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HALT and HALT

● The language HALT is defined as

 {⟨M, w⟩ | M is a TM that halts on w}

● Equivalently:

        {x | x = ⟨M, w⟩ for some TM M
              and string w, and M halts on w}

● Thus HALT is

   {x | x ≠ ⟨M, w⟩ for any TM M and string w,
         or M is a TM that does not halt on w}



  

Cheating With Math

● As a mathematical simplification, we will assume 
the following:

Every string can be decoded
into any collection of objects.

● Every string is an encoding of some TM M.

● Every string is an encoding of some TM M and 
string w.

● Can do this as follows:
● If the string is a legal encoding, go with that 

encoding.
● Otherwise, pretend the string decodes to some 

predetermined group of objects.



  

Cheating With Math

● Example: Every string will be a valid C++ 
program.

● If it's already a C++ program, just 
compile it.

● Otherwise, pretend it's this program:
int main() {

    return 0;

}



  

HALT and HALT

● The language HALT is defined as

 {⟨M, w⟩ | M is a TM that halts on w}
● Thus HALT is the language

{⟨M, w⟩ | M is a TM that doesn't halt on w}
● Equivalently:

HALT = {⟨M, w⟩ | M is a TM that loops on w}



  

The Takeaway Point

● When dealing with encodings, you don't 
need to consider strings that aren't valid 
encodings.

● This will keep our proofs much simpler 
than before.



  

Reductions



  

Finding Unsolvable Problems

● Last time, we found five unsolvable problems.

● We proved that LD was unrecognizable, then used this 
fact to show four other languages were either 
undecidable or unrecognizable.

● In general, to prove that a problem is unsolvable (not 
R or not RE), we don't directly show that it is 
unsolvable.

● Instead, we show how a solution to that problem 
would let us solve an unsolvable problem.



  

Reductions

φ ≡ ψ? Tautology

Can be converted to

Can be used to solve



  

Defining Reductions

● A reduction from A to B is a function
f : Σ1* → Σ2* such that

 For any w ∈ Σ1*, w ∈ A iff f(w) ∈ B  

NO
Σ

1
* Σ

2
*

YES YES

NO

f(w)   

f(w)   



  

Defining Reductions

● A reduction from A to B is a function
f : Σ1* → Σ2* such that

 For any w ∈ Σ1*, w ∈ A iff f(w) ∈ B  

● Every w ∈ A maps to some f(w) in B.
● Every w ∉ A maps to some f(w) not in B.
● f does not have to be injective or 

surjective.



  

Reducing φ ≡ ψ to Tautology

● Let EQUIV be

EQUIV = { ⟨φ, ψ⟩ | φ ≡ ψ }  
● Let TAUTOLOGY be

TAUTOLOGY = { ⟨φ⟩ | φ is a tautology }  
● To reduce EQUIV to TAUTOLOGY, we want a 

function f such that

⟨φ, ψ⟩ ∈ EQUIV   iff   f(⟨φ, ψ⟩) ∈ TAUTOLOGY
● One possible function we could use is

f(⟨φ, ψ⟩) = ⟨φ ↔ ψ⟩  



  

Reducing any RE Language to ATM

● Let L be any RE language, and let R be a 
recognizer for L.

● To reduce L to ATM, we want a function f 
such that

w ∈ L    iff    f(w) ∈ ATM 

● One possible reduction is

f(w) = ⟨R, w⟩   



  

Why Reductions Matter

● If problem A reduces to problem B, we 
can use a recognizer/decider for B to 
recognize/decide problem A.
● (There's a slight catch – we'll talk about this 

in a second).

● How is this possible?



  

Machine for B

Machine M

YES

NO

Compute f
f(w)w        

H = “On input w:
              Compute f(w).
              Run M on f(w).
              If M accepts f(w), accept w.
              If M rejects f(w), reject w.”

Machine H

H accepts w
  

iff
  

M accepts f(w)
  

 iff 
  

f(w) ∈ B 

   

iff 

   

w ∈ A

w ∈ A    iff    f(w) ∈ B



  

A Problem

● Recall: f is a reduction from A to B iff

w ∈ A   iff   f(w) ∈ B
● Under this definition, any language A reduces to any 

language B unless B = Ø or Σ*.

● Since B ≠ Ø and B ≠ Σ*, there is some wyes ∈ B and 
some wno ∉ B.

● Define f : Σ1* → Σ2* as follows:

If w ∈ A, then f(w) = wyes  

If w ∉ A, then f(w) = wno  

● Then f is a reduction from A to B.



  

A Problem

● Example: let's reduce LD to 0*1*.

● Take wyes = 01, wno = 10.

● Then f(w) is defined as
● If w ∈ LD, f(w) = 01.

● If w ∉ LD, f(w) = 10.

● There is no TM that can actually evaluate 
the function f(w) on all inputs, since no 
TM can decide whether or not w ∈ LD.



  

Computable Functions

● This general reduction is mathematically well-defined, but 
might be impossible to actually compute!

● To fix our definition, we need to introduce the idea of a 
computable function.

● A function f : Σ1* → Σ2* is called a computable function if 
there is some TM M with the following behavior:

          “On input w:

                Determine the value of f(w).

                Write f(w) on the tape.

                Move the tape head back to the far left.

                Halt.”



  

Computable Functions

f(w) = ww

0 1 0



  

Computable Functions

f(w) = ww

0 1 0 0 1 0



  

Computable Functions

f(w) =               

0 0 0 1 1 1

                         2nm if w = 0n1m

                         ε    otherwise



  

Computable Functions

f(w) =               

2 2 2 2 2 2 2 2 2

                         2nm if w = 0n1m

                         ε    otherwise



  

Mapping Reductions

● A function f : Σ1* → Σ2* is called a 
mapping reduction from A to B iff
● For any w ∈ Σ1*, w ∈ A iff f(w) ∈ B.

● f is a computable function.

● Intuitively, a mapping reduction from A 
to B says that a computer can transform 
any instance of A into an instance of B 
such that the answer to B is the answer 
to A.



  

Mapping Reducibility

● If there is a mapping reduction from A to 
B, we say that A is mapping reducible 
to B.

● Notation: A ≤M B iff A is mapping 
reducible to B.

● This is not a partial order (it's not 
antisymmetric), but it is reflexive and 
transitive. (Why?)



  

Why Mapping Reducibility Matters

● Theorem: If B ∈ R and A ≤M B, then
                  A ∈ R.

● Theorem: If B ∈ RE and A ≤M B, then
                  A ∈ RE.

● A ≤M B informally means “A is not harder 
than B.”



  

Why Mapping Reducibility Matters

● Theorem: If A ∉ R and A ≤M B, then
                  B ∉ R.

● Theorem: If A ∉ RE and A ≤M B, then
                  B ∉ RE.

● A ≤M B informally means “B is at at least 
as hard as A.”



  

Why Mapping Reducibility Matters

≤
MA B

If this one is “easy” 
(R or RE)…

If this one is “easy” 
(R or RE)…

… then this one is 
“easy” (R or RE) 

too. 

… then this one is 
“easy” (R or RE) 

too. 



  

Why Mapping Reducibility Matters

≤
MA B

If this one is “hard” 
(not R or not RE)…
If this one is “hard” 
(not R or not RE)…

… then this one is 
“hard” (not R or 
not RE) too.

… then this one is 
“hard” (not R or 
not RE) too.



  

Machine for B

Machine M

YES

NO

Compute f
f(w)w        

M' = “On input w:
              Compute f(w).
              Run M on f(w).
              If M accepts f(w), accept w.
              If M rejects f(w), reject w.”

Machine M'

M' accepts w
  

iff
  

M accepts f(w)
  

 iff 
  

f(w) ∈ B 

   

iff 

   

w ∈ A

A ≤M B



  

Using Reductions



  

Using Reductions

● Recall: The language ATM is defined as

ATM = { ⟨M, w⟩ | M is a TM and w ∈ (ℒ M) }

● Last time, we proved that ATM ∈ RE – R (that is, 
ATM ∈ RE but ATM ∉ R) by showing that a 
decider for ATM could be converted into a 
decider for the diagonalization language LD.

● Let's see an alternate proof that ATM is 
undecidable by using reductions.



  

The Complement of ATM

● Recall: if ATM ∈ R, then ATM ∈ R as well.

● To show that ATM is undecidable, we will 
prove that the complement of ATM 
(denoted ATM) is undecidable.

● The language ATM is the following:

 ATM = {⟨M, w⟩ | M is a TM and
                          w ∉ ℒ(M) }



  

LD ≤M ATM

● Recall: The diagonalization language LD is the 
language

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

● We directly established that LD ∉ RE using a 
diagonal argument.

● If we can show that LD ≤M ATM, then since 
LD ∉ RE, we have proven that ATM ∉ RE.

● Therefore, ATM ∉ R, so ATM ∉ R.



  

Where We're Going

Machine for A
TM

Machine R

YES

NO

Compute f
f(w)w         

Machine H

Goal: Choose our 
function f(w) such 

that this machine H is 
a recognizer for LD.

Goal: Choose our 
function f(w) such 

that this machine H is 
a recognizer for LD.



  

LD and ATM

● LD and ATM are similar languages:

⟨M⟩ ∈ LD    iff    ⟨M⟩ ∉ ℒ(M)

⟨M, w⟩ ∈ ATM    iff    w ∉ ℒ(M)          

● ATM is more general than LD:

● LD asks if a machine doesn't accept itself.

● ATM asks if a machine doesn't accept some 
specific string.



  

LD ≤M ATM

● Goal: Find a computable function f such that

⟨M⟩ ∈ LD     iff     f(⟨M⟩) ∈ ATM  

● Simplifying this using the definition of LD

⟨M⟩ ∉ ℒ(M)     iff     f(⟨M⟩) ∈ ATM      

● Let's assume that f(⟨M⟩) has the form ⟨M', w⟩ for some TM M' 
and string w.  This means that

    ⟨M⟩ ∉ ℒ(M)     iff     ⟨M', w⟩ ∈ ATM  

⟨M⟩ ∉ ℒ(M)     iff     w ∉ ℒ(M')    
● If we can choose w and M' such that the above is true, we 

will have our reduction from LD to ATM.

● Choose M' = M and w = ⟨M⟩.



  

What We Just Did

Machine for A
TM

Machine R

YES

NO

Compute f
⟨M, ⟨M⟩⟩⟨M⟩         

H = “On input ⟨M⟩:
              Compute ⟨M, ⟨M⟩⟩.
              Run R on ⟨M, ⟨M⟩⟩.
              If R accepts ⟨M, ⟨M⟩⟩, accept ⟨M⟩.
              If R rejects ⟨M, ⟨M⟩⟩, reject ⟨M⟩.”

Machine H H accepts ⟨M⟩ 
iff

R accepts ⟨M, ⟨M⟩⟩
iff

⟨M, ⟨M⟩⟩ ∈ ATM

iff
⟨M⟩ ∉ (ℒ M)

iff
⟨M⟩ ∈ LD



  

LD ≤M ATM

● The final version of our function f is 
defined here:

  f(⟨M⟩) = ⟨M, ⟨M⟩⟩
● It's reasonable to assume that f is 

computable; details are left as an 
exercise.

● If we can formally prove that ⟨M⟩ ∈ LD iff
f(⟨M⟩) ∈ ATM, then we have that LD ≤M ATM.  
Thus ATM ∉ RE.



  

Theorem: ATM ∉ RE.
Proof: We exhibit a mapping reduction f from LD to ATM. 

Consider the function f defined as follows:
 

f(⟨M⟩) = ⟨M, ⟨M⟩⟩
 

We claim that f can be computed by a TM and omit the
details from this proof.  We will prove that ⟨M⟩ ∈ LD iff
f(⟨M⟩) ∈ ATM.  Note that f(⟨M⟩) = ⟨M, ⟨M⟩⟩, so f(⟨M⟩) ∈ ATM 
iff ⟨M, ⟨M⟩⟩ ∈ ATM.  By definition of ATM, ⟨M, ⟨M⟩⟩ ∈ ATM iff
⟨M⟩ ∉ (ℒ M).  Finally, note that ⟨M⟩ ∉ (ℒ M) iff ⟨M⟩ ∈ LD. 
Thus f(⟨M⟩) ∈ ATM iff ⟨M⟩ ∈ LD, so f is a mapping reduction
from LD to ATM.

Since f is a mapping reduction from LD to ATM, we have
LD ≤M ATM.  Since LD ∉ RE and LD ≤M ATM, this means
ATM ∉ RE, as required. ■



  

The Halting Problem

● Recall the definition of HALT:

HALT = {⟨M, w⟩ | M is a TM that halts on w}

● That is, the set of TM / string pairs where the 
TM M either accepts or rejects the string w.

● Last time, we proved that HALT ∈ RE – R by 
building a TM for it, then by showing a decider 
for HALT could be turned into a decider for 
ATM.

● Let's explore an alternate proof using mapping 
reductions.



  

HALT is RE

● Recall: ATM ∈ RE.

● To prove that HALT is RE, we will show 
that HALT ≤M ATM.

● Since ATM ∈ RE, this proves HALT ∈ RE.

● Idea: we need to find some function f 
such that

⟨M, w⟩ ∈ HALT   iff   f(⟨M, w⟩) ∈ ATM   



  

Where We're Going

Machine for A
TM

Machine R

YES

NO

Compute f
⟨M', w'⟩⟨M, w⟩          

Machine H

Goal: Choose our 
function f(w) such that 

this machine H is a 
recognizer for HALT.

Goal: Choose our 
function f(w) such that 

this machine H is a 
recognizer for HALT.



  

HALT ≤M ATM

● Goal: Find a function f such that

⟨M, w⟩ ∈ HALT     iff     f(⟨M, w⟩) ∈ ATM   

● Substituting the definitions:

  M halts on w     iff     f(⟨M, w⟩) ∈ ATM.

● Assume that f(⟨M, w⟩) = ⟨M', w'⟩ for some TM M' 
and string w'.  Then we have

M halts on w     iff     ⟨M', w'⟩ ∈ ATM 

M halts on w     iff     w' ∈ ℒ(M')     

M halts on w     iff     M' accepts w' 



  

Choosing M' and w'

● We need to find M' and w' such that

M halts on w     iff     M' accepts w'.
● This is the creative step of the proof – how do we 

choose an M' and w' with that property?
● Key idea that shows up in almost all major 

reduction proofs: Construct a machine M' and 
string w' so that running M' on w' runs M on w.

● This causes the behavior of M' running on w' to 
depend on what M does on w.



  

Choosing M' and w'

● Here is one possible choice of M' and w' 
we can make:

            M' = “On input ⟨N, z⟩:

                        Run N on z.

                        If N halts on z, accept.”

             w' = ⟨M, w⟩
● Now, running M' on w' runs M on w.  If M 

halts on w, then M' accepts w'.  If M loops 
on w, then M' does not accept w'.



  

Machine for A
TM

Machine R

YES

NO

Compute f
⟨M', ⟨M, w⟩⟩⟨M, w⟩        

H = “On input ⟨M, w⟩:
         Compute ⟨M', ⟨M, w⟩⟩.
         Run R on ⟨M', ⟨M, w⟩⟩.
         If R accepts ⟨M', ⟨M, w⟩⟩, accept.
         If R rejects ⟨M', ⟨M, w⟩⟩, reject.”

Machine H H accepts ⟨M, w⟩
iff

R accepts ⟨M', ⟨M, w⟩⟩
iff

⟨M', ⟨M, w⟩⟩ ∈ ATM

iff
M' accepts ⟨M, w⟩

iff
M halts on w

iff
⟨M, w⟩ ∈ HALT

M' = “On input ⟨N, z⟩:
   Run N on z.
   If N halts, accept.”



  

Theorem: HALT ≤M ATM.
Proof: We exhibit a mapping reduction f from HALT to ATM.  

Let the machine M' be defined as follows:
 

M' = “On input ⟨N, z⟩:
Run N on z.
If N halts on z, accept.”

 

Then let f(⟨M, w⟩) = ⟨M', ⟨M, w⟩⟩.  We claim that f is
computable and omit the details from this proof.  We
further claim that ⟨M, w⟩ ∈ HALT iff f(⟨M, w⟩) ∈ ATM.  To
see this, note that f(⟨M, w⟩) = ⟨M', ⟨M, w⟩⟩ ∈ ATM iff 
M' accepts ⟨M, w⟩.  By construction, M' accepts ⟨M, w⟩ iff
M halts on w.  Finally, note that M halts on w iff
⟨M, w⟩ ∈ HALT.  Thus ⟨M, w⟩ ∈ HALT iff f(⟨M, w⟩) ∈ ATM. 
Therefore, f is a mapping reduction from HALT to ATM, so 
HALT ≤M ATM. ■



  

HALT is Undecidable

● We proved HALT ∈ RE by showing that 
HALT ≤M ATM.

● We can prove HALT ∉ R by showing that 
ATM ≤M HALT.

● Note that this has to be a completely 
separate reduction!  We're transforming 
ATM into HALT this time, not the other way 
around.



  

ATM ≤M HALT

● We want to find a computable function f such that

⟨M, w⟩ ∈ ATM     iff     f(⟨M, w⟩) ∈ HALT.

● Assume f(⟨M, w⟩) has the form ⟨M', w'⟩ for some TM 
M' and string w'.

● We want

⟨M, w⟩ ∈ ATM     iff     ⟨M', w'⟩ ∈ HALT.  

● Substituting definitions:

M accepts w     iff     M' halts on w'.     
● How might we design M' and w'?



  

ATM ≤M HALT

● We need to choose a TM/string pair M' and w' such 
that M' halts on w' iff M accepts w.

● Repeated idea: Construct M' and w' such that 
running M' on w' simulates M on w and bases its 
decision on what happens.

● One option:

                M' = “On input ⟨N, z⟩:

                            Run N on z.

                            If N accepts z, accept.

                            If N rejects z, loop infinitely.”

                w' = ⟨M, w⟩



  

Machine for
HALT

Machine R

YES

NO

Compute f
⟨M', ⟨M, w⟩⟩⟨M, w⟩        

H = “On input ⟨M, w⟩:
           Compute ⟨M', ⟨M, w⟩⟩.
           Run R on ⟨M', ⟨M, w⟩⟩.
           If R accepts ⟨M', ⟨M, w⟩⟩, accept.
           If R rejects ⟨M', ⟨M, w⟩⟩, reject.”

Machine H H accepts ⟨M, w⟩
iff

R accepts ⟨M', ⟨M, w⟩⟩
iff

⟨M', ⟨M, w⟩⟩ ∈ HALT
iff

M' halts on ⟨M, w⟩
iff

M accepts w
iff

⟨M, w⟩ ∈ ATM

M' = “On input ⟨N, z⟩:
   Run N on z.
   If N accepts, accept.
   If N rejects, loop infinitely.”



  

An Important Detail

● In the course of this reduction, we construct 
a new machine M'.

● We never actually run the machine M'!  That 
might loop forever.

● We instead just build a description of that 
machine and fed it into our machine for 
HALT.

● The answer given back by this machine 
about what M' would do if we were to run it 
can then be used to solve ATM.



  

Theorem: ATM ≤M HALT.
Proof: We exhibit a mapping reduction from ATM to HALT. 

Let M' be the following TM:
 

M' = “On input ⟨N, z⟩:
Run N on z.
If N accepts, accept.
If N rejects, loop infinitely.”

 

Then let f(⟨M, w⟩) = ⟨M', ⟨M, w⟩⟩.  We claim that f is
computable and omit the details from this proof.  We
further claim that ⟨M, w⟩ ∈ ATM iff f(⟨M, w⟩) ∈ HALT.  To
see this, note that f(⟨M, w⟩) = ⟨M', ⟨M, w⟩⟩ ∈ HALT iff
M' halts on ⟨M, w⟩.  By construction, M' halts on ⟨M, w⟩
iff M accepts w.  Finally, M accepts w iff ⟨M, w⟩ ∈ ATM.
Thus we have that ⟨M, w⟩ ∈ ATM iff f(⟨M, w⟩) ∈ HALT. 
Therefore, f is a mapping reduction from ATM to HALT,
so ATM ≤M HALT. ■



  

A Note on Directionality



  

Note the Direction

● To show that a language A is RE, reduce it to 
something that is known to be RE:

A ≤M some-RE-problem  

● To show that a language A is not R, reduce a 
problem that is known not to be R to A:

some-non-R-problem ≤M A

● The single most common mistake with 
reductions is doing the reduction in the 
wrong direction.



  

Next Time

● co-RE and Beyond
● What lies outside of RE?  How much of it can 

be solved by computers?

● More Reductions
● More examples of mapping reductions.
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