co-RE and Beyond

Friday Four Square! Today at 4:15PM, Outside Gates

Announcements

- Problem Set 7 due right now.
- With a late day, due this Monday at 2:15PM.
- Problem Set 8 out, due Friday, November 30.
- Explore properties of $\mathbf{R}, \mathbf{R E}$, and co-RE.
- Play around with mapping reductions.
- Find problems far beyond the realm of computers.
- No checkpoint, even though the syllabus says there is one.
- Most (but not all Problem Set 6 graded; will be returned at end of lecture).

Recap From Last Time

Mapping Reducibility

- A mapping reduction from A to B is a function f such that
- f is computable, and
- For any $w, w \in A$ iff $f(w) \in B$.
- If there is a mapping reduction from A to B, we say that A is mapping reducible to B.
- Notation: $\boldsymbol{A} \leq_{M} \boldsymbol{B}$ iff A is mapping reducible to B.

Why Mapping Reducibility Matters

```
If this one is "easy"
    (R or RE)...
```


A

\rightarrow N/B
then this one is "easy" (R or RE) too.

Why Mapping Reducibility Matters

If this one is "hard"
 (not R or not RE)...

A
 \leq_{M}
 B

then this one is "hard" (not R or not RE) too.

Sketch of the Proof

Machine H
$H=$ "On input w :
Compute $f(w)$.
Run M on $f(w)$.
If M accepts $f(w)$, accept w. If M rejects $f(w)$, reject w."
H accepts \boldsymbol{w}
iff
M accepts $f(w)$

iff
$f(w) \in B$
iff
$w \in \mathbf{A}$

More Unsolvable Problems

A More Elaborate Reduction

- Since $H A L T \notin \mathbf{R}$, there is no algorithm for determining whether a TM will halt on some particular input.
- It seems, therefore, that we shouldn't be able to decide whether a TM halts on all possible inputs.
- Consider the language

$$
\text { DECIDER }=\{\langle M\rangle \mid M \text { is a decider }\}
$$

- How would we prove that $D E C I D E R$ is, itself, undecidable?

$H A L T \leq_{\mathrm{M}}$ DECIDER

- We will prove that DECIDER is undecidable by reducing HALT to DECIDER.
- Want to find a function f such that

$$
\langle M, w\rangle \in \text { HALT } \quad \text { iff } \quad f(\langle M, w\rangle) \in \text { DECIDER. }
$$

- Assuming that $f(\langle M, w\rangle)=\left\langle M^{\prime}\right\rangle$ for some TM M^{\prime}, we have that
$\langle M, w\rangle \in$ HALT iff $\left\langle M^{\prime}\right\rangle \in$ DECIDER.
M halts on $w \quad$ iff $\quad M^{\prime}$ is a decider.
M halts on $w \quad$ iff $\quad M^{\prime}$ halts on all inputs.

The Reduction

- Find a TM M^{\prime} such that M^{\prime} halts on all inputs iff M halts on w.
- Key idea: Build M^{\prime} such that running M^{\prime} on any input runs M on w.
- Here is one choice of M^{\prime} :

$$
M^{\prime}=" O n \text { input } \chi:
$$

Ignore x.
Run M on w.
If M accepts w, accept.
If M rejects w, reject."

- Notice that M^{1} "amplifies" what M does on w :
- If M halts on w, M^{\prime} halts on every input.
- If M loops on w, M^{\prime} loops on every input.

DECIDER is Undecidable

$D E C I D E R$ is Undecidable

$D E C I D E R$ is Undecidable

$D E C I D E R$ is Undecidable

$D E C I D E R$ is Undecidable

$D E C I D E R$ is Undecidable

$D E C I D E R$ is Undecidable

$D E C I D E R$ is Undecidable

$M^{\prime}=$ "On input x :
Machine Ignore x. Run M on w. If M accepts w, accept. If M rejects w, reject."

$D E C I D E R$ is Undecidable

$D E C I D E R$ is Undecidable

What does M' do if M halts on w?

$D E C I D E R$ is Undecidable

What does M' do if M halts on w ?
M^{\prime} always halts

$D E C I D E R$ is Undecidable

What does M' do if M loops on w ?

$D E C I D E R$ is Undecidable

What does M^{\prime} do if M loops
on w ?

M' never halts

$D E C I D E R$ is Undecidable

$D E C I D E R$ is Undecidable

$D E C I D E R$ is Undecidable

Machine H

$D E C I D E R$ is Undecidable

Machine H

Machine M' What does H do if M halts on w ?

$D E C I D E R$ is Undecidable

Machine H

Machine M'

What does H do if M halts on w ?

$D E C I D E R$ is Undecidable

Machine H

Machine M'

What does H do if M halts on w ?

$D E C I D E R$ is Undecidable

Machine H

$D E C I D E R$ is Undecidable

Machine H

Machine M'

What does H do if M loops on
w ?

$D E C I D E R$ is Undecidable

Machine H

DECIDER is Undecidable

Machine H

Machine M'

What does H do if M loops on w ?

$D E C I D E R$ is Undecidable

Machine H

$D E C I D E R$ is Undecidable

Machine H

$D E C I D E R$ is Undecidable

Machine H

Machine M' What does H do if M halts on w ?

$D E C I D E R$ is Undecidable

Machine H

Machine M' What does H do if M halts on w ?

$D E C I D E R$ is Undecidable

Machine H

$D E C I D E R$ is Undecidable

Machine H

Machine M' What does H do if M loops on w ?

$D E C I D E R$ is Undecidable

Machine H

Machine M' What does H do if M loops on w ?

$D E C I D E R$ is Undecidable

Machine H

$D E C I D E R$ is Undecidable

Machine H

Justifying M^{\prime}

- Notice that our machine M^{\prime} has the machine M and string w built into it!
$M^{\prime}=$ "On input χ :
- This is different from the machines we have constructed in the past.
- How do we justify

Ignore χ.
Run M on w.
If M accepts w, accept.
If M rejects w, reject." that it's possible for some TM to construct a new TM at all?

The Parameterization Theorem

Theorem: Let M be a TM of the form

$$
M=\text { "On input }\left\langle x_{1}, x_{2}, \ldots, x_{\mathrm{n}}\right\rangle
$$

Do something with $x_{1}, x_{2}, \ldots, x_{n}$ "
and any value p for parameter x_{1}, then a TM can construct the following TM M^{\prime} :

$$
M^{\prime}=" \text { On input }\left\langle x_{2}, \ldots, x_{\mathrm{n}}\right\rangle \text { : }
$$

Do something with $p, x_{2}, \ldots, x_{n}{ }^{\prime \prime}$

Justifying M^{\prime}

- Consider this machine X :

$$
X=\text { "On input }\langle N, z, x\rangle:
$$

Ignore χ.
Run N on z.
If N accepts z, accept.
If N rejects z, reject."

- Applying the parameterization theorem twice with the values M and w produces the machine
$M^{\prime}=$ "On input χ :
Ignore x.
Run M on w.
If M accepts w, accept.
If M rejects w, reject.

Run M on w.
If M accepts w, accept.
If M rejects w, reject.

The Takeaway Point

- It is possible for a mapping reduction to take in a TM or TM/string pair and construct a new TM with that TM embedded within it.
- The parameterization theorem is just a formal way of justifying this.

The Takeaway Point

- It is possible for a-mصninornodunto take in a TM or T construct a new 1 embedded within
- The parameteriza formal way of jus

Theorem: HALT \leq_{M} DECIDER.
Proof: We exhibit a mapping reduction from HALT to DECIDER.
For any TM/string pair $\langle M, w\rangle$, let $f(\langle M, w\rangle)=\left\langle M^{\prime}\right\rangle$, where $\left\langle M^{\prime}\right\rangle$ is defined in terms of M and w as follows:
$M^{\prime}=$ "On input χ :
Ignore x.
Run M on w.
If M accepts w, accept.
If M rejects w, reject."
By the parameterization theorem, f is a computable function. We further claim that $\langle M, w\rangle \in \operatorname{HALT}$ iff $f(\langle M, w\rangle) \in D E C I D E R$. To see this, note that $f(\langle M, w\rangle)=\left\langle M^{\prime}\right\rangle \in D E C I D E R$ iff M^{\prime} halts on all inputs. We claim that M^{\prime} halts on all inputs iff M halts on w. To see this, note that when M^{\prime} is run on any input, it halts iff M halts on w. Thus if M halts on w, then M^{\prime} halts on all inputs, and if M loops on w, M^{\prime} loops on all inputs. Finally, note that M halts on w iff $\langle M, w\rangle \in H A L T$. Thus $\langle M, w\rangle \in H A L T$ iff $f(\langle M, w\rangle) \in D E C I D E R$. Therefore, f is a mapping reduction from $H A L T$ to $D E C I D E R$, so $H A L T \leq_{\mathrm{M}} D E C I D E R$.

Other Hard Languages

- We can't tell if a TM accepts a specific string.
- Could we determine whether or not a TM accepts one of many different strings with specific properties?
- For example, could we build a TM that determines whether some other TM accepts a string of all 1s?
- Let $\mathrm{ONES}_{\text {тм }}$ be the following language:

ONES $_{\text {тм }}=\{\langle M\rangle \mid M$ is a TM that accepts at least one string of the form $\left.1^{\text {n }}\right\}$

- Is $\mathrm{ONES}_{\text {тм }} \in \mathbf{R}$? Is it RE?

$\mathrm{ONES}_{\text {тм }}$

- Unfortunately, ONES $_{\text {тм }}$ is undecidable.
- However, ONES $_{\text {тм }}$ is recognizable.
- Intuition: Nondeterministically guess the string of the form 1^{n} that M will accept, then deterministically check that M accepts it.
- We'll show that $\mathrm{ONES}_{\text {тм }}$ is undecidable by showing that $\mathrm{A}_{\mathrm{TM}} \leq_{\mathrm{M}}$ ONES.

$\mathrm{A}_{\mathrm{TM}} \leq_{\mathrm{M}} \mathrm{ONES}_{\mathrm{TM}}$

- As before, let's try to find a function f such that $\langle M, w\rangle \in \mathbf{A}_{\text {тм }} \quad$ iff $\quad f(\langle M, w\rangle) \in$ ONES $_{\text {тм }}$.
- Let's let $f(\langle M, w\rangle)=\left\langle M^{\prime}\right\rangle$ for some TM M^{\prime}. Then we want to pick M^{\prime} such that
$\langle M, \boldsymbol{w}\rangle \in \mathbf{A}_{\text {тм }} \quad$ iff $\quad f(\langle\boldsymbol{M}, \boldsymbol{w}\rangle) \in \mathbf{O N E S}_{\text {тм }}$
$\langle M, w\rangle \in \mathbf{A}_{\text {тм }} \quad$ iff $\quad\left\langle M^{\prime}\right\rangle \in$ ONES $_{\text {тм }}$
M accepts $\boldsymbol{w} \quad$ iff $\quad M^{\prime}$ accepts $1^{\text {n }}$ for some n

The Reduction

- Goal: construct M^{\prime} so M^{\prime} accepts 1^{n} for some n iff M accepts w.
- Here is one possible option:

$$
\begin{aligned}
& M^{\prime}=\text { "On input } x: \\
& \quad \text { Ignore } x . \\
& \quad \text { Run } M \text { on } w . \\
& \quad \text { If } M \text { accepts } w \text {, accept } x . \\
& \\
& \text { If } M \text { rejects } w \text {, reject } x . " ~
\end{aligned}
$$

- As with before, we can justify the construction of M^{\prime} using the parameterization theorem.
- If M accepts w, then M^{\prime} accepts all strings, including 1^{n} for any n.
- If M does not accept w, then M^{\prime} does not accept any strings, so it certainly does not accept any strings of the form $1^{\text {n }}$.

Theorem: $\mathrm{A}_{\mathrm{TM}} \leq_{\mathrm{M}} \mathrm{ONES}_{\mathrm{TM}}$.

Proof: We exhibit a mapping reduction from A_{TM} to ONES $_{\mathrm{TM}}$. For any TM/string pair $\langle M, w\rangle$, let $f(\langle M, w\rangle)=\left\langle M^{\prime}\right\rangle$, where M^{\prime} is defined in terms of M and w as follows:

$$
M^{\prime}=\text { "On input } \chi:
$$

Ignore x.
Run M on w.
If M accepts w, accept χ.
If M rejects w, reject x."
By the parameterization theorem, f is a computable function. We further claim that $\langle M, w\rangle \in \mathrm{A}_{\text {тм }}$ iff $f(\langle M, w\rangle) \in \mathrm{ONES}_{\text {тМ }}$. To see this, note that $\mathrm{f}(\langle M, w\rangle)=\left\langle M^{\prime}\right\rangle \in \mathrm{ONES}_{\text {тМ }}$ iff M^{\prime} accepts at least one string of the form 1^{n}. We claim that M^{\prime} accepts at least one string of the form 1^{n} iff M accepts w. To see this, note that if M accepts w, then M^{\prime} accepts 1 , and if M does not accept w, then M^{\prime} rejects all strings, including all strings of the form $1^{\text {n }}$. Finally, M accepts w iff $\langle M, w\rangle \in \mathrm{A}_{\mathrm{TM}}$. Thus $\langle\mathrm{M}, \mathrm{w}\rangle \in \mathrm{A}_{\mathrm{TM}}$ iff $f(\langle M, w\rangle) \in \mathrm{ONES}_{\mathrm{TM}}$. Consequently, f is a mapping reduction from $A_{T M}$ to $\mathrm{ONES}_{\text {TM }}$, so $\mathrm{A}_{\mathrm{TM}} \leq_{\mathrm{M}} \mathrm{ONES}_{\mathrm{TM}}$ as required. \square

A Slightly Modified Question

- We cannot determine whether or not a TM will accept at least one string of all 1s.
- Can we determine whether a TM only accepts strings of all 1s?
- In other words, for a TM M, is $\mathscr{L}(M) \subseteq 1 *$?
- Let ONLYONES тм be the language

$$
\text { ONLYONES }_{\mathrm{TM}}=\left\{\langle M\rangle \mid \mathscr{L}(M) \subseteq 1^{*}\right\}
$$

- Is ONLYONES тм $\in \mathbf{R}$? How about RE?

ONLYONES $_{\text {тм }} \notin \mathbf{R E}$

- It turns out that the language ONLYONES TM is unrecognizable.
- We can prove this by reducing L_{D} to ONLYONES TM .
- If $L_{\mathrm{D}} \leq_{\mathrm{M}}$ ONLYONES $_{\text {TM }}$, then we have that ONLYONES $_{\text {TM }} \notin$ RE.

$L_{\mathrm{D}} \leq_{\mathrm{M}}$ ONLYONES $_{\text {TM }}$

- We want to find a computable function f such that

$$
\langle\mathrm{M}\rangle \in L_{\mathrm{D}} \quad \text { iff } \quad f(\langle M\rangle) \in \text { ONLYONES }_{\mathrm{TM}} .
$$

- We want to set $f(\langle M\rangle)=\left\langle M^{\prime}\right\rangle$ for some suitable choice of M^{\prime}. This means
$\langle M\rangle \in L_{D} \quad$ iff $\quad\left\langle M^{\prime}\right\rangle \in$ ONLYONES $_{\text {TM }}$
$\langle\boldsymbol{M}\rangle \notin \mathscr{L}(\mathbf{M}) \quad$ iff $\quad \mathscr{L}\left(\mathbf{M}^{\prime}\right) \subseteq 1^{*}$
- How would we pick our machine M^{\prime} ?

One Possible Reduction

- We want to build M^{\prime} from M such that $\langle M\rangle \notin \mathscr{L}(M)$ iff $\mathscr{L}\left(M^{\prime}\right) \subseteq 1^{*}$.
- In other words, we construct M^{\prime} such that
- If $\langle M\rangle \in \mathscr{A}(M)$, then $\left.\mathscr{\mathscr { L }} M^{\prime}\right)$ is not a subset of 1^{*}.
- If $\langle M\rangle \notin \mathscr{A}(M)$, then $\mathscr{L}\left(M^{\prime}\right)$ is a subset of 1^{*}.
- One option: Come up with some languages with these properties, then construct our machine M^{\prime} such that its language changes based on whether $\langle M\rangle \in \mathscr{L}(M)$.
- If $\langle M\rangle \in \mathscr{L}(M)$, then $\mathscr{L}\left(M^{\prime}\right)=\Sigma^{*}$, which isn't a subset of 1^{*}.
- If $\langle M\rangle \notin \mathscr{L}(M)$, then $\mathscr{L}\left(M^{\prime}\right)=\varnothing$, which is a subset of 1^{*}.

One Possible Reduction

- We want
- If $\langle M\rangle \in \mathscr{A}(M)$, then $\mathscr{A}\left(M^{\prime}\right)=\Sigma^{*}$
- If $\langle M\rangle \notin \mathscr{L}(M)$, then $\mathscr{L}\left(M^{\prime}\right)=\varnothing$
- Here is one possible M^{\prime} that does this:
$M^{\prime}=$ "On input x :
Ignore x.
Run M on $\langle M\rangle$.
If M accepts $\langle M\rangle$, accept χ. If M rejects $\langle M\rangle$, reject x."

Theorem: $L_{\mathrm{D}} \leq_{\mathrm{M}}$ ONLYONES $_{\text {TM }}$.

Proof: We exhibit a mapping reduction from L_{D} to ONLYONES TM .
For any TM M, let $f(\langle M\rangle)=\left\langle M^{\prime}\right\rangle$, where M^{\prime} is defined in terms of M as follows:

$$
\begin{aligned}
& M^{\prime}=\text { "On input } x: \\
& \text { Ignore } x . \\
& \text { Run } M \text { on }\langle M\rangle . \\
& \text { If } M \text { accepts }\langle M\rangle \text {, accept } x . \\
& \text { If } M \text { rejects }\langle M\rangle \text {, reject } x . " ~
\end{aligned}
$$

By the parameterization theorem, f is a computable function. We further claim that $\langle M\rangle \in L_{\mathrm{D}}$ iff $f(\langle M\rangle) \in$ ONLYONES $_{\text {TM }}$. To see this, note that $f(\langle M\rangle)=\left\langle M^{\prime}\right\rangle \in$ ONLYONES $_{\text {тм }}$ iff $\mathscr{L}\left(M^{\prime}\right) \subseteq 1^{*}$. We claim that $\mathscr{L}\left(M^{\prime}\right) \subseteq 1^{*}$ iff M does not accept $\langle M\rangle$. To see this, note that if M does not accept $\langle M\rangle$, then M^{\prime} never accepts any strings, so $\mathscr{L}\left(M^{\prime}\right)=\varnothing \subseteq 1^{*}$. Otherwise, if M accepts $\langle M\rangle$, then M^{\prime} accepts all strings, so $\mathscr{L}(M)=\Sigma^{*}$, which is not a subset of 1^{*}. Finally, M does not accept $\langle M\rangle$ iff $\langle M\rangle \in L_{D}$. Thus $\langle M\rangle \in L_{\mathrm{D}}$ iff $f(\langle M\rangle) \in$ ONLYONES $_{\text {тм }}$. Consequently, f is a mapping reduction from L_{D} to ONLYONES TM , so $\mathrm{L}_{\mathrm{D}} \leq_{\mathrm{M}}$ ONLYONES $_{\mathrm{TM}}$ as required.

$\overline{\text { ONLYONES }_{\text {TM }}}$

- Although ONLYONES ${ }_{T M}$ is not RE, its complement ($\overline{\mathrm{ONLYONES}}_{\mathrm{TM}}$) is RE:
\{ $\langle\mathbf{M}\rangle \mid \mathscr{L}(\mathbf{M})$ is not a subset of 1* $\left.^{*}\right\}$
- Intuition: Can nondeterministically guess a string in $\mathscr{A}(M)$ that is not of the form $\mathbf{1}^{\mathrm{n}}$, then check that M accepts it.

The Limits of Computability

$\mathbf{R E}$ and co-RE

- The class RE is the set of languages that are recognized by a TM.
- The class co-RE is the set of languages whose complements are recognized by a TM.
- In other words:

$$
\begin{array}{lll}
L \in \operatorname{co}-\mathbf{R E} & \text { iff } & \bar{L} \in \mathbf{R E} \\
\bar{L} \in \operatorname{co-RE} & \text { iff } & L \in \mathbf{R E}
\end{array}
$$

- Languages in co-RE are called corecognizable. Languages not in co-RE are called co-unrecognizable.

Intuiting RE and co-RE

- A language L is in $\mathbf{R E}$ iff there is a recognizer for it.
- If $w \in L$, the recognizer accepts.
- If $w \notin L$, the recognizer does not accept.
- A language L is in co-RE iff there is a refuter for it.
- If $w \notin L$, the refuter rejects.
- If $w \in L$, the refuter does not reject.

RE, and co-RE

- RE and co-RE are fundamental classes of problems.
- RE is the class of problems where a computer can always verify "yes" instances.
- co-RE is the class of problems where a computer can always refute "no" instances.
- RE and co-RE are, in a sense, the weakest possible conditions for which a problem can be approached by computers.

$\mathbf{R}, \mathbf{R E}$, and co-RE

- Recall:

If $L \in \mathbf{R E}$ and $\bar{L} \in \mathbf{R E}$, then $L \in \mathbf{R}$

- Rewritten in terms of co-RE:

If $L \in \mathbf{R E}$ and $L \in$ co- $\mathbf{R E}$, then $L \in \mathbf{R}$

- In other words:
$\mathbf{R E} \cap \mathbf{c o - R E} \subseteq \mathbf{R}$
- We also know that $\mathbf{R} \subseteq \mathbf{R E}$ and $\mathbf{R} \subseteq$ co-RE, so

$$
\mathbf{R}=\mathbf{R E} \cap \operatorname{co}-\mathbf{R E}
$$

The Limits of Computability

All Languages

L_{D} Revisited

- The diagonalization language L_{D} is the language
$L_{\mathrm{D}}=\{\langle M\rangle \mid M$ is a TM and $\langle M\rangle \notin \mathscr{L}(M)\}$
- As we saw before, $L_{\mathrm{D}} \notin \mathbf{R E}$.
- So where is L_{D} ? Is it in $L_{\mathrm{D}} \in$ co-RE? Or is it someplace else?

\bar{L}_{D}

- To see whether $L_{\mathrm{D}} \in$ co-RE, we will see whether $\bar{L}_{\mathrm{D}} \in \mathbf{R E}$.
- The language \bar{L}_{D} is the language $\bar{L}_{\mathrm{D}}=\{\langle M\rangle \mid M$ is a TM and $\langle M\rangle \in \mathscr{L}(M)\}$
- Two questions:
- What is this language?
- Is this language $\mathbf{R E}$?

M_{0}
M_{1}
M_{2}
M_{3}
M_{4}
M_{5}
\ldots

M_{0}
 M_{1}
 M_{2} M_{3}
 M_{4}
 M_{5}

	$\left\langle M_{0}\right\rangle$	$\left\langle M_{1}\right\rangle$	$\left\langle\mathrm{M}_{2}\right\rangle$	$\left\langle M_{3}\right\rangle$	$\left\langle M_{4}\right\rangle$	$\left\langle\mathrm{M}_{5}\right.$)	
M	Acc	No	No	Acc	Acc	No	
M_{1}	Acc	Acc	Acc	Acc	Acc	Acc	
M_{2}							
M_{3}							
M_{4}							
M_{5}							
\ldots							

	$\left\langle M_{0}\right\rangle$	$\left\langle M_{1}\right\rangle$	$\left\langle M_{2}\right\rangle$	M	<M	$\left\langle\mathrm{M}_{5}\right.$)	
M	Acc	No	No	Acc	Acc	No	
M	Acc	Acc	Acc	Acc	Acc	Acc	
M_{2}	Acc	Acc	Acc	Acc	Acc	Acc	
M_{3}	No	Acc	Acc	No	Acc	Acc	
M_{4}	Acc	No	Acc	No	Acc	No	
M_{5}							

$\left\langle M_{0}\right\rangle\left\langle M_{1}\right\rangle\left\langle M_{2}\right\rangle\left\langle M_{3}\right\rangle\left\langle M_{4}\right\rangle\left\langle M_{5}\right\rangle$	\ldots				
M_{0} Acc	No	No Acc Acc	No	\ldots	
M_{1} Acc	Acc	Acc Acc	Acc	Acc	\ldots
M_{2}	Acc	Acc	Acc	Acc	Acc

$\left\langle M_{0}\right\rangle\left\langle M_{1}\right\rangle\left\langle M_{2}\right\rangle\left\langle M_{3}\right\rangle\left\langle M_{4}\right\rangle\left\langle M_{5}\right\rangle$							
M	Acc	No	No	Acc	Acc	No	
M_{1}	Acc	Acc	Acc	Acc	Acc	Acc	
M_{2}	Acc	Acc	Ac	Acc	Acc	Acc	
3	No	Acc	Acc	No	Ac	Acc	
M_{4}	Acc	No	Acc	No	Acc	No	
M_{5}	No	No	Acc	Acc	No	No	
	..	\ldots	\ldots	\ldots	

M	Acc	No	No	Acc	Acc	No	
M	Acc	Acc	Acc	Acc	Acc	Acc	
2	Acc	Acc	Acc	Acc	Acc	Acc	
M_{3}	No	Acc	Acc	No	Acc	Acc	
M	Acc	No	Acc	No	Acc	No	
M_{5}	No	No	Acc	Acc	No	No	
	\ldots	\ldots	\ldots		

					(M, ${ }^{\text {, }}$	(M_{5})	
M	Acc	No	No	Acc	Acc	No	
M_{1}	Acc	Acc	Acc	Acc	Acc	Acc	
M	Acc	Acc	Acc	Acc	Acc	Acc	
M	No	Acc	Acc	No	Acc	Acc	
	Acc	No	Acc	No	Acc	No	
M_{5}	No	No	Acc	Acc	No	No	
	\ldots	\ldots	

Acc Acc Acc No Acc No

	Acc	No	No	Acc	Acc	No	
1	Acc	Acc	Acc	Acc	Acc	Acc	
	Acc	Acc	Acc	Acc	Acc	Acc	
3	No	Acc	Acc	No	Acc	Acc	
4	Acc	No	Acc	No	Acc	No	
M_{5}	No	No	Acc	Acc	No	No	
	...	\ldots	\cdots	.	\ldots		

Acc Acc Acc No Acc No ...

	Acc	No	No	Acc	Acc	No	
	Acc	Acc	Acc	Acc	Acc	Acc	
	Acc	Acc	Acc	Acc	Acc	Acc	
	No	Acc	Acc	No	Acc	Acc	
	Acc	No	Acc	No	Acc	No	
M_{5}	No	No	Acc	Acc	No	No	
	\ldots	...	\ldots		

"The language of all TMs that accept their own description."

	Acc	No	No	Acc	Acc	No	
	Acc	Acc	Acc	Acc	Acc	Acc	
	Ac	Acc	Acc	Acc	Acc	Acc	
	No	Acc	Acc	No	Acc	Acc	
4	Acc	No	Acc	No	Acc	No	
5	No	No	Acc	Acc	No	No	
	\ldots	\ldots	\ldots	\ldots			

$$
\begin{aligned}
& \{\langle M\rangle \mid M \text { is a TM } \\
& \text { that accepts }\langle M\rangle\}
\end{aligned}
$$

Acc Acc Acc No Acc No

	Acc	No	No	Acc	Acc	No	
	Acc	Acc	Acc	Acc	Acc	Acc	
	Ac	Acc	Acc	Acc	Acc	Acc	
	No	Acc	Acc	No	Acc	Acc	
4	Acc	No	Acc	No	Acc	No	
5	No	No	Acc	Acc	No	No	
	\ldots	\ldots	\ldots	\ldots			

$\{\langle M\rangle \mid M$ is a TM and $\langle M\rangle \in \mathscr{L}(\mathbf{M})\}$

Acc Acc Acc No Acc No

$L_{\mathrm{D}} \in \operatorname{co}-\mathbf{R E}$

- Here's an TM for \bar{L}_{D} :

$$
\begin{aligned}
& R=\text { "On input }\langle M\rangle \text { : } \\
& \quad \operatorname{Run} M \text { on }\langle M\rangle .
\end{aligned}
$$

If M accepts $\langle M\rangle$, accept.
If M rejects $\langle M\rangle$, reject."

- Then R accepts $\langle M\rangle$ iff $\langle M\rangle \in \mathscr{L}(M)$ iff $\langle\mathrm{M}\rangle \in \bar{L}_{\mathrm{D}}$, so $\mathscr{L}(R)=\bar{L}_{D}$.

The Limits of Computability

All Languages

Theorem: If $A \leq_{\mathrm{M}} B$, then $\bar{A} \leq_{\mathrm{M}} \bar{B}$.

Theorem: If $A \leq_{M} B$, then $\bar{A} \leq_{M} \bar{B}$. Proof: Suppose that $A \leq_{M} B$.

Theorem: If $A \leq_{\mathrm{M}} B$, then $\bar{A} \leq_{\mathrm{M}} \bar{B}$.
Proof: Suppose that $A \leq_{\mathrm{M}} B$. Then there exists a computable function f such that $w \in A$ iff $f(w) \in B$.

Theorem: If $A \leq_{M} B$, then $\bar{A} \leq_{M} \bar{B}$.
Proof: Suppose that $A \leq_{\mathrm{M}} B$. Then there exists a computable function f such that $w \in A$ iff $f(w) \in B$. Note that $w \in A$ iff $w \notin \bar{A}$ and $f(w) \in B \operatorname{iff} f(w) \notin \bar{B}$.

Theorem: If $A \leq_{M} B$, then $\bar{A} \leq_{M} \bar{B}$.
Proof: Suppose that $A \leq_{\mathrm{M}} B$. Then there exists a computable function f such that $w \in A$ iff $f(w) \in B$. Note that $w \in A$ iff $w \notin \bar{A}$ and $f(w) \in B$ iff $f(w) \notin \bar{B}$. Consequently, we have that $w \notin \bar{A}$ iff $f(w) \notin \bar{B}$.

Theorem: If $A \leq_{M} B$, then $\bar{A} \leq_{M} \bar{B}$.
Proof: Suppose that $A \leq_{\mathrm{M}} B$. Then there exists a computable function f such that $w \in A$ iff $f(w) \in B$. Note that $w \in A$ iff $w \notin \bar{A}$ and $f(w) \in B$ iff $f(w) \notin \bar{B}$. Consequently, we have that $w \notin \bar{A}$ iff $f(w) \notin \bar{B}$. Thus $w \in \bar{A}$ iff $f(w) \in \bar{B}$.

Theorem: If $A \leq_{M} B$, then $\bar{A} \leq_{M} \bar{B}$.
Proof: Suppose that $A \leq_{\mathrm{M}} B$. Then there exists a computable function f such that $w \in A$ iff $f(w) \in B$. Note that $w \in A$ iff $w \notin \bar{A}$ and $f(w) \in B$ iff $f(w) \notin \bar{B}$. Consequently, we have that $w \notin \bar{A}$ iff $f(w) \notin \bar{B}$. Thus $w \in \bar{A}$ iff $f(w) \in \bar{B}$. Since f is computable, $\bar{A} \leq_{\mathrm{M}} \bar{B}$.

Theorem: If $A \leq_{M} B$, then $\bar{A} \leq_{M} \bar{B}$.
Proof: Suppose that $A \leq_{\mathrm{M}} B$. Then there exists a computable function f such that $w \in A$ iff $f(w) \in B$. Note that $w \in A$ iff $w \notin \bar{A}$ and $f(w) \in B$ iff $f(w) \notin \bar{B}$. Consequently, we have that $w \notin \bar{A}$ iff $f(w) \notin \bar{B}$. Thus $w \in \bar{A}$ iff $f(w) \in \bar{B}$. Since f is computable, $\bar{A} \leq_{\mathrm{M}} \bar{B}$.

co-RE Reductions

- Corollary: If $A \leq_{\mathrm{M}} B$ and $B \in \operatorname{co-RE}$, then $A \in$ co-RE.
Proof: Since $A \leq_{\mathrm{M}} B, \bar{A} \leq_{\mathrm{M}} \bar{B}$. Since $B \in \operatorname{co-RE}$, $\bar{B} \in \mathbf{R E}$. Thus $\bar{A} \in \mathbf{R E}$, so $A \in$ co-RE.
- Corollary: If $A \leq_{\mathrm{M}} B$ and $A \notin$ co-RE, then $B \notin$ co-RE.
Proof: Take the contrapositive of the above.

Why Mapping Reducibility Matters

> If this one is "easy" (R or RE or co-RE)...

A \triangle

$\leq_{M} B$
... then this one is "easy" (R or RE or CO-RE) too.

Why Mapping Reducibility Matters

```
If this one is "hard" (not \(R\) or not RE or not co-RE)...
```


A
 \leq_{M}
 B

then this one is "hard" (not R or not RE or not coRE) too.

The Limits of Computability

Is there anything out here?

All Languages

RE \cup co-RE is Not Everything

- Using the same reasoning as the first day of lecture, we can show that there must be problems that are neither RE nor coRE.
- There are more sets of strings than TMs.
- There are more sets of strings than twice the number of TMs.
- What do these languages look like?

An Extremely Hard Problem

- Recall: All regular languages are also RE.
- This means that some TMs accept regular languages and some TMs do not.
- Let REGULAR TM be the language of all TM descriptions that accept regular languages:

REGULAR $_{\text {тм }}=\{\langle\boldsymbol{M}\rangle \mid \mathscr{L}(M)$ is regular $\}$

- Is REGULAR $_{\text {тм }} \in \mathbf{R}$? How about $\mathbf{R E}$?

REGULAR $_{\text {TM }} \notin \mathbf{R E}$

- It turns out that REGULAR ${ }_{\mathrm{TM}}$ is unrecognizable, meaning that there is no computer program that can even verify that another TM's language is regular!
- To do this, we'll do another reduction from L_{D} and prove that $L_{\mathrm{D}} \leq_{\mathrm{M}}$ REGULAR $_{\mathrm{T}}$.

$L_{\mathrm{D}} \leq_{\mathrm{M}}$ REGULAR $_{\mathrm{TM}}$

- We want to find a computable function f such that

$$
\langle M\rangle \in L_{\mathrm{D}} \quad \text { iff } \quad f(\langle M\rangle) \in \text { REGULAR }_{\text {тм }} .
$$

- We need to choose M^{\prime} such that $f(\langle M\rangle)=\left\langle M^{\prime}\right\rangle$ for some TM M^{\prime}. Then
$\langle M\rangle \in L_{D} \quad$ iff $\quad f(\langle M\rangle) \in$ REGULAR ${ }_{T M}$ $\langle M\rangle \in L_{D} \quad$ iff $\quad\left\langle M^{\prime}\right\rangle \in$ REGULAR $_{\text {тм }}$
$\langle M\rangle \notin \mathscr{L}(M) \quad$ iff $\quad \mathscr{L}\left(M^{\prime}\right)$ is regular.

$L_{\mathrm{D}} \leq_{\mathrm{M}}$ REGULAR $_{\mathrm{TM}}$

- We want to construct some M^{\prime} out of M such that
- If $\langle M\rangle \in \mathscr{L}(M)$, then $\mathscr{L}\left(M^{\prime}\right)$ is not regular.
- If $\langle M\rangle \notin \mathscr{L}(M)$, then $\mathscr{L}\left(M^{\prime}\right)$ is regular.
- One option: choose two languages, one regular and one nonregular, then construct M^{\prime} so its language switches from regular to nonregular based on whether $\langle M\rangle \notin \mathscr{L}(M)$.
- If $\langle M\rangle \in \mathscr{L}(M)$, then $\mathscr{L}\left(M^{\prime}\right)=\left\{0^{\mathrm{n}} 1^{\mathrm{n}} \mid n \in \mathbb{N}\right\}$
- If $\langle M\rangle \notin \mathscr{L}(M)$, then $\mathscr{L}\left(M^{\prime}\right)=\varnothing$

The Reduction

- We want to build M^{\prime} from M such that
- If $\langle M\rangle \in \mathscr{L}(M)$, then $\mathscr{L}\left(M^{\prime}\right)=\left\{0^{n} 1^{n} \mid n \in \mathbb{N}\right\}$
- If $\langle M\rangle \notin \mathscr{L}(M)$, then $\mathscr{L}\left(M^{\prime}\right)=\varnothing$
- Here is one way to do this:

$$
M^{\prime}=\text { "On input } x \text { : }
$$

If x does not have the form $0^{n} 1^{n}$, reject.
Run M on $\langle M\rangle$.
If M accepts, accept χ.
If M rejects, reject x."

Theorem: $L_{\mathrm{D}} \leq_{\mathrm{M}}$ REGULAR $_{\mathrm{TM}}$.
Proof: We exhibit a mapping reduction from L_{D} to REGULAR $\mathrm{TM}_{\mathrm{TM}}$.
For any TM M, let $f(\langle M\rangle)=\left\langle M^{\prime}\right\rangle$, where M^{\prime} is defined in terms of
M as follows:
$M^{\prime}=$ "On input χ :
If x does not have the form $0^{n} 1^{n}$, reject x.
Run M on $\langle M\rangle$.
If M accepts $\langle M\rangle$, accept χ.
If M rejects $\langle M\rangle$, reject x."
By the parameterization theorem, f is a computable function. We further claim that $\langle M\rangle \in L_{\mathrm{D}}$ iff $f(\langle M\rangle) \in$ REGULAR $_{\mathrm{TM}}$. To see this, note that $\mathrm{f}(\langle M\rangle)=\left\langle M^{\prime}\right\rangle \in$ REGULAR $_{\mathrm{TM}}$ iff $\mathscr{L}\left(M^{\prime}\right)$ is regular. We claim that $\mathscr{A}\left(M^{\prime}\right)$ is regular iff $\langle M\rangle \notin \mathscr{L}(M)$. To see this, note that if $\langle M\rangle \notin \mathscr{L}(M)$, then M^{\prime} never accepts any strings. Thus $\mathscr{L}\left(M^{\prime}\right)=\varnothing$, which is regular. Otherwise, if $\langle M\rangle \in \mathscr{L}(M)$, then M^{1} accepts all strings of the form $0^{n} 1^{\text {n }}$, so we have that $\mathscr{L}(M)=\left\{0^{\mathrm{n}} 1^{\mathrm{n}} \mid n \in \mathbb{N}\right\}$, which is not regular. Finally, $\langle M\rangle \notin \mathscr{L}(\langle M\rangle)$ iff $\langle M\rangle \in L_{\mathrm{D}}$. Thus $\langle\mathrm{M}\rangle \in L_{\mathrm{D}}$ iff $f(\langle M\rangle) \in \operatorname{REGULAR}_{\mathrm{TM}}$, so f is a mapping reduction from L_{D} to REGULAR TM . Therefore, $L_{\mathrm{D}} \leq_{\mathrm{M}}$ REGULAR $_{\mathrm{TM}}$.

REGULAR $_{\text {тм }} \notin$ co-RE

- Not only is REGULAR $\mathrm{TM}_{\mathrm{TM}} \notin \mathbf{R E}$, but REGULAR $_{\text {TM }} \notin$ co-RE.
- Before proving this, take a minute to think about just how ridiculously hard this problem is.
- No computer can confirm that an arbitrary TM has a regular language.
- No computer can confirm that an arbitrary TM has a nonregular language.
- This is vastly beyond the limits of what computers could ever hope to solve.

$\bar{L}_{\mathrm{D}} \leq_{\mathrm{M}}$ REGULAR TM

- To prove that REGULAR TM is not co-RE, we will prove that $\bar{L}_{\mathrm{D}} \leq_{\mathrm{M}}$ REGULAR $_{\mathrm{TM}}$.
- Since \bar{L}_{D} is not co-RE, this proves that REGULAR ${ }_{\text {тм }}$ is not co-RE either.
- Goal: Find a function f such that

$$
\langle M\rangle \in \bar{L}_{\mathrm{D}} \quad \text { iff } \quad f(\langle M\rangle) \in \text { REGULAR }_{\mathrm{TM}}
$$

- Let $f(\langle M\rangle)=\left\langle M^{\prime}\right\rangle$ for some TM M^{\prime}. Then we want

$$
\langle M\rangle \in \bar{L}_{\mathrm{D}} \quad \text { iff } \quad\left\langle M^{\prime}\right\rangle \in \text { REGULAR }_{\mathrm{TM}}
$$

$\langle M\rangle \in \mathscr{L}(M)$ iff $\mathscr{L}\left(M^{\prime}\right)$ is regular

$\bar{L}_{\mathrm{D}} \leq_{\mathrm{M}}$ REGULAR $_{\mathrm{TM}}$

- We want to construct some M^{\prime} out of M such that
- If $\langle M\rangle \in \mathscr{X}(M)$, then $\mathscr{X}\left(M^{\prime}\right)$ is regular.
- If $\langle M\rangle \notin \mathscr{A}(M)$, then $\mathscr{A}\left(M^{\prime}\right)$ is not regular.
- One option: choose two languages, one regular and one nonregular, then construct M^{\prime} so its language switches from regular to nonregular based on whether $\langle M\rangle \in \mathscr{L}(M)$.
- If $\langle M\rangle \in \mathscr{L}(M)$, then $\mathscr{L}\left(M^{\prime}\right)=\Sigma^{*}$.
- If $\langle M\rangle \notin \mathscr{L}(M)$, then $\mathscr{L}\left(M^{\prime}\right)=\left\{0^{n} 1^{n} \mid n \in \mathbb{N}\right\}$

$\bar{L}_{\mathrm{D}} \leq_{\mathrm{M}}$ REGULAR $_{\mathrm{TM}}$

- We want to build M^{\prime} from M such that
- If $\langle M\rangle \in \mathscr{L}(M)$, then $\mathscr{L}\left(M^{\prime}\right)=\Sigma^{*}$
- If $\langle M\rangle \notin \mathscr{L}(M)$, then $\mathscr{L}\left(M^{\prime}\right)=\left\{0^{n} 1^{\mathrm{n}} \mid n \in \mathbb{N}\right\}$
- Here is one way to do this:
$M^{\prime}=$ "On input χ :
If x has the form $0^{n} 1^{n}$, accept.
Run M on $\langle M\rangle$.
If M accepts, accept χ.
If M rejects, reject x."

Theorem: $\bar{L}_{\mathrm{D}} \leq_{\mathrm{M}}$ REGULAR $_{\mathrm{TM}}$.
Proof: We exhibit a mapping reduction from \bar{L}_{D} to $\operatorname{REGULAR}_{\mathrm{TM}}$. For any TM M, let $f(\langle M\rangle)=\left\langle M^{\prime}\right\rangle$, where M^{\prime} is defined in terms of M as follows:
$M^{\prime}=$ "On input $x:$
If x has the form $0^{n} 1^{n}$, accept x.
Run M on $\langle M\rangle$.
If M accepts $\langle M\rangle$, accept χ.
If M rejects $\langle M\rangle$, reject x."
By the parameterization theorem, f is a computable function. We further claim that $\langle M\rangle \in \bar{L}_{\mathrm{D}}$ iff $f(\langle M\rangle) \in \operatorname{REGULAR}_{\mathrm{TM}}$. To see this, note that $\mathrm{f}(\langle M\rangle)=\left\langle M^{\prime}\right\rangle \in$ REGULAR $_{\mathrm{TM}}$ iff $\mathscr{L}\left(M^{\prime}\right)$ is regular. We claim that $\mathscr{L}\left(M^{\prime}\right)$ is regular iff $\langle M\rangle \in \mathscr{L}(M)$. To see this, note that if $\langle M\rangle \in \mathscr{L}(M)$, then M^{\prime} accepts all strings, either because that string is of the form $0^{\mathrm{n}} 1^{\mathrm{n}}$ or because M eventually accepts $\langle M\rangle$. Thus $\mathscr{L}\left(M^{\prime}\right)=\Sigma^{*}$, which is regular. Otherwise, if $\langle M\rangle \notin \mathscr{L}(M)$, then M^{\prime} only accepts strings of the form $0^{n} 1^{n}$, so $\mathscr{L}(M)=\left\{0^{n} 1^{n} \mid n \in \mathbb{N}\right\}$, which is not regular. Finally, $\langle M\rangle \in \mathscr{L}(\langle M\rangle)$ iff $\langle M\rangle \in \bar{L}_{\mathrm{D}}$. Thus $\langle\mathrm{M}\rangle \in \bar{L}_{\mathrm{D}}$ iff $f(\langle M\rangle) \in \operatorname{REGULAR}_{\mathrm{TM}}$, so f is a mapping reduction from \bar{L}_{D} to $\mathrm{REGULAR}_{\mathrm{TM}}$. Therefore, $\bar{L}_{\mathrm{D}} \leq_{\mathrm{M}}$ REGULAR $_{\mathrm{TM}}$.

The Limits of Computability REGULAR ${ }_{T M}$

 $\overline{\text { REGULAR }}_{\text {Tu }}$

All Languages

Beyond RE and co-RE

- The most famous problem that is neither RE nor co-RE is the TM equality problem:

$$
\mathbf{E} \mathbf{Q}_{\mathrm{TM}}=\left\{\left\langle\boldsymbol{M}_{1}, \boldsymbol{M}_{2}\right\rangle \mid \mathscr{L}\left(\boldsymbol{M}_{1}\right)=\mathscr{L}\left(\boldsymbol{M}_{2}\right)\right\}
$$

- This is why we have to write testing code; there's no way to have a computer prove or disprove that two programs always have the same output.
- This is related to Q6.ii from Problem Set 7.

Why All This Matters

The Limits of Computability

$\overline{R E G U L A R}_{T M}$

All Languages

What problems can be solved by a computer?

What problems can be solved efficiently by a computer?

Where We've Been

- The class \mathbf{R} represents problems that can be solved by a computer.
- The class RE represents problems where answers can be verified by a computer.
- The class co-RE represents problems where answers can be refuted by a computer.
- The mapping reduction can be used to find connections between problems.

Where We're Going

- The class \mathbf{P} represents problems that can be solved efficiently by a computer.
- The class NP represents problems where answers can be verified efficiently by a computer.
- The class co-NP represents problems where answers can be efficiently refuted by a computer.
- The polynomial-time mapping reduction can be used to find connections between problems.

Next Time

- Introduction to Complexity Theory
- How do you define efficiency?
- How do you measure it?
- What tools will we need?
- Complexity Class P
- What problems can be solved efficiently?
- How do we reason about them?

Have a wonderfull Thanksgiving!

