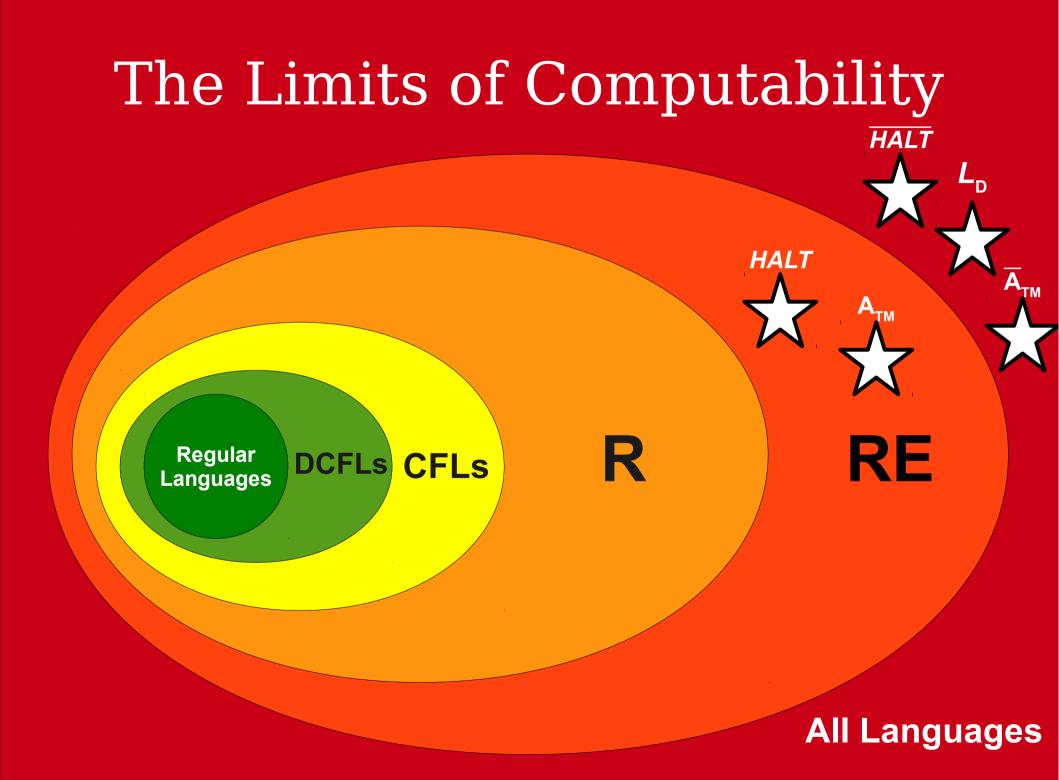
Reductions



HALT and HALT

• The language *HALT* is defined as

 $\{\langle M, w \rangle \mid M \text{ is a TM that halts on } w\}$

• Equivalently:

{x | x = (M, w) for some TM M
 and string w, and M halts on w}

• Thus *HALT* is

 $\{x \mid x \neq \langle M, w \rangle \text{ for any TM } M \text{ and string } w, \\ \text{ or } M \text{ is a TM that does not halt on } w \}$

Cheating With Math

• As a mathematical simplification, we will assume the following:

Every string can be decoded into any collection of objects.

- Every string is an encoding of some TM M.
- Every string is an encoding of some TM *M* and string *w*.
- Can do this as follows:
 - If the string is a legal encoding, go with that encoding.
 - Otherwise, pretend the string decodes to some predetermined group of objects.

Cheating With Math

- Example: Every string will be a valid C++ program.
- If it's already a C++ program, just compile it.
- Otherwise, pretend it's this program:

```
int main() {
    return 0;
}
```

HALT and HALT

• The language *HALT* is defined as

 $\{\langle M, w \rangle \mid M \text{ is a TM that halts on } w\}$

- Thus *HALT* is the language
 {(*M*, *w*) | *M* is a TM that doesn't halt on *w*}
- Equivalently:

 $\overline{HALT} = \{\langle M, w \rangle | M \text{ is a TM that loops on } w \}$

The Takeaway Point

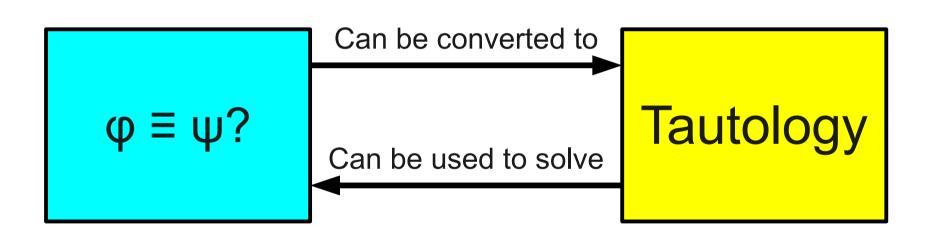
- When dealing with encodings, you don't need to consider strings that aren't valid encodings.
- This will keep our proofs *much* simpler than before.

Reductions

Finding Unsolvable Problems

- Last time, we found five unsolvable problems.
- We proved that $L_{\rm D}$ was unrecognizable, then used this fact to show four other languages were either undecidable or unrecognizable.
- In general, to prove that a problem is unsolvable (not R or not RE), we don't directly show that it is unsolvable.
- Instead, we show how a solution to that problem would let us solve an unsolvable problem.

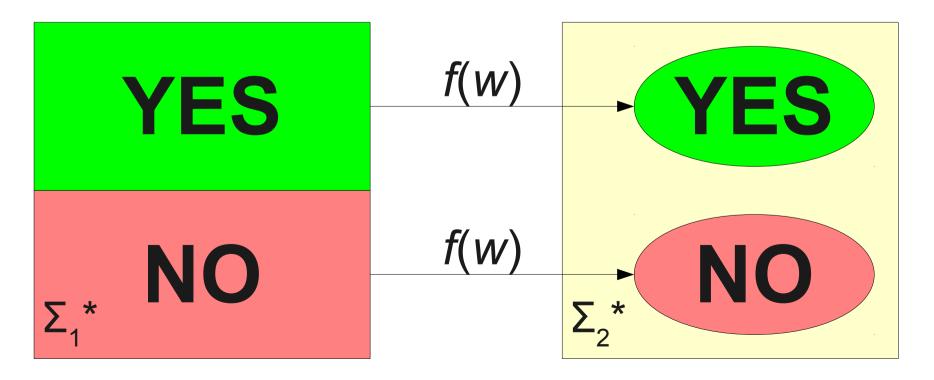
Reductions



Defining Reductions

• A **reduction** from *A* to *B* is a function $f: \Sigma_1^* \to \Sigma_2^*$ such that

For any $w \in \Sigma_1^*$, $w \in A$ iff $f(w) \in B$



Defining Reductions

• A **reduction** from *A* to *B* is a function $f: \Sigma_1^* \to \Sigma_2^*$ such that

For any $w \in \Sigma_1^*$, $w \in A$ iff $f(w) \in B$

- Every $w \in A$ maps to some f(w) in B.
- Every $w \notin A$ maps to some f(w) not in B.
- *f* does not have to be injective or surjective.

Reducing $\varphi \equiv \psi$ to Tautology

• Let *EQUIV* be

$EQUIV = \{ \langle \phi, \psi \rangle \mid \phi \equiv \psi \}$

• Let *TAUTOLOGY* be

$TAUTOLOGY = \{ \langle \phi \rangle \mid \phi \text{ is a tautology } \}$

• To reduce *EQUIV* to *TAUTOLOGY*, we want a function *f* such that

 $\langle \phi, \psi \rangle \in EQUIV \quad \text{iff} \quad f(\langle \phi, \psi \rangle) \in TAUTOLOGY$

• One possible function we could use is

 $f(\langle \phi, \psi \rangle) = \langle \phi \leftrightarrow \psi \rangle$

Reducing any RE Language to $A_{\!\rm TM}$

- Let *L* be any **RE** language, and let *R* be a recognizer for *L*.
- To reduce L to $\mathbf{A}_{\mathrm{TM}},$ we want a function f such that

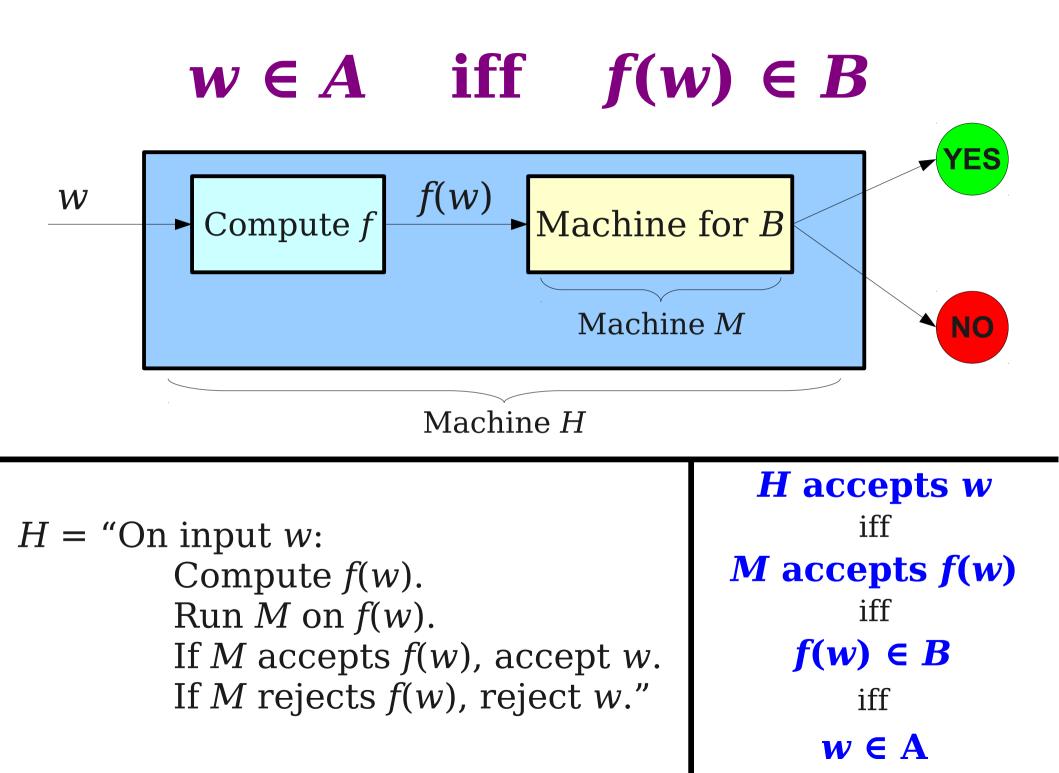
$w \in L$ iff $f(w) \in A_{TM}$

• One possible reduction is

 $f(w) = \langle R, w \rangle$

Why Reductions Matter

- If problem A reduces to problem B, we can use a recognizer/decider for B to recognize/decide problem A.
 - (There's a slight catch we'll talk about this in a second).
- How is this possible?



A Problem

• Recall: *f* is a reduction from *A* to *B* iff

$w \in A$ iff $f(w) \in B$

- Under this definition, any language A reduces to any language B unless $B = \emptyset$ or Σ^* .
- Since $B \neq \emptyset$ and $B \neq \Sigma^*$, there is some $w_{yes} \in B$ and some $w_{no} \notin B$.
- Define $f: \Sigma_1^* \to \Sigma_2^*$ as follows:

If $w \in A$, then $f(w) = w_{ves}$

If $w \notin A$, then $f(w) = w_{no}$

• Then *f* is a reduction from *A* to *B*.

A Problem

- Example: let's reduce $L_{\rm D}$ to 0*1*.
- Take $w_{yes} = 01$, $w_{no} = 10$.
- Then f(w) is defined as
 - If $w \in L_{D}$, f(w) = 01.
 - If $w \notin L_{D}$, f(w) = 10.
- There is no TM that can actually evaluate the function f(w) on all inputs, since no TM can decide whether or not $w \in L_{D}$.

Computable Functions

- This general reduction is mathematically well-defined, but might be impossible to actually compute!
- To fix our definition, we need to introduce the idea of a computable function.
- A function $f: \Sigma_1^* \to \Sigma_2^*$ is called a **computable function** if there is some TM *M* with the following behavior:

"On input *w*:

Determine the value of f(w).

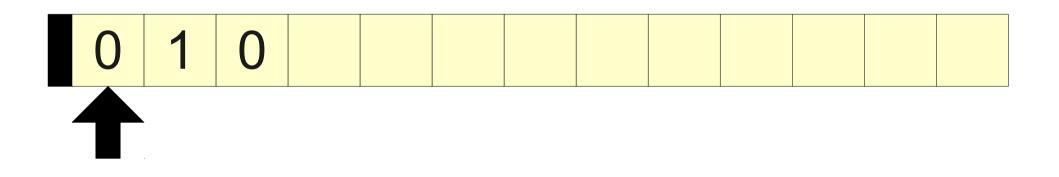
Write f(w) on the tape.

Move the tape head back to the far left.

Halt."

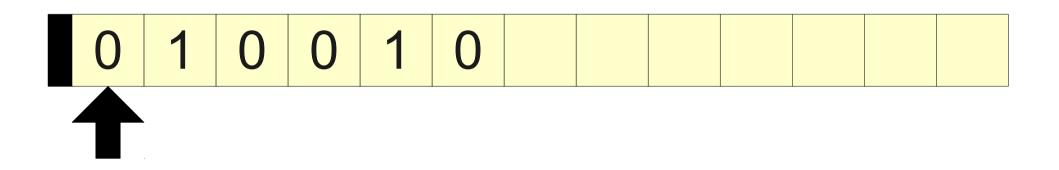
Computable Functions

f(w) = ww

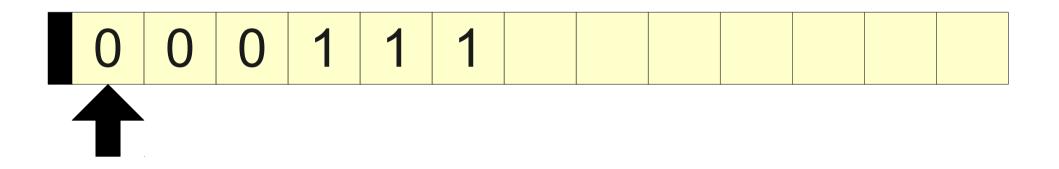


Computable Functions

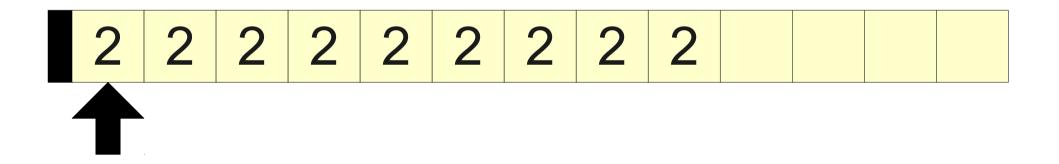
f(w) = ww



Computable Functions $f(w) = \begin{cases} 2^{nm} \text{ if } w = 0^{n}1^{m} \\ \varepsilon \text{ otherwise} \end{cases}$



Computable Functions $f(w) = \begin{cases} 2^{nm} \text{ if } w = 0^{n}1^{m} \\ \varepsilon \text{ otherwise} \end{cases}$



Mapping Reductions

- A function $f: \Sigma_1^* \to \Sigma_2^*$ is called a **mapping reduction** from A to B iff
 - For any $w \in \Sigma_1^*$, $w \in A$ iff $f(w) \in B$.
 - *f* is a computable function.
- Intuitively, a mapping reduction from *A* to *B* says that a computer can transform any instance of *A* into an instance of *B* such that the answer to *B* is the answer to *A*.

Mapping Reducibility

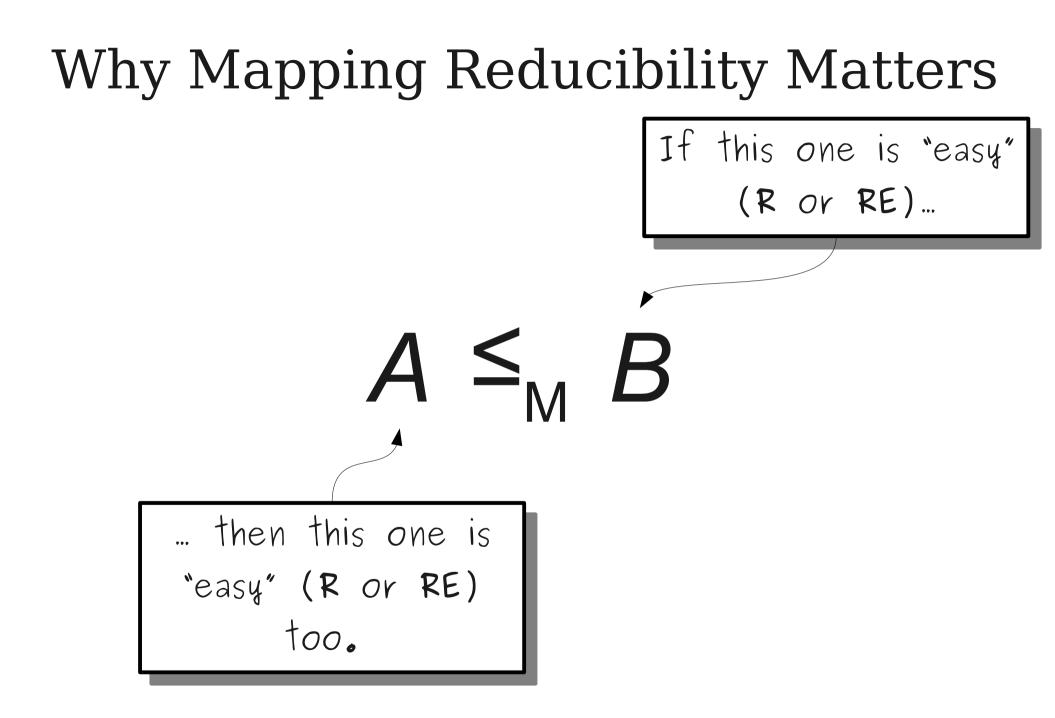
- If there is a mapping reduction from A to B, we say that A is mapping reducible to B.
- Notation: $A \leq_{M} B$ iff A is mapping reducible to B.
- This is not a partial order (it's not antisymmetric), but it is reflexive and transitive. (*Why?*)

Why Mapping Reducibility Matters

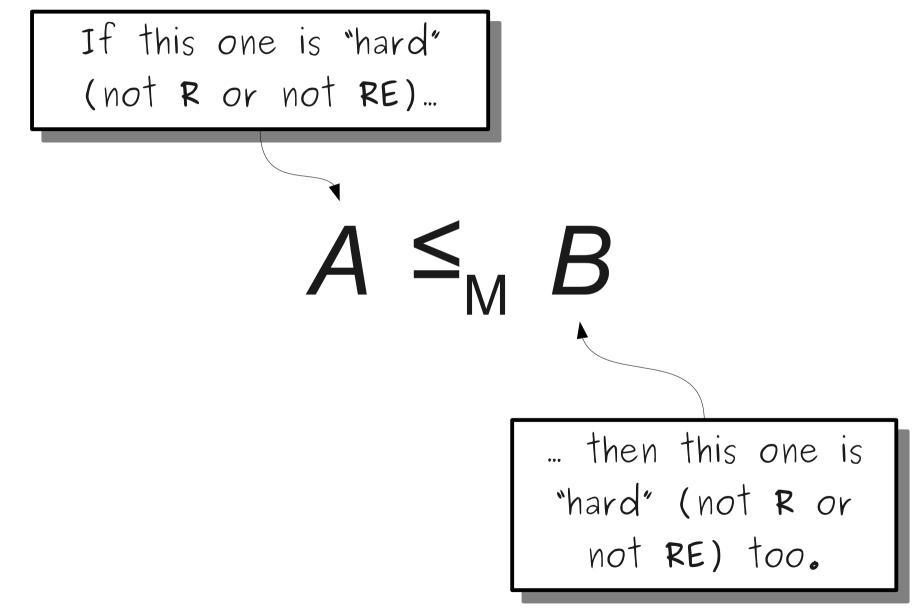
- **Theorem**: If $B \in \mathbf{R}$ and $A \leq_{M} B$, then $A \in \mathbf{R}$.
- **Theorem**: If $B \in \mathbf{RE}$ and $A \leq_{M} B$, then $A \in \mathbf{RE}$.
- $A \leq_{M} B$ informally means "A is not harder than B."

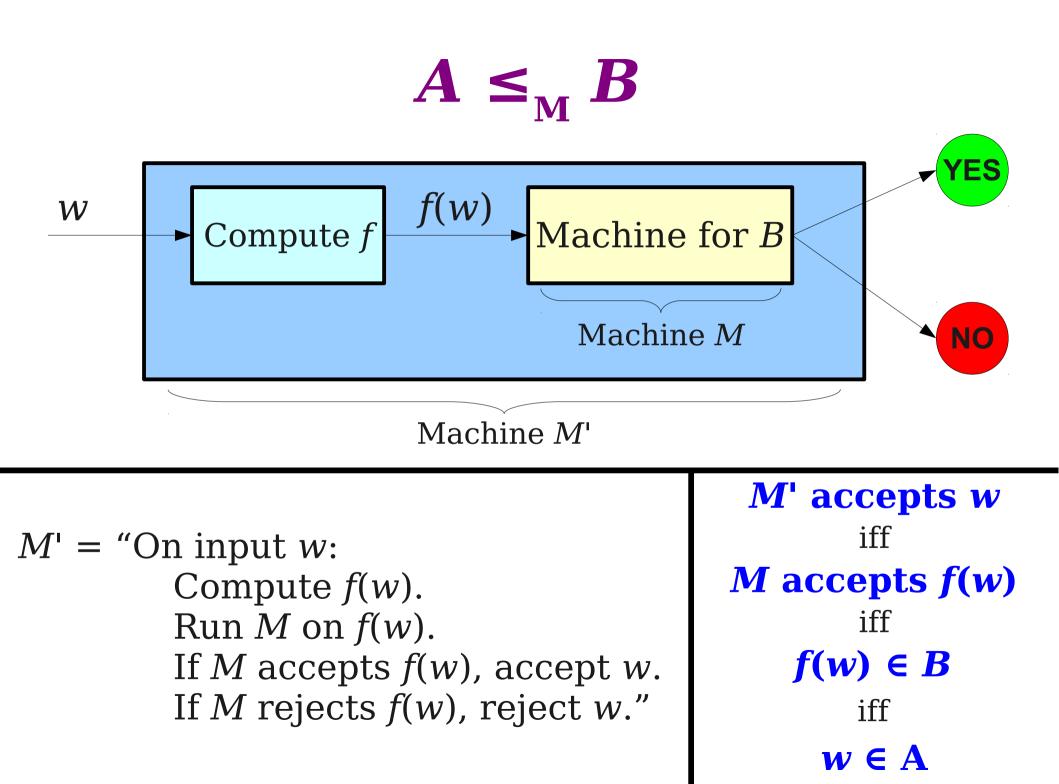
Why Mapping Reducibility Matters

- **Theorem**: If $A \notin \mathbf{R}$ and $A \leq_{M} B$, then $B \notin \mathbf{R}$.
- **Theorem**: If $A \notin \mathbf{RE}$ and $A \leq_{M} B$, then $B \notin \mathbf{RE}$.
- $A \leq_{M} B$ informally means "B is at at least as hard as A."



Why Mapping Reducibility Matters





Using Reductions

Using Reductions

- Recall: The language $\boldsymbol{A}_{\! TM}$ is defined as

 $\mathcal{A}_{_{\mathrm{TM}}} = \{ \langle M, w \rangle \mid M \text{ is a TM and } w \in \mathcal{D}(M) \}$

- Last time, we proved that $A_{TM} \in \mathbf{RE} \mathbf{R}$ (that is, $A_{TM} \in \mathbf{RE}$ but $A_{TM} \notin \mathbf{R}$) by showing that a decider for A_{TM} could be converted into a decider for the diagonalization language L_{D} .
- Let's see an alternate proof that $A_{_{TM}}$ is undecidable by using reductions.

The Complement of $A_{_{\rm TM}}$

- Recall: if $A_{TM} \in \mathbf{R}$, then $\overline{A}_{TM} \in \mathbf{R}$ as well.
- To show that A_{TM} is undecidable, we will prove that the *complement* of A_{TM} (denoted \overline{A}_{TM}) is undecidable.
- The language $\overline{A}_{_{TM}}$ is the following:

$\overline{A}_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and} \\ w \notin \mathscr{L}(M) \}$

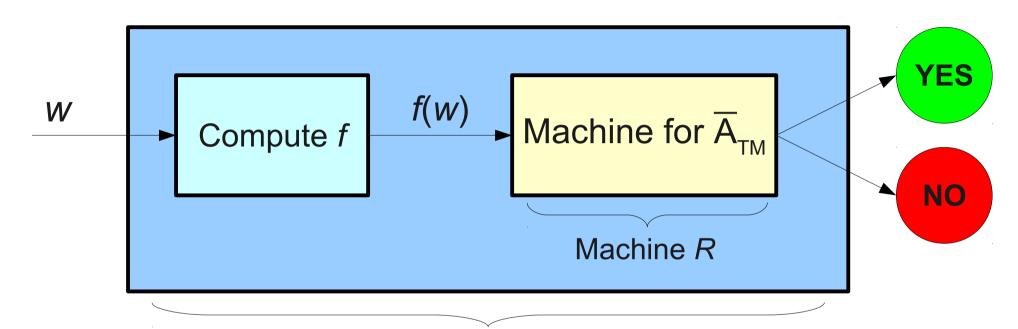
 $L_{\rm d} \leq_{\rm m} A_{\rm tm}$

- Recall: The diagonalization language $L_{\rm D}$ is the language

 $L_{\rm D} = \{ \langle M \rangle \mid M \text{ is a TM and } \langle M \rangle \notin \mathscr{L}(M) \}$

- We directly established that $L_{\rm D} \notin \mathbf{RE}$ using a diagonal argument.
- If we can show that $L_{\rm D} \leq_{\rm M} \overline{\rm A}_{\rm TM}$, then since $L_{\rm D} \notin {\bf RE}$, we have proven that $\overline{\rm A}_{\rm TM} \notin {\bf RE}$.
- Therefore, $\overline{A}_{TM} \notin \mathbf{R}$, so $A_{TM} \notin \mathbf{R}$.

Where We're Going



Machine H

Goal: Choose our function f(w) such that this machine H is a recognizer for L_p .

$L_{\rm D}$ and $\overline{\rm A}_{\rm TM}$

• $L_{\rm D}$ and $\overline{\rm A}_{\rm TM}$ are similar languages:

$\langle M \rangle \in L_{D}$ iff $\langle M \rangle \notin \mathscr{L}(M)$ $\langle M, w \rangle \in \overline{A}_{TM}$ iff $w \notin \mathscr{L}(M)$

- $\overline{\mathbf{A}}_{\mathrm{TM}}$ is more general than L_{D} :
 - $L_{\rm D}$ asks if a machine doesn't accept *itself*.
 - \overline{A}_{TM} asks if a machine doesn't accept *some specific string*.

 $L_{\rm d} \leq_{\rm m} A_{\rm tm}$

• Goal: Find a computable function f such that

 $\langle M \rangle \in L_{\rm D}$ iff $f(\langle M \rangle) \in \overline{\rm A}_{\rm TM}$

- Simplifying this using the definition of $L_{\rm D}$

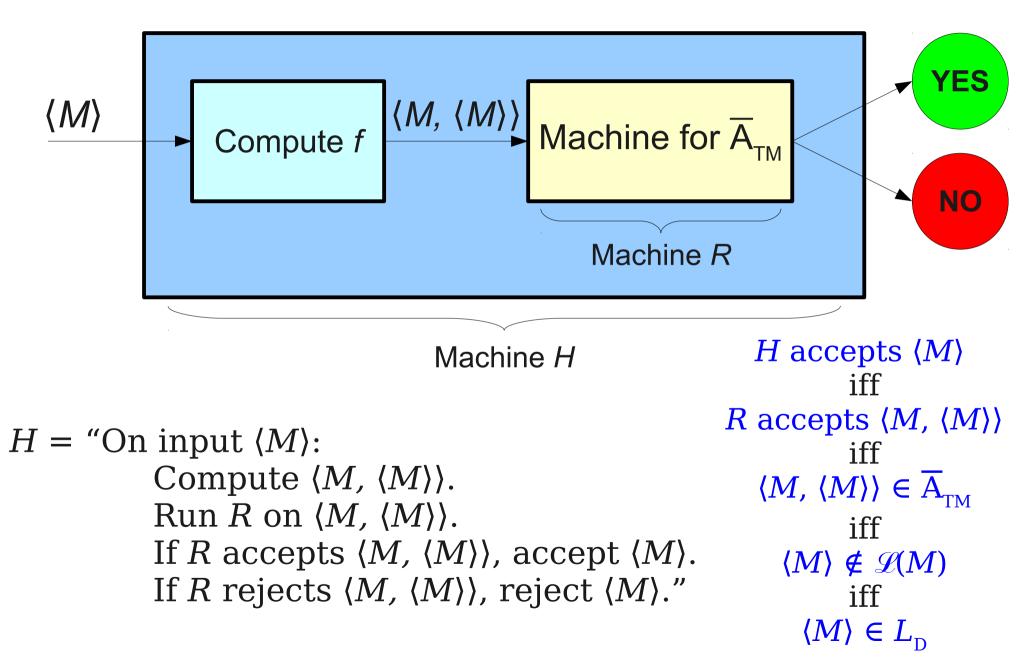
 $\langle M \rangle \notin \mathscr{L}(M)$ iff $f(\langle M \rangle) \in \overline{A}_{TM}$

• Let's assume that $f(\langle M \rangle)$ has the form $\langle M', w \rangle$ for some TM M' and string w. This means that

 $\langle M \rangle \notin \mathscr{L}(M)$ iff $\langle M', w \rangle \in \overline{A}_{TM}$ $\langle M \rangle \notin \mathscr{L}(M)$ iff $w \notin \mathscr{L}(M')$

- If we can choose w and M' such that the above is true, we will have our reduction from $L_{\rm D}$ to $\overline{\rm A}_{\rm TM}$.
- Choose M' = M and $w = \langle M \rangle$.

What We Just Did



 $L_{\rm D} \leq_{\rm M} A_{\rm TM}$

• The final version of our function *f* is defined here:

$f(\langle M \rangle) = \langle M, \langle M \rangle \rangle$

- It's reasonable to assume that *f* is computable; details are left as an exercise.
- If we can formally prove that $\langle M \rangle \in L_{D}$ iff $f(\langle M \rangle) \in \overline{A}_{TM}$, then we have that $L_{D} \leq_{M} \overline{A}_{TM}$. Thus $\overline{A}_{TM} \notin \mathbf{RE}$.

Theorem: $\overline{A}_{TM} \notin \mathbf{RE}$.

Proof: We exhibit a mapping reduction f from $L_{\rm D}$ to $\overline{\rm A}_{\rm TM}$. Consider the function f defined as follows:

 $f(\langle M \rangle) = \langle M, \langle M \rangle \rangle$

We claim that *f* can be computed by a TM and omit the details from this proof. We will prove that $\langle M \rangle \in L_{\rm D}$ iff $f(\langle M \rangle) \in \overline{A}_{\rm TM}$. Note that $f(\langle M \rangle) = \langle M, \langle M \rangle \rangle$, so $f(\langle M \rangle) \in \overline{A}_{\rm TM}$ iff $\langle M, \langle M \rangle \rangle \in \overline{A}_{\rm TM}$. By definition of $\overline{A}_{\rm TM}$, $\langle M, \langle M \rangle \rangle \in \overline{A}_{\rm TM}$ iff $\langle M \rangle \notin \mathscr{L}(M)$. Finally, note that $\langle M \rangle \notin \mathscr{L}(M)$ iff $\langle M \rangle \in L_{\rm D}$. Thus $f(\langle M \rangle) \in \overline{A}_{\rm TM}$ iff $\langle M \rangle \in L_{\rm D}$, so *f* is a mapping reduction from $L_{\rm D}$ to $\overline{A}_{\rm TM}$.

Since *f* is a mapping reduction from $L_{\rm D}$ to $\overline{A}_{\rm TM}$, we have $L_{\rm D} \leq_{\rm M} \overline{A}_{\rm TM}$. Since $L_{\rm D} \notin \mathbf{RE}$ and $L_{\rm D} \leq_{\rm M} \overline{A}_{\rm TM}$, this means $\overline{A}_{\rm TM} \notin \mathbf{RE}$, as required.

The Halting Problem

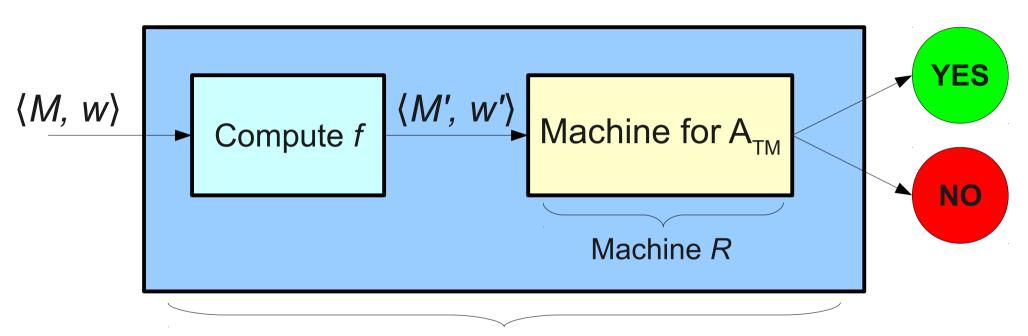
- Recall the definition of *HALT*:
 HALT = { (*M*, *w*) | *M* is a TM that halts on *w*}
- That is, the set of TM / string pairs where the TM *M* either accepts or rejects the string *w*.
- Last time, we proved that $HALT \in \mathbf{RE} \mathbf{R}$ by building a TM for it, then by showing a decider for *HALT* could be turned into a decider for A_{TM} .
- Let's explore an alternate proof using mapping reductions.

HALT is **RE**

- Recall: $A_{TM} \in \mathbf{RE}$.
- To prove that *HALT* is **RE**, we will show that $HALT \leq_{M} A_{TM}$.
- Since $A_{TM} \in \mathbf{RE}$, this proves $HALT \in \mathbf{RE}$.
- Idea: we need to find some function *f* such that

 $\langle M, w \rangle \in HALT$ iff $f(\langle M, w \rangle) \in A_{TM}$

Where We're Going



Machine H

$HALT \leq_{M} A_{TM}$

- Goal: Find a function f such that $(M, w) \in HALT \quad \text{iff} \quad f((M, w)) \in A_{TM}$
- Substituting the definitions:

M halts on *w* iff $f(\langle M, w \rangle) \in A_{TM}$.

• Assume that $f(\langle M, w \rangle) = \langle M', w' \rangle$ for some TM M'and string w'. Then we have

M halts on wiff $\langle M', w' \rangle \in A_{TM}$ M halts on wiff $w' \in \mathscr{L}(M')$ M halts on wiffM' accepts w'

Choosing M' and w'

• We need to find M' and w' such that

M halts on w iff M' accepts w'.

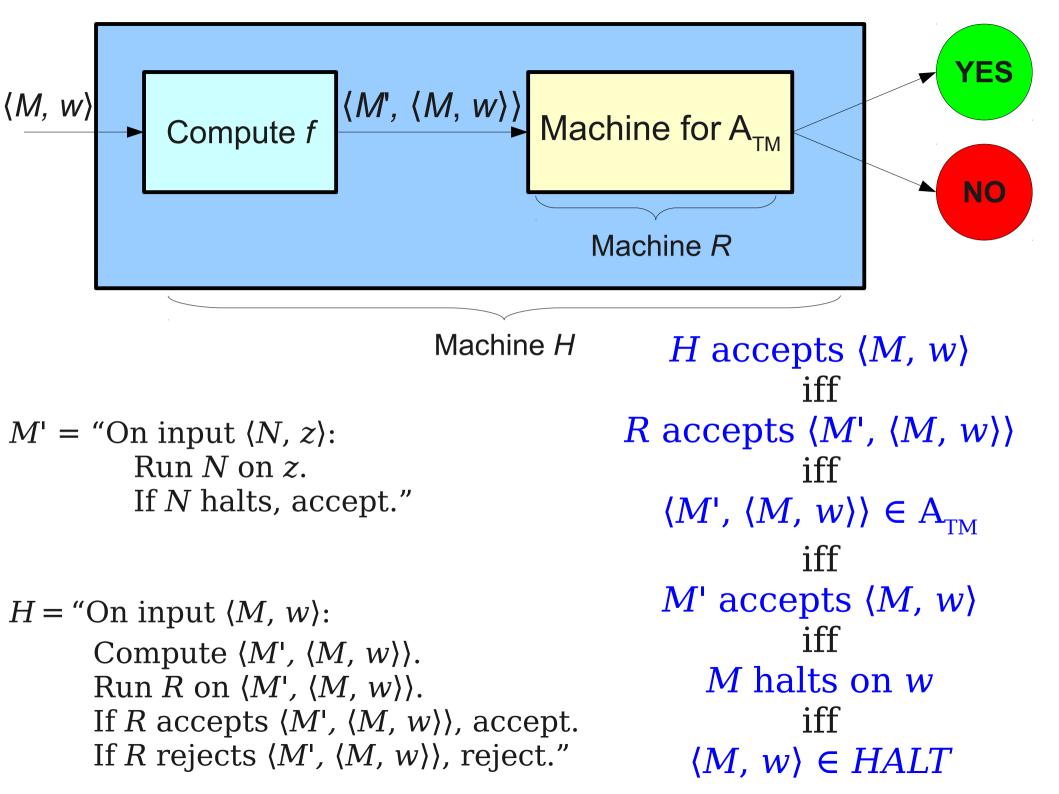
- This is the creative step of the proof how do we choose an *M*' and *w*' with that property?
- Key idea that shows up in almost all major reduction proofs: Construct a machine *M*' and string *w*' so that running *M*' on *w*' runs *M* on *w*.
- This causes the behavior of M' running on w' to depend on what M does on w.

Choosing M' and w'

• Here is one possible choice of *M*' and *w*' we can make:

 $M' = "On input \langle N, z \rangle:$ Run N on z. If N halts on z, accept." $w' = \langle M, w \rangle$

• Now, running *M*' on *w*' runs *M* on *w*. If *M* halts on *w*, then *M*' accepts *w*'. If *M* loops on *w*, then *M*' does not accept *w*'.



Theorem: $HALT \leq_{M} A_{TM}$.

Proof: We exhibit a mapping reduction f from *HALT* to A_{TM} . Let the machine M' be defined as follows:

 $\begin{aligned} M' &= \text{``On input } \langle N, z \rangle \text{:} \\ & \text{Run } N \text{ on } z\text{.} \\ & \text{If } N \text{ halts on } z\text{, accept.''} \end{aligned}$

Then let $f(\langle M, w \rangle) = \langle M', \langle M, w \rangle \rangle$. We claim that f is computable and omit the details from this proof. We further claim that $\langle M, w \rangle \in HALT$ iff $f(\langle M, w \rangle) \in A_{TM}$. To see this, note that $f(\langle M, w \rangle) = \langle M', \langle M, w \rangle \rangle \in A_{TM}$ iff M' accepts $\langle M, w \rangle$. By construction, M' accepts $\langle M, w \rangle$ iff M halts on w. Finally, note that M halts on w iff $\langle M, w \rangle \in HALT$. Thus $\langle M, w \rangle \in HALT$ iff $f(\langle M, w \rangle) \in A_{TM}$. Therefore, f is a mapping reduction from HALT to A_{TM} , so $HALT \leq_M A_{TM}$.

HALT is Undecidable

- We proved $HALT \in \mathbf{RE}$ by showing that $HALT \leq_{M} A_{TM}$.
- We can prove $HALT \notin \mathbf{R}$ by showing that $A_{TM} \leq_M HALT$.
- Note that this has to be a completely separate reduction! We're transforming $A_{\rm TM}$ into *HALT* this time, not the other way around.

 $A_{TM} \leq_M HALT$

- We want to find a computable function f such that $\langle M, w \rangle \in A_{TM}$ iff $f(\langle M, w \rangle) \in HALT$.
- Assume $f(\langle M, w \rangle)$ has the form $\langle M', w' \rangle$ for some TM M' and string w'.
- We want

$\langle M, w \rangle \in A_{TM}$ iff $\langle M', w' \rangle \in HALT$.

• Substituting definitions:

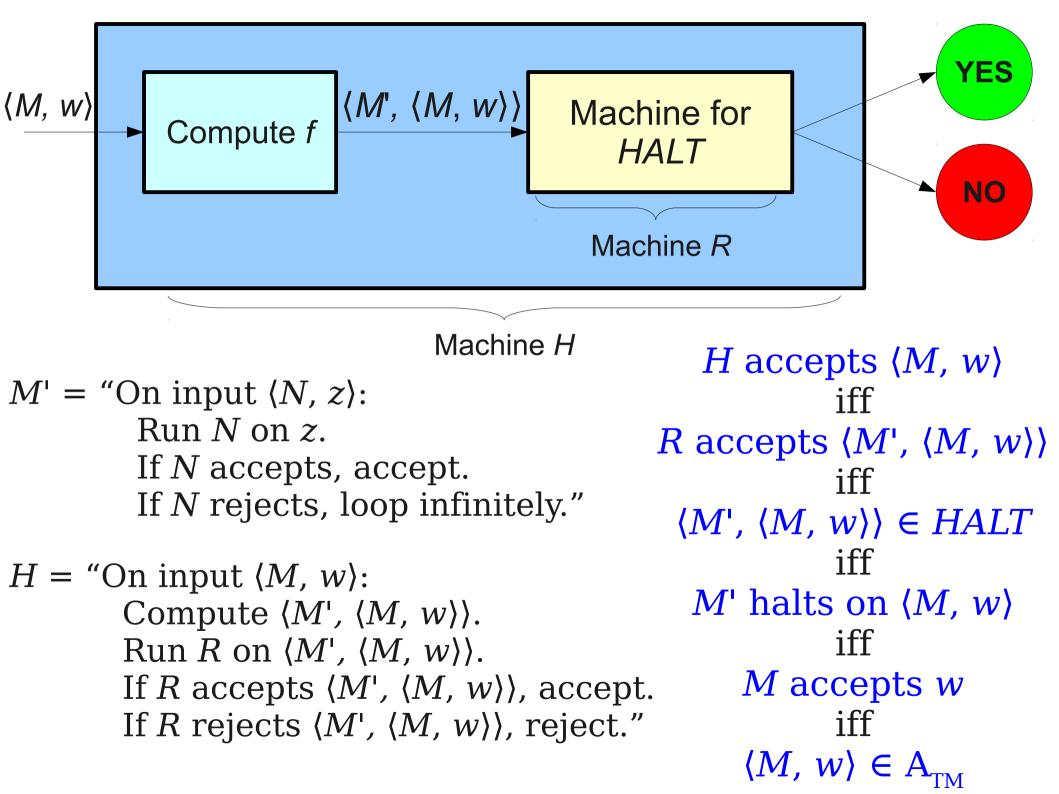
M accepts w iff M' halts on w'.

• How might we design M' and w'?

 $A_{TM} \leq_{M} HALT$

- We need to choose a TM/string pair M' and w' such that M' halts on w' iff M accepts w.
- Repeated idea: Construct M' and w' such that running M' on w' simulates M on w and bases its decision on what happens.
- One option:

$$\begin{split} M' &= \text{``On input } \langle N, z \rangle \text{:} \\ & \text{Run N on z.} \\ & \text{If N accepts z, accept.} \\ & \text{If N rejects z, loop infinitely.''} \\ & w' &= \langle M, w \rangle \end{split}$$



An Important Detail

- In the course of this reduction, we construct a new machine M'.
- We never actually run the machine M'! That might loop forever.
- We instead just build a description of that machine and fed it into our machine for *HALT*.
- The answer given back by this machine about what M' would do if we were to run it can then be used to solve A_{TM} .

Theorem: $A_{TM} \leq_M HALT$. *Proof:* We exhibit a mapping reduction from A_{TM} to HALT. Let *M*' be the following TM:

> $M' = "On input \langle N, z \rangle:$ Run N on z. If N accepts, accept. If N rejects, loop infinitely."

Then let $f(\langle M, w \rangle) = \langle M', \langle M, w \rangle \rangle$. We claim that f is computable and omit the details from this proof. We further claim that $\langle M, w \rangle \in A_{TM}$ iff $f(\langle M, w \rangle) \in HALT$. To see this, note that $f(\langle M, w \rangle) = \langle M', \langle M, w \rangle \rangle \in HALT$ iff M' halts on $\langle M, w \rangle$. By construction, M' halts on $\langle M, w \rangle$ iff M accepts w. Finally, M accepts w iff $\langle M, w \rangle \in A_{TM}$. Thus we have that $\langle M, w \rangle \in A_{TM}$ iff $f(\langle M, w \rangle) \in HALT$. To finally, $M = C = M + A_{TM}$. Therefore, f is a mapping reduction from A_{TM} to HALT, so $A_{TM} \leq_M HALT$.

A Note on Directionality

Note the Direction

• To show that a language A is **RE**, reduce it to something that is known to be **RE**:

 $A \leq_{M} some$ -**RE**-problem

• To show that a language A is *not* **R**, reduce a problem that is known not to be **R** to A:

some-non-**R**-problem $\leq_{_{\mathrm{M}}} A$

• The single most common mistake with reductions is doing the reduction in the wrong direction.

Next Time

co-RE and Beyond

• What lies outside of **RE**? How much of it can be solved by computers?

More Reductions

• More examples of mapping reductions.