

Reductions

Regular
Languages CFLsDCFLs

All Languages

R RE

The Limits of Computability

A
TM

L
D

HALT

HALT

A
TM

HALT and HALT

● The language HALT is defined as

 {⟨M, w⟩ | M is a TM that halts on w}

● Equivalently:

 {x | x = ⟨M, w⟩ for some TM M
 and string w, and M halts on w}

● Thus HALT is

 {x | x ≠ ⟨M, w⟩ for any TM M and string w,
 or M is a TM that does not halt on w}

Cheating With Math

● As a mathematical simplification, we will assume
the following:

Every string can be decoded
into any collection of objects.

● Every string is an encoding of some TM M.

● Every string is an encoding of some TM M and
string w.

● Can do this as follows:
● If the string is a legal encoding, go with that

encoding.
● Otherwise, pretend the string decodes to some

predetermined group of objects.

Cheating With Math

● Example: Every string will be a valid C++
program.

● If it's already a C++ program, just
compile it.

● Otherwise, pretend it's this program:
int main() {

 return 0;

}

HALT and HALT

● The language HALT is defined as

 {⟨M, w⟩ | M is a TM that halts on w}
● Thus HALT is the language

{⟨M, w⟩ | M is a TM that doesn't halt on w}
● Equivalently:

HALT = {⟨M, w⟩ | M is a TM that loops on w}

The Takeaway Point

● When dealing with encodings, you don't
need to consider strings that aren't valid
encodings.

● This will keep our proofs much simpler
than before.

Reductions

Finding Unsolvable Problems

● Last time, we found five unsolvable problems.

● We proved that LD was unrecognizable, then used this
fact to show four other languages were either
undecidable or unrecognizable.

● In general, to prove that a problem is unsolvable (not
R or not RE), we don't directly show that it is
unsolvable.

● Instead, we show how a solution to that problem
would let us solve an unsolvable problem.

Reductions

φ ≡ ψ? Tautology

Can be converted to

Can be used to solve

Defining Reductions

● A reduction from A to B is a function
f : Σ1* → Σ2* such that

 For any w ∈ Σ1*, w ∈ A iff f(w) ∈ B

NO
Σ

1
* Σ

2
*

YES YES

NO

f(w)

f(w)

Defining Reductions

● A reduction from A to B is a function
f : Σ1* → Σ2* such that

 For any w ∈ Σ1*, w ∈ A iff f(w) ∈ B

● Every w ∈ A maps to some f(w) in B.
● Every w ∉ A maps to some f(w) not in B.
● f does not have to be injective or

surjective.

Reducing φ ≡ ψ to Tautology

● Let EQUIV be

EQUIV = { ⟨φ, ψ⟩ | φ ≡ ψ }
● Let TAUTOLOGY be

TAUTOLOGY = { ⟨φ⟩ | φ is a tautology }
● To reduce EQUIV to TAUTOLOGY, we want a

function f such that

⟨φ, ψ⟩ ∈ EQUIV iff f(⟨φ, ψ⟩) ∈ TAUTOLOGY
● One possible function we could use is

f(⟨φ, ψ⟩) = ⟨φ ↔ ψ⟩

Reducing any RE Language to ATM

● Let L be any RE language, and let R be a
recognizer for L.

● To reduce L to ATM, we want a function f
such that

w ∈ L iff f(w) ∈ ATM

● One possible reduction is

f(w) = ⟨R, w⟩

Why Reductions Matter

● If problem A reduces to problem B, we
can use a recognizer/decider for B to
recognize/decide problem A.
● (There's a slight catch – we'll talk about this

in a second).

● How is this possible?

Machine for B

Machine M

YES

NO

Compute f
f(w)w

H = “On input w:
 Compute f(w).
 Run M on f(w).
 If M accepts f(w), accept w.
 If M rejects f(w), reject w.”

Machine H

H accepts w

iff

M accepts f(w)

 iff

f(w) ∈ B

iff

w ∈ A

w ∈ A iff f(w) ∈ B

A Problem

● Recall: f is a reduction from A to B iff

w ∈ A iff f(w) ∈ B
● Under this definition, any language A reduces to any

language B unless B = Ø or Σ*.

● Since B ≠ Ø and B ≠ Σ*, there is some wyes ∈ B and
some wno ∉ B.

● Define f : Σ1* → Σ2* as follows:

If w ∈ A, then f(w) = wyes

If w ∉ A, then f(w) = wno

● Then f is a reduction from A to B.

A Problem

● Example: let's reduce LD to 0*1*.

● Take wyes = 01, wno = 10.

● Then f(w) is defined as
● If w ∈ LD, f(w) = 01.

● If w ∉ LD, f(w) = 10.

● There is no TM that can actually evaluate
the function f(w) on all inputs, since no
TM can decide whether or not w ∈ LD.

Computable Functions

● This general reduction is mathematically well-defined, but
might be impossible to actually compute!

● To fix our definition, we need to introduce the idea of a
computable function.

● A function f : Σ1* → Σ2* is called a computable function if
there is some TM M with the following behavior:

 “On input w:

 Determine the value of f(w).

 Write f(w) on the tape.

 Move the tape head back to the far left.

 Halt.”

Computable Functions

f(w) = ww

0 1 0

Computable Functions

f(w) = ww

0 1 0 0 1 0

Computable Functions

f(w) =

0 0 0 1 1 1

 2nm if w = 0n1m

 ε otherwise

Computable Functions

f(w) =

2 2 2 2 2 2 2 2 2

 2nm if w = 0n1m

 ε otherwise

Mapping Reductions

● A function f : Σ1* → Σ2* is called a
mapping reduction from A to B iff
● For any w ∈ Σ1*, w ∈ A iff f(w) ∈ B.

● f is a computable function.

● Intuitively, a mapping reduction from A
to B says that a computer can transform
any instance of A into an instance of B
such that the answer to B is the answer
to A.

Mapping Reducibility

● If there is a mapping reduction from A to
B, we say that A is mapping reducible
to B.

● Notation: A ≤M B iff A is mapping
reducible to B.

● This is not a partial order (it's not
antisymmetric), but it is reflexive and
transitive. (Why?)

Why Mapping Reducibility Matters

● Theorem: If B ∈ R and A ≤M B, then
 A ∈ R.

● Theorem: If B ∈ RE and A ≤M B, then
 A ∈ RE.

● A ≤M B informally means “A is not harder
than B.”

Why Mapping Reducibility Matters

● Theorem: If A ∉ R and A ≤M B, then
 B ∉ R.

● Theorem: If A ∉ RE and A ≤M B, then
 B ∉ RE.

● A ≤M B informally means “B is at at least
as hard as A.”

Why Mapping Reducibility Matters

≤
MA B

If this one is “easy”
(R or RE)…

If this one is “easy”
(R or RE)…

… then this one is
“easy” (R or RE)

too.

… then this one is
“easy” (R or RE)

too.

Why Mapping Reducibility Matters

≤
MA B

If this one is “hard”
(not R or not RE)…
If this one is “hard”
(not R or not RE)…

… then this one is
“hard” (not R or
not RE) too.

… then this one is
“hard” (not R or
not RE) too.

Machine for B

Machine M

YES

NO

Compute f
f(w)w

M' = “On input w:
 Compute f(w).
 Run M on f(w).
 If M accepts f(w), accept w.
 If M rejects f(w), reject w.”

Machine M'

M' accepts w

iff

M accepts f(w)

 iff

f(w) ∈ B

iff

w ∈ A

A ≤M B

Using Reductions

Using Reductions

● Recall: The language ATM is defined as

ATM = { ⟨M, w⟩ | M is a TM and w ∈ (ℒ M) }

● Last time, we proved that ATM ∈ RE – R (that is,
ATM ∈ RE but ATM ∉ R) by showing that a
decider for ATM could be converted into a
decider for the diagonalization language LD.

● Let's see an alternate proof that ATM is
undecidable by using reductions.

The Complement of ATM

● Recall: if ATM ∈ R, then ATM ∈ R as well.

● To show that ATM is undecidable, we will
prove that the complement of ATM
(denoted ATM) is undecidable.

● The language ATM is the following:

 ATM = {⟨M, w⟩ | M is a TM and
 w ∉ ℒ(M) }

LD ≤M ATM

● Recall: The diagonalization language LD is the
language

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

● We directly established that LD ∉ RE using a
diagonal argument.

● If we can show that LD ≤M ATM, then since
LD ∉ RE, we have proven that ATM ∉ RE.

● Therefore, ATM ∉ R, so ATM ∉ R.

Where We're Going

Machine for A
TM

Machine R

YES

NO

Compute f
f(w)w

Machine H

Goal: Choose our
function f(w) such

that this machine H is
a recognizer for LD.

Goal: Choose our
function f(w) such

that this machine H is
a recognizer for LD.

LD and ATM

● LD and ATM are similar languages:

⟨M⟩ ∈ LD iff ⟨M⟩ ∉ ℒ(M)

⟨M, w⟩ ∈ ATM iff w ∉ ℒ(M)

● ATM is more general than LD:

● LD asks if a machine doesn't accept itself.

● ATM asks if a machine doesn't accept some
specific string.

LD ≤M ATM

● Goal: Find a computable function f such that

⟨M⟩ ∈ LD iff f(⟨M⟩) ∈ ATM

● Simplifying this using the definition of LD

⟨M⟩ ∉ ℒ(M) iff f(⟨M⟩) ∈ ATM

● Let's assume that f(⟨M⟩) has the form ⟨M', w⟩ for some TM M'
and string w. This means that

 ⟨M⟩ ∉ ℒ(M) iff ⟨M', w⟩ ∈ ATM

⟨M⟩ ∉ ℒ(M) iff w ∉ ℒ(M')
● If we can choose w and M' such that the above is true, we

will have our reduction from LD to ATM.

● Choose M' = M and w = ⟨M⟩.

What We Just Did

Machine for A
TM

Machine R

YES

NO

Compute f
⟨M, ⟨M⟩⟩⟨M⟩

H = “On input ⟨M⟩:
 Compute ⟨M, ⟨M⟩⟩.
 Run R on ⟨M, ⟨M⟩⟩.
 If R accepts ⟨M, ⟨M⟩⟩, accept ⟨M⟩.
 If R rejects ⟨M, ⟨M⟩⟩, reject ⟨M⟩.”

Machine H H accepts ⟨M⟩
iff

R accepts ⟨M, ⟨M⟩⟩
iff

⟨M, ⟨M⟩⟩ ∈ ATM

iff
⟨M⟩ ∉ (ℒ M)

iff
⟨M⟩ ∈ LD

LD ≤M ATM

● The final version of our function f is
defined here:

 f(⟨M⟩) = ⟨M, ⟨M⟩⟩
● It's reasonable to assume that f is

computable; details are left as an
exercise.

● If we can formally prove that ⟨M⟩ ∈ LD iff
f(⟨M⟩) ∈ ATM, then we have that LD ≤M ATM.
Thus ATM ∉ RE.

Theorem: ATM ∉ RE.
Proof: We exhibit a mapping reduction f from LD to ATM.

Consider the function f defined as follows:

f(⟨M⟩) = ⟨M, ⟨M⟩⟩

We claim that f can be computed by a TM and omit the
details from this proof. We will prove that ⟨M⟩ ∈ LD iff
f(⟨M⟩) ∈ ATM. Note that f(⟨M⟩) = ⟨M, ⟨M⟩⟩, so f(⟨M⟩) ∈ ATM
iff ⟨M, ⟨M⟩⟩ ∈ ATM. By definition of ATM, ⟨M, ⟨M⟩⟩ ∈ ATM iff
⟨M⟩ ∉ (ℒ M). Finally, note that ⟨M⟩ ∉ (ℒ M) iff ⟨M⟩ ∈ LD.
Thus f(⟨M⟩) ∈ ATM iff ⟨M⟩ ∈ LD, so f is a mapping reduction
from LD to ATM.

Since f is a mapping reduction from LD to ATM, we have
LD ≤M ATM. Since LD ∉ RE and LD ≤M ATM, this means
ATM ∉ RE, as required. ■

The Halting Problem

● Recall the definition of HALT:

HALT = {⟨M, w⟩ | M is a TM that halts on w}

● That is, the set of TM / string pairs where the
TM M either accepts or rejects the string w.

● Last time, we proved that HALT ∈ RE – R by
building a TM for it, then by showing a decider
for HALT could be turned into a decider for
ATM.

● Let's explore an alternate proof using mapping
reductions.

HALT is RE

● Recall: ATM ∈ RE.

● To prove that HALT is RE, we will show
that HALT ≤M ATM.

● Since ATM ∈ RE, this proves HALT ∈ RE.

● Idea: we need to find some function f
such that

⟨M, w⟩ ∈ HALT iff f(⟨M, w⟩) ∈ ATM

Where We're Going

Machine for A
TM

Machine R

YES

NO

Compute f
⟨M', w'⟩⟨M, w⟩

Machine H

Goal: Choose our
function f(w) such that

this machine H is a
recognizer for HALT.

Goal: Choose our
function f(w) such that

this machine H is a
recognizer for HALT.

HALT ≤M ATM

● Goal: Find a function f such that

⟨M, w⟩ ∈ HALT iff f(⟨M, w⟩) ∈ ATM

● Substituting the definitions:

 M halts on w iff f(⟨M, w⟩) ∈ ATM.

● Assume that f(⟨M, w⟩) = ⟨M', w'⟩ for some TM M'
and string w'. Then we have

M halts on w iff ⟨M', w'⟩ ∈ ATM

M halts on w iff w' ∈ ℒ(M')

M halts on w iff M' accepts w'

Choosing M' and w'

● We need to find M' and w' such that

M halts on w iff M' accepts w'.
● This is the creative step of the proof – how do we

choose an M' and w' with that property?
● Key idea that shows up in almost all major

reduction proofs: Construct a machine M' and
string w' so that running M' on w' runs M on w.

● This causes the behavior of M' running on w' to
depend on what M does on w.

Choosing M' and w'

● Here is one possible choice of M' and w'
we can make:

 M' = “On input ⟨N, z⟩:

 Run N on z.

 If N halts on z, accept.”

 w' = ⟨M, w⟩
● Now, running M' on w' runs M on w. If M

halts on w, then M' accepts w'. If M loops
on w, then M' does not accept w'.

Machine for A
TM

Machine R

YES

NO

Compute f
⟨M', ⟨M, w⟩⟩⟨M, w⟩

H = “On input ⟨M, w⟩:
 Compute ⟨M', ⟨M, w⟩⟩.
 Run R on ⟨M', ⟨M, w⟩⟩.
 If R accepts ⟨M', ⟨M, w⟩⟩, accept.
 If R rejects ⟨M', ⟨M, w⟩⟩, reject.”

Machine H H accepts ⟨M, w⟩
iff

R accepts ⟨M', ⟨M, w⟩⟩
iff

⟨M', ⟨M, w⟩⟩ ∈ ATM

iff
M' accepts ⟨M, w⟩

iff
M halts on w

iff
⟨M, w⟩ ∈ HALT

M' = “On input ⟨N, z⟩:
 Run N on z.
 If N halts, accept.”

Theorem: HALT ≤M ATM.
Proof: We exhibit a mapping reduction f from HALT to ATM.

Let the machine M' be defined as follows:

M' = “On input ⟨N, z⟩:
Run N on z.
If N halts on z, accept.”

Then let f(⟨M, w⟩) = ⟨M', ⟨M, w⟩⟩. We claim that f is
computable and omit the details from this proof. We
further claim that ⟨M, w⟩ ∈ HALT iff f(⟨M, w⟩) ∈ ATM. To
see this, note that f(⟨M, w⟩) = ⟨M', ⟨M, w⟩⟩ ∈ ATM iff
M' accepts ⟨M, w⟩. By construction, M' accepts ⟨M, w⟩ iff
M halts on w. Finally, note that M halts on w iff
⟨M, w⟩ ∈ HALT. Thus ⟨M, w⟩ ∈ HALT iff f(⟨M, w⟩) ∈ ATM.
Therefore, f is a mapping reduction from HALT to ATM, so
HALT ≤M ATM. ■

HALT is Undecidable

● We proved HALT ∈ RE by showing that
HALT ≤M ATM.

● We can prove HALT ∉ R by showing that
ATM ≤M HALT.

● Note that this has to be a completely
separate reduction! We're transforming
ATM into HALT this time, not the other way
around.

ATM ≤M HALT

● We want to find a computable function f such that

⟨M, w⟩ ∈ ATM iff f(⟨M, w⟩) ∈ HALT.

● Assume f(⟨M, w⟩) has the form ⟨M', w'⟩ for some TM
M' and string w'.

● We want

⟨M, w⟩ ∈ ATM iff ⟨M', w'⟩ ∈ HALT.

● Substituting definitions:

M accepts w iff M' halts on w'.
● How might we design M' and w'?

ATM ≤M HALT

● We need to choose a TM/string pair M' and w' such
that M' halts on w' iff M accepts w.

● Repeated idea: Construct M' and w' such that
running M' on w' simulates M on w and bases its
decision on what happens.

● One option:

 M' = “On input ⟨N, z⟩:

 Run N on z.

 If N accepts z, accept.

 If N rejects z, loop infinitely.”

 w' = ⟨M, w⟩

Machine for
HALT

Machine R

YES

NO

Compute f
⟨M', ⟨M, w⟩⟩⟨M, w⟩

H = “On input ⟨M, w⟩:
 Compute ⟨M', ⟨M, w⟩⟩.
 Run R on ⟨M', ⟨M, w⟩⟩.
 If R accepts ⟨M', ⟨M, w⟩⟩, accept.
 If R rejects ⟨M', ⟨M, w⟩⟩, reject.”

Machine H H accepts ⟨M, w⟩
iff

R accepts ⟨M', ⟨M, w⟩⟩
iff

⟨M', ⟨M, w⟩⟩ ∈ HALT
iff

M' halts on ⟨M, w⟩
iff

M accepts w
iff

⟨M, w⟩ ∈ ATM

M' = “On input ⟨N, z⟩:
 Run N on z.
 If N accepts, accept.
 If N rejects, loop infinitely.”

An Important Detail

● In the course of this reduction, we construct
a new machine M'.

● We never actually run the machine M'! That
might loop forever.

● We instead just build a description of that
machine and fed it into our machine for
HALT.

● The answer given back by this machine
about what M' would do if we were to run it
can then be used to solve ATM.

Theorem: ATM ≤M HALT.
Proof: We exhibit a mapping reduction from ATM to HALT.

Let M' be the following TM:

M' = “On input ⟨N, z⟩:
Run N on z.
If N accepts, accept.
If N rejects, loop infinitely.”

Then let f(⟨M, w⟩) = ⟨M', ⟨M, w⟩⟩. We claim that f is
computable and omit the details from this proof. We
further claim that ⟨M, w⟩ ∈ ATM iff f(⟨M, w⟩) ∈ HALT. To
see this, note that f(⟨M, w⟩) = ⟨M', ⟨M, w⟩⟩ ∈ HALT iff
M' halts on ⟨M, w⟩. By construction, M' halts on ⟨M, w⟩
iff M accepts w. Finally, M accepts w iff ⟨M, w⟩ ∈ ATM.
Thus we have that ⟨M, w⟩ ∈ ATM iff f(⟨M, w⟩) ∈ HALT.
Therefore, f is a mapping reduction from ATM to HALT,
so ATM ≤M HALT. ■

A Note on Directionality

Note the Direction

● To show that a language A is RE, reduce it to
something that is known to be RE:

A ≤M some-RE-problem

● To show that a language A is not R, reduce a
problem that is known not to be R to A:

some-non-R-problem ≤M A

● The single most common mistake with
reductions is doing the reduction in the
wrong direction.

Next Time

● co-RE and Beyond
● What lies outside of RE? How much of it can

be solved by computers?

● More Reductions
● More examples of mapping reductions.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

