM}$ iff $\mathcal{L}(M')$ is regular. We claim that $\mathcal{L}(M')$ is regular iff $\langle M \rangle \notin \mathcal{L}(M)$. To see this, note that if $\langle M \rangle \notin \mathcal{L}(M)$, then M' never accepts any strings. Thus $\mathcal{L}(M') = \emptyset$, which is regular. Otherwise, if $\langle M \rangle \in \mathcal{L}(M)$, then M' accepts all strings of the form $0^{n}1^{n}$, so we have that $\mathscr{L}(M) = \{ \mathbf{0}^{n} \mathbf{1}^{n} \mid n \in \mathbb{N} \}, \text{ which is not regular. Finally, }$ $\langle M \rangle \notin \mathcal{L}(\langle M \rangle) \text{ iff } \langle M \rangle \in L_{D}. \text{ Thus } \langle M \rangle \in L_{D} \text{ iff } f(\langle M \rangle) \in \text{REGULAR}_{TM},$ so f is a mapping reduction from $L_{\scriptscriptstyle D}$ to REGULAR_{_{TM}}. Therefore, $L_{\rm D} \leq_{\rm M} {\rm REGULAR_{\rm TM}}$.

$REGULAR_{TM} \notin co-RE$

- Not only is REGULAR_{TM} \notin **RE**, but REGULAR_{TM} \notin co-**RE**.
- Before proving this, take a minute to think about just how ridiculously hard this problem is.
 - No computer can confirm that an arbitrary TM has a regular language.
 - No computer can confirm that an arbitrary TM has a nonregular language.
 - This is vastly beyond the limits of what computers could ever hope to solve.

$$\overline{L}_{\mathrm{D}} \leq_{\mathrm{M}} \mathrm{REGULAR}_{\mathrm{TM}}$$

- To prove that REGULAR_{TM} is not co-**RE**, we will prove that $\overline{L}_D \leq_M \text{REGULAR}_{\text{TM}}$.
- Since \overline{L}_D is not co-**RE**, this proves that REGULAR_{TM} is not co-**RE** either.
- Goal: Find a function *f* such that

$$\langle M \rangle \in \overline{L}_{D}$$
 iff $f(\langle M \rangle) \in REGULAR_{TM}$

• Let $f(\langle M \rangle) = \langle M' \rangle$ for some TM M'. Then we want

$$\langle M \rangle \in \overline{L}_{\mathrm{D}} \quad \text{iff} \quad \langle M' \rangle \in \mathrm{REGULAR}_{\mathrm{TM}}$$

$$\langle M \rangle \in \mathcal{L}(M)$$
 iff $\mathcal{L}(M')$ is regular

$$\overline{L}_{\scriptscriptstyle \mathrm{D}} \leq_{\scriptscriptstyle \mathrm{M}} \mathrm{REGULAR}_{\scriptscriptstyle \mathrm{TM}}$$

- We want to construct some M' out of M such that
 - If $\langle M \rangle \in \mathcal{L}(M)$, then $\mathcal{L}(M')$ is regular.
 - If $\langle M \rangle \notin \mathcal{L}(M)$, then $\mathcal{L}(M')$ is not regular.
- One option: choose two languages, one regular and one nonregular, then construct M' so its language switches from regular to nonregular based on whether $\langle M \rangle \in \mathcal{L}(M)$.
 - If $\langle M \rangle \in \mathcal{L}(M)$, then $\mathcal{L}(M') = \Sigma^*$.
 - If $\langle M \rangle \notin \mathcal{L}(M)$, then $\mathcal{L}(M') = \{0^n 1^n \mid n \in \mathbb{N}\}$

$\overline{L}_{\mathrm{D}} \leq_{\mathrm{M}} \mathrm{REGULAR}_{\mathrm{TM}}$

- We want to build M' from M such that
 - If $\langle M \rangle \in \mathcal{L}(M)$, then $\mathcal{L}(M') = \Sigma^*$
 - If $\langle M \rangle \notin \mathcal{L}(M)$, then $\mathcal{L}(M') = \{ \mathbf{0}^n \mathbf{1}^n \mid n \in \mathbb{N} \}$
- Here is one way to do this:

M' = "On input x:

If x has the form $0^{n}1^{n}$, accept.

Run M on $\langle M \rangle$.

If M accepts, accept x.

If M rejects, reject x."

Theorem: $\overline{L}_{\mathrm{D}} \leq_{\mathrm{M}} \mathrm{REGULAR}_{\mathrm{TM}}$.

Proof: We exhibit a mapping reduction from \overline{L}_D to REGULAR_{TM}. For any TM M, let $f(\langle M \rangle) = \langle M' \rangle$, where M' is defined in terms of M as follows:

M' = "On input x:

If x has the form $\mathbf{0}^{n}\mathbf{1}^{n}$, accept x.

Run M on $\langle M \rangle$.

If M accepts $\langle M \rangle$, accept x.

If M rejects $\langle M \rangle$, reject x."

By the parameterization theorem, f is a computable function. We further claim that $\langle M \rangle \in \overline{L}_{\rm D}$ iff $f(\langle M \rangle) \in {\rm REGULAR_{TM}}$. To see this, note that $f(\langle M \rangle) = \langle M' \rangle \in {\rm REGULAR_{TM}}$ iff $\mathscr{L}(M')$ is regular. We claim that $\mathscr{L}(M')$ is regular iff $\langle M \rangle \in \mathscr{L}(M)$. To see this, note that if $\langle M \rangle \in \mathscr{L}(M)$, then M' accepts all strings, either because that string is of the form $\mathbf{0^n1^n}$ or because M eventually accepts $\langle M \rangle$. Thus $\mathscr{L}(M') = \Sigma^*$, which is regular. Otherwise, if $\langle M \rangle \notin \mathscr{L}(M)$, then M' only accepts strings of the form $\mathbf{0^n1^n}$, so $\mathscr{L}(M) = \{ \mathbf{0^n1^n} \mid n \in \mathbb{N} \}$, which is not regular. Finally, $\langle M \rangle \in \mathscr{L}(\langle M \rangle)$ iff $\langle M \rangle \in \overline{L}_{\rm D}$. Thus $\langle M \rangle \in \overline{L}_{\rm D}$ iff $f(\langle M \rangle) \in {\rm REGULAR_{TM}}$, so f is a mapping reduction from $\overline{L}_{\rm D}$ to ${\rm REGULAR_{TM}}$. Therefore,

 $\overline{L}_{\mathrm{D}} \leq_{\mathrm{M}} \mathrm{REGULAR}_{\mathrm{TM}}$.

The Limits of Computability

All Languages

Beyond **RE** and co-**RE**

• The most famous problem that is neither **RE** nor co-**RE** is the TM equality problem:

$$\mathbf{EQ}_{\mathrm{TM}} = \{ \langle M_1, M_2 \rangle \mid \mathcal{L}(M_1) = \mathcal{L}(M_2) \}$$

- This is why we have to write testing code; there's no way to have a computer prove or disprove that two programs always have the same output.
- This is related to Q6.ii from Problem Set 7.

Why All This Matters

The Limits of Computability

All Languages

What problems can be solved by a computer?

What problems can be solved **efficiently** by a computer?

Where We've Been

- The class **R** represents problems that can be solved by a computer.
- The class **RE** represents problems where answers can be verified by a computer.
- The class co-**RE** represents problems where answers can be refuted by a computer.
- The mapping reduction can be used to find connections between problems.

Where We're Going

- The class **P** represents problems that can be solved *efficiently* by a computer.
- The class **NP** represents problems where answers can be verified *efficiently* by a computer.
- The class co-**NP** represents problems where answers can be *efficiently* refuted by a computer.
- The *polynomial-time* mapping reduction can be used to find connections between problems.

Next Time

Introduction to Complexity Theory

- How do you define efficiency?
- How do you measure it?
- What tools will we need?

Complexity Class P

- What problems can be solved efficiently?
- How do we reason about them?

Have a wonderful Thanksgiving!