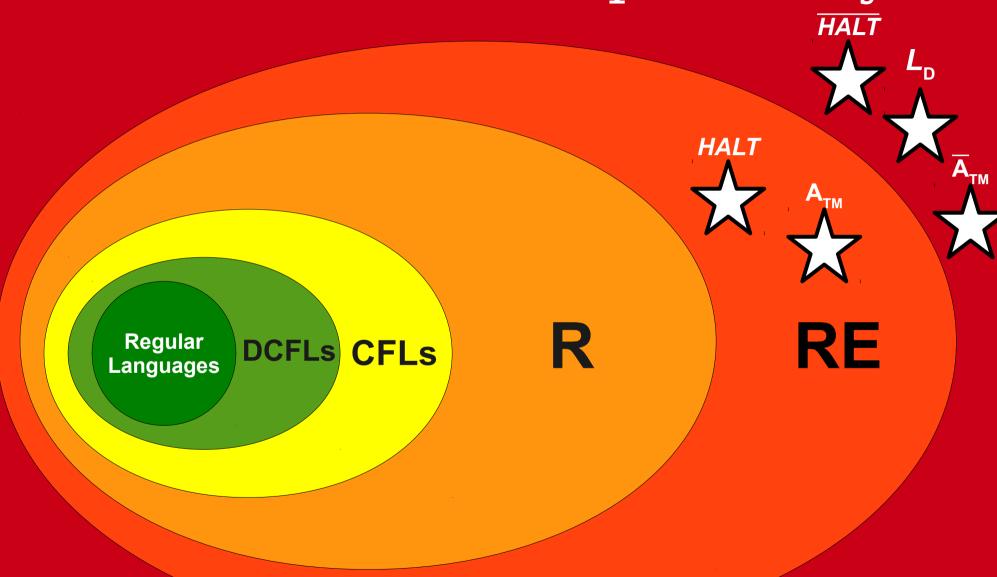
Reductions

The Limits of Computability



All Languages

HALT and \overline{HALT}

• The language *HALT* is defined as

 $\{\langle M, w \rangle \mid M \text{ is a TM that halts on } w\}$

• Equivalently:

 $\{x \mid x = \langle M, w \rangle \text{ for some TM } M \text{ and string } w, \text{ and } M \text{ halts on } w\}$

• Thus \overline{HALT} is

 $\{x \mid x \neq \langle M, w \rangle \text{ for any TM } M \text{ and string } w, \text{ or } M \text{ is a TM that does not halt on } w\}$

 $\{x \mid x \neq \langle M, w \rangle \text{ for any TM } M \text{ and string } w, \text{ or } M \text{ is a TM that does not halt on } w\}$

Cheating With Math

• As a mathematical simplification, we will assume the following:

Every string can be decoded into any collection of objects.

- Every string is an encoding of some TM M.
- Every string is an encoding of some $TM\ M$ and string w.
- Can do this as follows:
 - If the string is a legal encoding, go with that encoding.
 - Otherwise, pretend the string decodes to some predetermined group of objects.

Cheating With Math

- Example: Every string will be a valid C++ program.
- If it's already a C++ program, just compile it.
- Otherwise, pretend it's this program:

```
int main() {
    return 0;
}
```

HALT and \overline{HALT}

- The language *HALT* is defined as
 - $\{\langle M, w \rangle \mid M \text{ is a TM that halts on } w\}$
- Thus \overline{HALT} is the language
 - $\{\langle M, w \rangle \mid M \text{ is a TM that doesn't halt on } w\}$
- Equivalently:
 - $\overline{HALT} = \{\langle M, w \rangle | M \text{ is a TM that loops on } w\}$

HALT and TIME

• The language *HALT* is

 $\{\langle M, w \rangle \mid M \text{ is a }$

• Thus \overline{HALT} is the land

 $\{\langle M, w \rangle \mid M \text{ is a TM}\}$

• Equivalently:

 $\overline{HALT} = \{\langle M, w \rangle \mid M \text{ is a TM that loops on } w\}$

The Takeaway Point

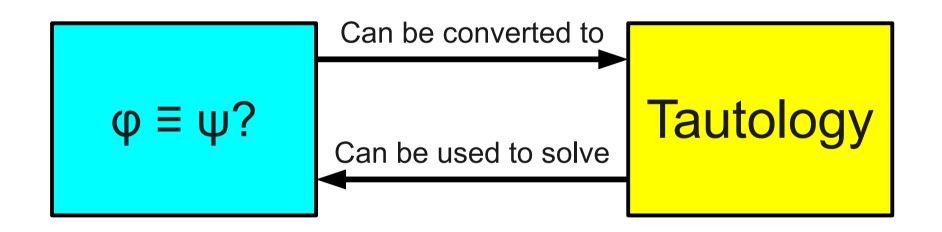
- When dealing with encodings, you don't need to consider strings that aren't valid encodings.
- This will keep our proofs *much* simpler than before.

Reductions

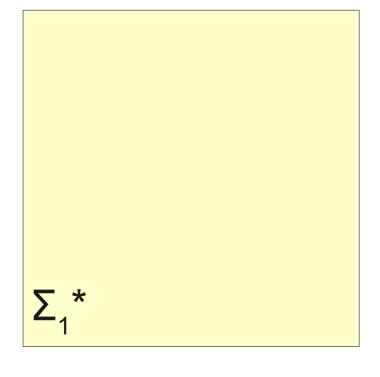
Finding Unsolvable Problems

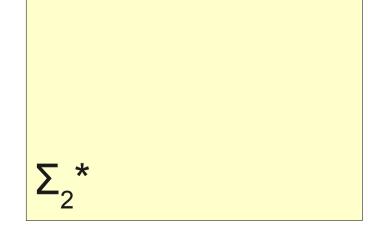
- Last time, we found five unsolvable problems.
- We proved that $L_{\rm D}$ was unrecognizable, then used this fact to show four other languages were either undecidable or unrecognizable.
- In general, to prove that a problem is unsolvable (not **R** or not **RE**), we don't directly show that it is unsolvable.
- Instead, we show how a solution to that problem would let us solve an unsolvable problem.

Reductions

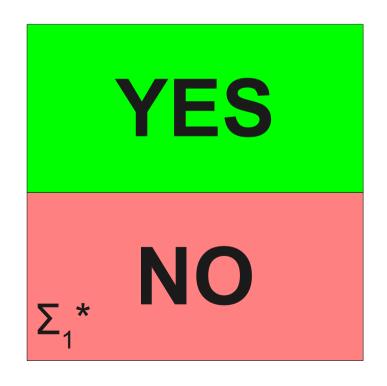


• A **reduction** from A to B is a function $f: \Sigma_1^* \to \Sigma_2^*$ such that

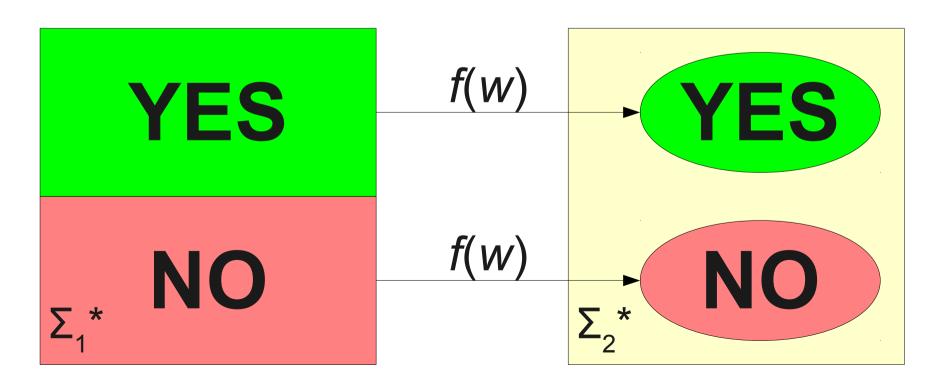




• A **reduction** from A to B is a function $f: \Sigma_1^* \to \Sigma_2^*$ such that



• A **reduction** from A to B is a function $f: \Sigma_1^* \to \Sigma_2^*$ such that



• A **reduction** from A to B is a function $f: \Sigma_1^* \to \Sigma_2^*$ such that

- Every $w \in A$ maps to some f(w) in B.
- Every $w \notin A$ maps to some f(w) not in B.
- *f* does not have to be injective or surjective.

Reducing $\varphi \equiv \psi$ to Tautology

• Let *EQUIV* be

$$EQUIV = \{ \langle \varphi, \psi \rangle \mid \varphi \equiv \psi \}$$

• Let TAUTOLOGY be

$$TAUTOLOGY = \{ \langle \phi \rangle \mid \phi \text{ is a tautology } \}$$

• To reduce *EQUIV* to *TAUTOLOGY*, we want a function *f* such that

$$\langle \varphi, \psi \rangle \in EQUIV \text{ iff } f(\langle \varphi, \psi \rangle) \in TAUTOLOGY$$

One possible function we could use is

$$f(\langle \varphi, \psi \rangle) = \langle \varphi \leftrightarrow \psi \rangle$$

Reducing any \mathbf{RE} Language to \mathbf{A}_{TM}

- Let L be any \mathbf{RE} language, and let R be a recognizer for L.
- To reduce L to A_{TM} , we want a function f such that

$$w \in L \quad \text{iff} \quad f(w) \in A_{\text{TM}}$$

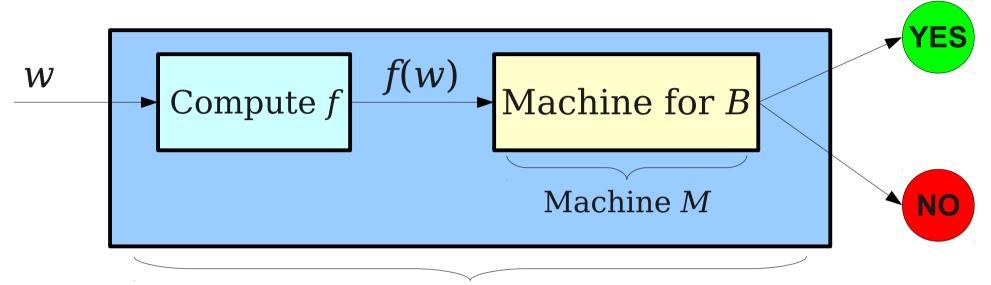
One possible reduction is

$$f(w) = \langle R, w \rangle$$

Why Reductions Matter

- If problem *A* reduces to problem *B*, we can use a recognizer/decider for *B* to recognize/decide problem *A*.
 - (There's a slight catch we'll talk about this in a second).
- How is this possible?

$w \in A \quad \text{iff} \quad f(w) \in B$



Machine H

```
H = "On input w:
   Compute f(w).
   Run M on f(w).
   If M accepts f(w), accept w.
   If M rejects f(w), reject w."
```

```
H accepts w
iff

M accepts f(w)
iff
f(w) \in B
iff
w \in A
```

A Problem

• Recall: *f* is a reduction from *A* to *B* iff

$$w \in A \quad \text{iff} \quad f(w) \in B$$

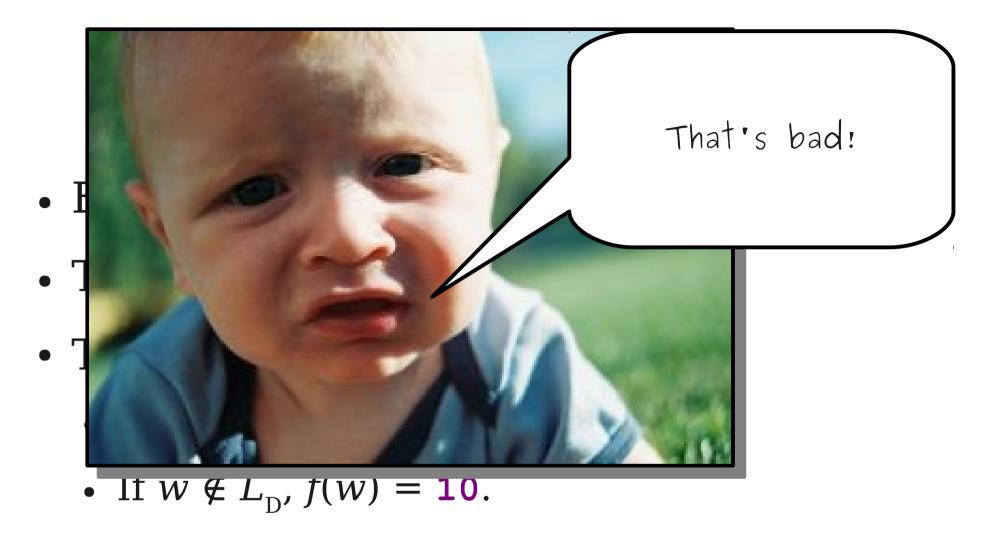
- Under this definition, any language A reduces to any language B unless $B = \emptyset$ or Σ^* .
- Since $B \neq \emptyset$ and $B \neq \Sigma^*$, there is some $w_{yes} \in B$ and some $w_{no} \notin B$.
- Define $f: \Sigma_1^* \to \Sigma_2^*$ as follows:

If
$$w \in A$$
, then $f(w) = w_{yes}$
If $w \notin A$, then $f(w) = w_{no}$

• Then f is a reduction from A to B.

A Problem

- Example: let's reduce L_D to 0*1*.
- Take $w_{ves} = 01$, $w_{no} = 10$.
- Then f(w) is defined as
 - If $w \in L_D$, f(w) = 01.
 - If $w \notin L_D$, f(w) = 10.
- There is no TM that can actually evaluate the function f(w) on all inputs, since no TM can decide whether or not $w \in L_{\mathbb{D}}$.



• There is no TM that can actually evaluate the function f(w) on all inputs, since no TM can decide whether or not $w \in L_{\mathbb{D}}$.

- This general reduction is mathematically well-defined, but might be impossible to actually compute!
- To fix our definition, we need to introduce the idea of a computable function.
- A function $f: \Sigma_1^* \to \Sigma_2^*$ is called a **computable function** if there is some TM M with the following behavior:

"On input w:

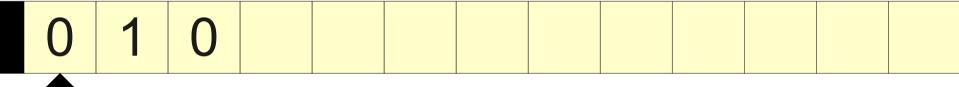
Determine the value of f(w).

Write f(w) on the tape.

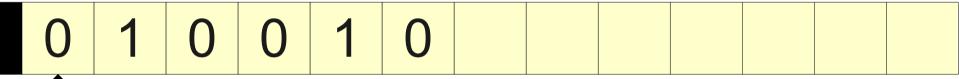
Move the tape head back to the far left.

Halt."

$$f(w) = ww$$



$$f(w) = ww$$



$$f(w) = \begin{cases} 2^{nm} & \text{if } w = 0^{n}1^{m} \\ \varepsilon & \text{otherwise} \end{cases}$$

0 0 1 1 1	
-----------	--

$$f(w) = \begin{cases} 2^{nm} & \text{if } w = 0^{n}1^{m} \\ \varepsilon & \text{otherwise} \end{cases}$$

Mapping Reductions

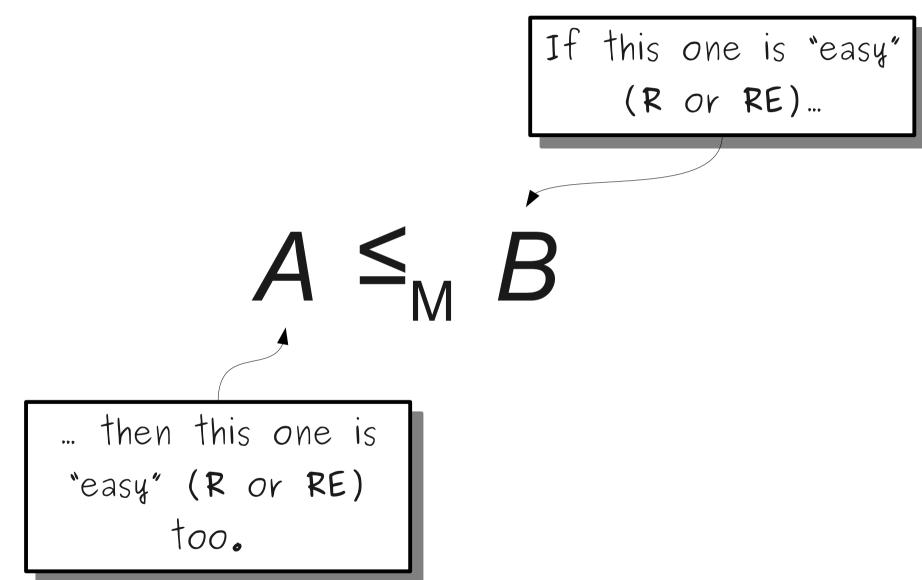
- A function $f: \Sigma_1^* \to \Sigma_2^*$ is called a mapping reduction from A to B iff
 - For any $w \in \Sigma_1^*$, $w \in A$ iff $f(w) \in B$.
 - *f* is a computable function.
- Intuitively, a mapping reduction from A to B says that a computer can transform any instance of A into an instance of B such that the answer to B is the answer to A.

Mapping Reducibility

- If there is a mapping reduction from A to B, we say that A is mapping reducible to B.
- Notation: $A \leq_{M} B$ iff A is mapping reducible to B.
- This is not a partial order (it's not antisymmetric), but it is reflexive and transitive. (*Why?*)

- Theorem: If $B \in \mathbf{R}$ and $A \leq_{\mathrm{M}} B$, then $A \in \mathbf{R}$.
- Theorem: If $B \in \mathbf{RE}$ and $A \leq_{\mathtt{M}} B$, then $A \in \mathbf{RE}$.
- $A \leq_{\text{M}} B$ informally means "A is not harder than B."

- Theorem: If $A \notin \mathbb{R}$ and $A \leq_{\mathbb{M}} B$, then $B \notin \mathbb{R}$.
- Theorem: If $A \notin \mathbf{RE}$ and $A \leq_{M} B$, then $B \notin \mathbf{RE}$.
- $A \leq_{M} B$ informally means "B is at at least as hard as A."

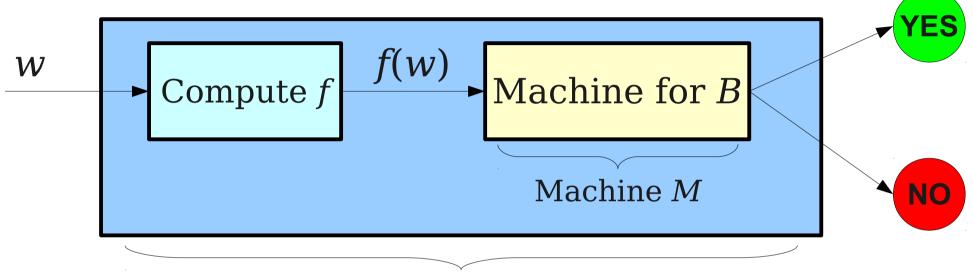


If this one is "hard" (not R or not RE)...

$$A \leq_{\mathsf{M}} B$$

... then this one is "hard" (not R or not RE) too.

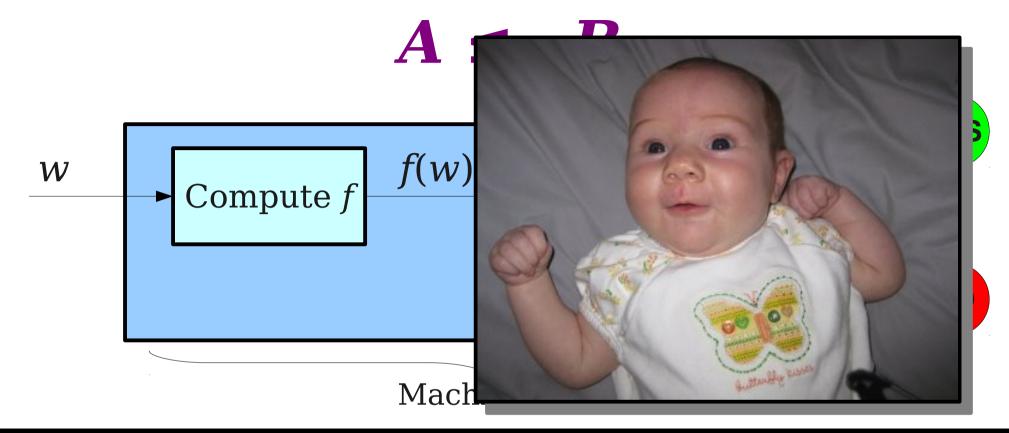
$A \leq_{\mathbf{M}} B$



Machine M'

```
M' = "On input w:
   Compute f(w).
   Run M on f(w).
   If M accepts f(w), accept w.
   If M rejects f(w), reject w."
```

M' accepts wiff M accepts f(w)iff $f(w) \in B$ iff $w \in A$



```
M' = "On input w:
   Compute f(w).
   Run M on f(w).
   If M accepts f(w), accept w.
   If M rejects f(w), reject w."
```

M' accepts wiff M accepts f(w)iff $f(w) \in B$ iff $w \in A$

Using Reductions

Using Reductions

- Recall: The language A_{TM} is defined as $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } w \in \mathscr{L}(M) \}$
- Last time, we proved that $A_{TM} \in \mathbf{RE} \mathbf{R}$ (that is, $A_{TM} \in \mathbf{RE}$ but $A_{TM} \notin \mathbf{R}$) by showing that a decider for A_{TM} could be converted into a decider for the diagonalization language L_{D} .
- Let's see an alternate proof that A_{TM} is undecidable by using reductions.

The Complement of A_{TM}

- Recall: if $A_{TM} \in \mathbf{R}$, then $\overline{A}_{TM} \in \mathbf{R}$ as well.
- To show that A_{TM} is undecidable, we will prove that the *complement* of A_{TM} (denoted \overline{A}_{TM}) is undecidable.
- The language \overline{A}_{TM} is the following:

$$\overline{A}_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } w \notin \mathcal{L}(M) \}$$

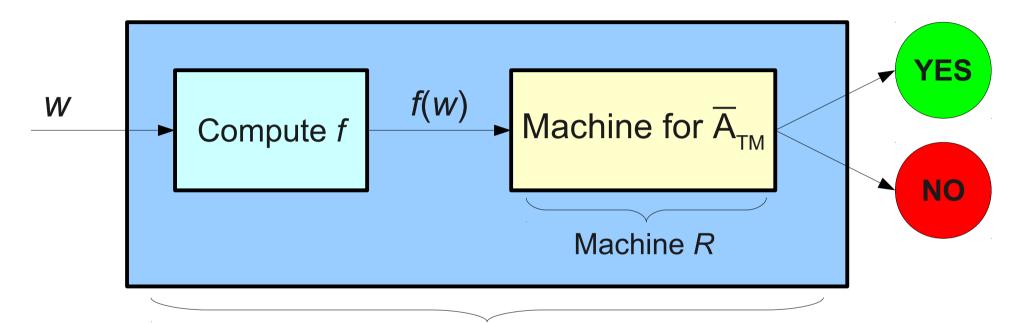
$$L_{\scriptscriptstyle \mathrm{D}} \leq_{\scriptscriptstyle \mathrm{M}} \overline{\mathrm{A}}_{\scriptscriptstyle \mathrm{TM}}$$

• Recall: The diagonalization language $L_{\scriptscriptstyle D}$ is the language

$$L_{\rm D} = \{ \langle M \rangle \mid M \text{ is a TM and } \langle M \rangle \notin \mathcal{L}(M) \}$$

- We directly established that $L_{\rm D} \notin \mathbf{RE}$ using a diagonal argument.
- If we can show that $L_{\rm D} \leq_{\rm M} \overline{\rm A}_{\rm TM}$, then since $L_{\rm D} \notin {\bf RE}$, we have proven that $\overline{\rm A}_{\rm TM} \notin {\bf RE}$.
- Therefore, $\overline{A}_{TM} \notin \mathbf{R}$, so $A_{TM} \notin \mathbf{R}$.

Where We're Going



Machine H

Goal: Choose our function f(w) such that this machine H is a recognizer for L_D .

$$L_{\scriptscriptstyle
m D}$$
 and $\overline{
m A}_{\scriptscriptstyle
m TM}$

• L_{D} and $\overline{\mathrm{A}}_{\mathrm{TM}}$ are similar languages:

$$\langle M \rangle \in L_{\rm D} \quad \text{iff} \quad \langle M \rangle \notin \mathcal{L}(M)$$

 $\langle M, w \rangle \in \overline{A}_{\rm TM} \quad \text{iff} \quad w \notin \mathcal{L}(M)$

- $\overline{\mathbf{A}}_{\scriptscriptstyle{\mathrm{TM}}}$ is more general than $L_{\scriptscriptstyle{\mathrm{D}}}$:
 - $L_{\rm D}$ asks if a machine doesn't accept *itself*.
 - \overline{A}_{TM} asks if a machine doesn't accept *some* specific string.

$$L_{\mathrm{D}} \leq_{\mathrm{M}} \overline{\mathrm{A}}_{\mathrm{TM}}$$

• Goal: Find a computable function *f* such that

$$\langle M \rangle \in L_{\rm D} \quad \text{iff} \quad f(\langle M \rangle) \in \overline{\mathcal{A}}_{\rm TM}$$

• Simplifying this using the definition of $L_{\scriptscriptstyle \mathrm{D}}$

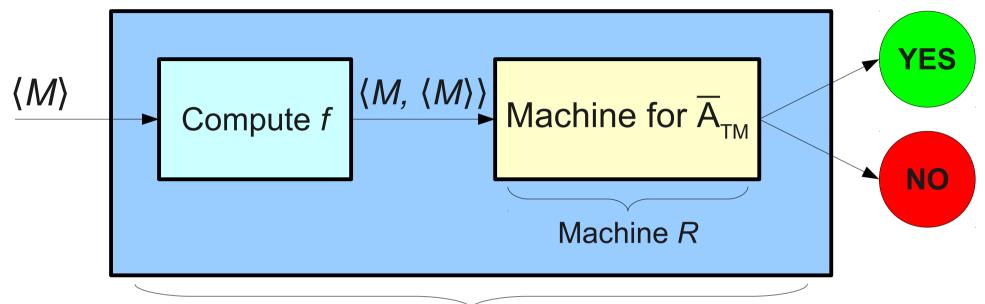
$$\langle M \rangle \notin \mathcal{L}(M)$$
 iff $f(\langle M \rangle) \in \overline{A}_{TM}$

• Let's assume that $f(\langle M \rangle)$ has the form $\langle M', w \rangle$ for some TM M' and string w. This means that

$$\langle M \rangle \notin \mathcal{L}(M)$$
 iff $\langle M', w \rangle \in \overline{A}_{TM}$
 $\langle M \rangle \notin \mathcal{L}(M)$ iff $w \notin \mathcal{L}(M')$

- If we can choose w and M' such that the above is true, we will have our reduction from $L_{\rm D}$ to $\overline{\rm A}_{\rm TM}$.
- Choose M' = M and $w = \langle M \rangle$.

What We Just Did



Machine *H*

```
H = \text{``On input } \langle M \rangle:
    Compute \langle M, \langle M \rangle \rangle.
    Run R on \langle M, \langle M \rangle \rangle.
    If R accepts \langle M, \langle M \rangle \rangle, accept \langle M \rangle.
    If R rejects \langle M, \langle M \rangle \rangle, reject \langle M \rangle."
```

```
H 	ext{ accepts } \langle M \rangle  iff R 	ext{ accepts } \langle M, \langle M \rangle \rangle  iff \langle M, \langle M \rangle \rangle \in \overline{A}_{TM} iff \langle M \rangle \notin \mathscr{L}(M) iff \langle M \rangle \in L_{D}
```

$$L_{\scriptscriptstyle \mathrm{D}} \leq_{\scriptscriptstyle \mathrm{M}} \overline{\mathrm{A}}_{\scriptscriptstyle \mathrm{TM}}$$

• The final version of our function *f* is defined here:

$$f(\langle M \rangle) = \langle M, \langle M \rangle \rangle$$

- It's reasonable to assume that *f* is computable; details are left as an exercise.
- If we can formally prove that $\langle M \rangle \in L_{\mathbb{D}}$ iff $f(\langle M \rangle) \in \overline{A}_{\mathbb{T}M}$, then we have that $L_{\mathbb{D}} \leq_{\mathbb{M}} \overline{A}_{\mathbb{T}M}$. Thus $\overline{A}_{\mathbb{T}M} \notin \mathbf{RE}$.

Proof: We exhibit a mapping reduction f from $L_{\scriptscriptstyle \rm D}$ to $\overline{\rm A}_{\scriptscriptstyle \rm TM}$.

Proof: We exhibit a mapping reduction f from $L_{\rm D}$ to $\overline{\rm A}_{\rm TM}$. Consider the function f defined as follows:

$$f(\langle M \rangle) = \langle M, \langle M \rangle \rangle$$

Proof: We exhibit a mapping reduction f from $L_{\rm D}$ to $\overline{\rm A}_{\rm TM}$. Consider the function f defined as follows:

$$f(\langle M \rangle) = \langle M, \langle M \rangle \rangle$$

We claim that *f* can be computed by a TM and omit the details from this proof.

Proof: We exhibit a mapping reduction f from $L_{\rm D}$ to $\overline{\rm A}_{\rm TM}$. Consider the function f defined as follows:

$$f(\langle M \rangle) = \langle M, \langle M \rangle \rangle$$

We claim that f can be computed by a TM and omit the details from this proof. We will prove that $\langle M \rangle \in L_{\rm D}$ iff $f(\langle M \rangle) \in \overline{\rm A}_{\rm TM}$.

Proof: We exhibit a mapping reduction f from $L_{\rm D}$ to $\overline{\rm A}_{\rm TM}$. Consider the function f defined as follows:

$$f(\langle M \rangle) = \langle M, \langle M \rangle \rangle$$

We claim that f can be computed by a TM and omit the details from this proof. We will prove that $\langle M \rangle \in L_{\rm D}$ iff $f(\langle M \rangle) \in \overline{\rm A}_{\rm TM}$. Note that $f(\langle M \rangle) = \langle M, \langle M \rangle \rangle$, so $f(\langle M \rangle) \in \overline{\rm A}_{\rm TM}$ iff $\langle M, \langle M \rangle \rangle \in \overline{\rm A}_{\rm TM}$.

Proof: We exhibit a mapping reduction f from $L_{\rm D}$ to $\overline{\rm A}_{\rm TM}$. Consider the function f defined as follows:

$$f(\langle M \rangle) = \langle M, \langle M \rangle \rangle$$

We claim that f can be computed by a TM and omit the details from this proof. We will prove that $\langle M \rangle \in L_{\rm D}$ iff $f(\langle M \rangle) \in \overline{\rm A}_{\rm TM}$. Note that $f(\langle M \rangle) = \langle M, \langle M \rangle \rangle$, so $f(\langle M \rangle) \in \overline{\rm A}_{\rm TM}$ iff $\langle M, \langle M \rangle \rangle \in \overline{\rm A}_{\rm TM}$. By definition of $\overline{\rm A}_{\rm TM}$, $\langle M, \langle M \rangle \rangle \in \overline{\rm A}_{\rm TM}$ iff $\langle M \rangle \notin \mathscr{L}(M)$.

Proof: We exhibit a mapping reduction f from $L_{\rm D}$ to $\overline{\rm A}_{\rm TM}$. Consider the function f defined as follows:

$$f(\langle M \rangle) = \langle M, \langle M \rangle \rangle$$

We claim that f can be computed by a TM and omit the details from this proof. We will prove that $\langle M \rangle \in L_{\rm D}$ iff $f(\langle M \rangle) \in \overline{\rm A}_{\rm TM}$. Note that $f(\langle M \rangle) = \langle M, \langle M \rangle \rangle$, so $f(\langle M \rangle) \in \overline{\rm A}_{\rm TM}$ iff $\langle M, \langle M \rangle \rangle \in \overline{\rm A}_{\rm TM}$. By definition of $\overline{\rm A}_{\rm TM}$, $\langle M, \langle M \rangle \rangle \in \overline{\rm A}_{\rm TM}$ iff $\langle M \rangle \notin \mathscr{L}(M)$. Finally, note that $\langle M \rangle \notin \mathscr{L}(M)$ iff $\langle M \rangle \in L_{\rm D}$.

Proof: We exhibit a mapping reduction f from $L_{\rm D}$ to $\overline{\rm A}_{\rm TM}$. Consider the function f defined as follows:

$$f(\langle M \rangle) = \langle M, \langle M \rangle \rangle$$

We claim that f can be computed by a TM and omit the details from this proof. We will prove that $\langle M \rangle \in L_{\rm D}$ iff $f(\langle M \rangle) \in \overline{\rm A}_{\rm TM}$. Note that $f(\langle M \rangle) = \langle M, \langle M \rangle \rangle$, so $f(\langle M \rangle) \in \overline{\rm A}_{\rm TM}$ iff $\langle M, \langle M \rangle \rangle \in \overline{\rm A}_{\rm TM}$. By definition of $\overline{\rm A}_{\rm TM}$, $\langle M, \langle M \rangle \rangle \in \overline{\rm A}_{\rm TM}$ iff $\langle M \rangle \notin \mathscr{L}(M)$. Finally, note that $\langle M \rangle \notin \mathscr{L}(M)$ iff $\langle M \rangle \in L_{\rm D}$. Thus $f(\langle M \rangle) \in \overline{\rm A}_{\rm TM}$ iff $\langle M \rangle \in L_{\rm D}$, so f is a mapping reduction from $L_{\rm D}$ to $\overline{\rm A}_{\rm TM}$.

Proof: We exhibit a mapping reduction f from $L_{\rm D}$ to $\overline{\rm A}_{\rm TM}$. Consider the function f defined as follows:

$$f(\langle M \rangle) = \langle M, \langle M \rangle \rangle$$

We claim that f can be computed by a TM and omit the details from this proof. We will prove that $\langle M \rangle \in L_{\rm D}$ iff $f(\langle M \rangle) \in \overline{\rm A}_{\rm TM}$. Note that $f(\langle M \rangle) = \langle M, \langle M \rangle \rangle$, so $f(\langle M \rangle) \in \overline{\rm A}_{\rm TM}$ iff $\langle M, \langle M \rangle \rangle \in \overline{\rm A}_{\rm TM}$. By definition of $\overline{\rm A}_{\rm TM}$, $\langle M, \langle M \rangle \rangle \in \overline{\rm A}_{\rm TM}$ iff $\langle M \rangle \notin \mathscr{L}(M)$. Finally, note that $\langle M \rangle \notin \mathscr{L}(M)$ iff $\langle M \rangle \in L_{\rm D}$. Thus $f(\langle M \rangle) \in \overline{\rm A}_{\rm TM}$ iff $\langle M \rangle \in L_{\rm D}$, so f is a mapping reduction from $L_{\rm D}$ to $\overline{\rm A}_{\rm TM}$.

Since f is a mapping reduction from $L_{\rm D}$ to $\overline{\rm A}_{\rm TM}$, we have $L_{\rm D} \leq_{\rm M} \overline{\rm A}_{\rm TM}$.

Proof: We exhibit a mapping reduction f from $L_{\rm D}$ to $\overline{\rm A}_{\rm TM}$. Consider the function f defined as follows:

$$f(\langle M \rangle) = \langle M, \langle M \rangle \rangle$$

We claim that f can be computed by a TM and omit the details from this proof. We will prove that $\langle M \rangle \in L_{\rm D}$ iff $f(\langle M \rangle) \in \overline{\rm A}_{\rm TM}$. Note that $f(\langle M \rangle) = \langle M, \langle M \rangle \rangle$, so $f(\langle M \rangle) \in \overline{\rm A}_{\rm TM}$ iff $\langle M, \langle M \rangle \rangle \in \overline{\rm A}_{\rm TM}$. By definition of $\overline{\rm A}_{\rm TM}$, $\langle M, \langle M \rangle \rangle \in \overline{\rm A}_{\rm TM}$ iff $\langle M \rangle \notin \mathscr{L}(M)$. Finally, note that $\langle M \rangle \notin \mathscr{L}(M)$ iff $\langle M \rangle \in L_{\rm D}$. Thus $f(\langle M \rangle) \in \overline{\rm A}_{\rm TM}$ iff $\langle M \rangle \in L_{\rm D}$, so f is a mapping reduction from $L_{\rm D}$ to $\overline{\rm A}_{\rm TM}$.

Since f is a mapping reduction from $L_{\rm D}$ to $\overline{\rm A}_{\rm TM}$, we have $L_{\rm D} \leq_{\rm M} \overline{\rm A}_{\rm TM}$. Since $L_{\rm D} \notin {\bf RE}$ and $L_{\rm D} \leq_{\rm M} \overline{\rm A}_{\rm TM}$, this means $\overline{\rm A}_{\rm TM} \notin {\bf RE}$, as required.

Proof: We exhibit a mapping reduction f from $L_{\rm D}$ to $\overline{\rm A}_{\rm TM}$. Consider the function f defined as follows:

$$f(\langle M \rangle) = \langle M, \langle M \rangle \rangle$$

We claim that f can be computed by a TM and omit the details from this proof. We will prove that $\langle M \rangle \in L_{\rm D}$ iff $f(\langle M \rangle) \in \overline{\rm A}_{\rm TM}$. Note that $f(\langle M \rangle) = \langle M, \langle M \rangle \rangle$, so $f(\langle M \rangle) \in \overline{\rm A}_{\rm TM}$ iff $\langle M, \langle M \rangle \rangle \in \overline{\rm A}_{\rm TM}$. By definition of $\overline{\rm A}_{\rm TM}$, $\langle M, \langle M \rangle \rangle \in \overline{\rm A}_{\rm TM}$ iff $\langle M \rangle \notin \mathscr{L}(M)$. Finally, note that $\langle M \rangle \notin \mathscr{L}(M)$ iff $\langle M \rangle \in L_{\rm D}$. Thus $f(\langle M \rangle) \in \overline{\rm A}_{\rm TM}$ iff $\langle M \rangle \in L_{\rm D}$, so f is a mapping reduction from $L_{\rm D}$ to $\overline{\rm A}_{\rm TM}$.

Since f is a mapping reduction from $L_{\rm D}$ to $\overline{\rm A}_{\rm TM}$, we have $L_{\rm D} \leq_{\rm M} \overline{\rm A}_{\rm TM}$. Since $L_{\rm D} \notin {\bf RE}$ and $L_{\rm D} \leq_{\rm M} \overline{\rm A}_{\rm TM}$, this means $\overline{\rm A}_{\rm TM} \notin {\bf RE}$, as required. \blacksquare

The Halting Problem

• Recall the definition of *HALT*:

 $HALT = \{\langle M, w \rangle \mid M \text{ is a TM that halts on } w\}$

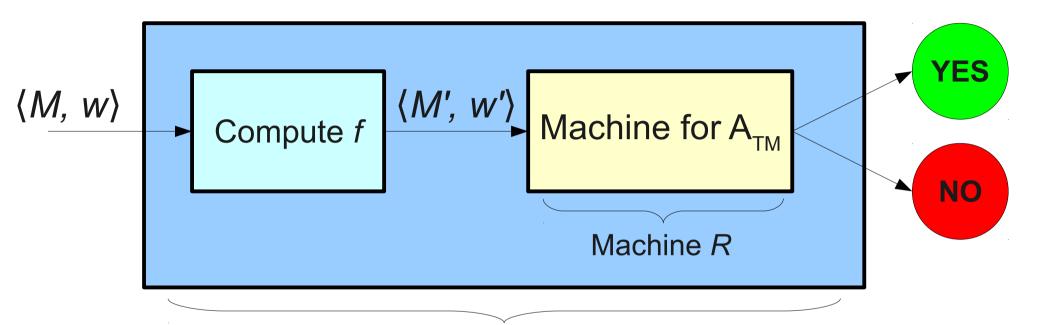
- That is, the set of TM / string pairs where the TM M either accepts or rejects the string w.
- Last time, we proved that $HALT \in \mathbf{RE} \mathbf{R}$ by building a TM for it, then by showing a decider for HALT could be turned into a decider for A_{TM} .
- Let's explore an alternate proof using mapping reductions.

HALT is **RE**

- Recall: $A_{TM} \in \mathbf{RE}$.
- To prove that HALT is **RE**, we will show that $HALT \leq_{M} A_{TM}$.
- Since $A_{TM} \in \mathbf{RE}$, this proves $HALT \in \mathbf{RE}$.
- Idea: we need to find some function f such that

 $\langle M, w \rangle \in HALT \text{ iff } f(\langle M, w \rangle) \in A_{TM}$

Where We're Going



Machine H

Goal: Choose our function f(w) such that this machine H is a recognizer for HALT.

$$HALT \leq_{_{\mathrm{M}}} A_{_{\mathrm{TM}}}$$

• Goal: Find a function *f* such that

$$\langle M, w \rangle \in HALT \quad \text{iff} \quad f(\langle M, w \rangle) \in A_{TM}$$

Substituting the definitions:

$$M \text{ halts on } w \text{ iff } f(\langle M, w \rangle) \in A_{TM}.$$

• Assume that $f(\langle M, w \rangle) = \langle M', w' \rangle$ for some TM M' and string w'. Then we have

$$M$$
 halts on w iff $\langle M', w' \rangle \in A_{TM}$
 M halts on w iff $w' \in \mathcal{L}(M')$
 M halts on w iff M' accepts w'

Choosing M' and w'

• We need to find M' and w' such that

M halts on w iff M' accepts w'.

- This is the creative step of the proof how do we choose an M' and w' with that property?
- Key idea that shows up in almost all major reduction proofs: Construct a machine M' and string w' so that running M' on w' runs M on w.
- This causes the behavior of M' running on w' to depend on what M does on w.

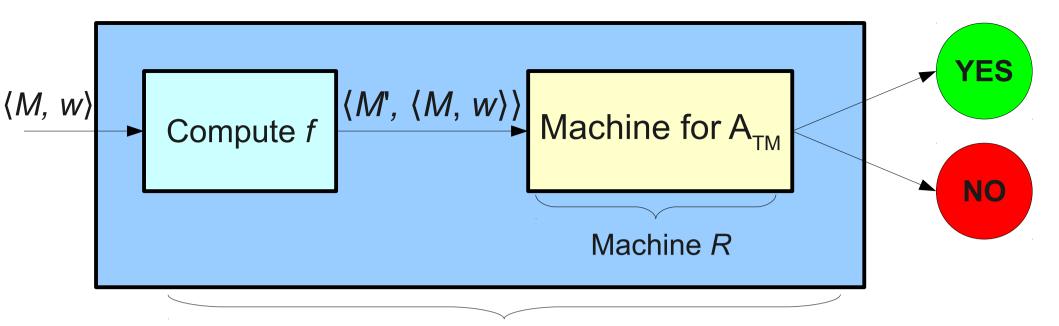
Choosing M' and w'

• Here is one possible choice of M' and w' we can make:

M' = "On input $\langle N, z \rangle$:
 Run N on z.
 If N halts on z, accept."

 $w' = \langle M, w \rangle$

• Now, running M' on w' runs M on w. If M halts on w, then M' accepts w'. If M loops on w, then M' does not accept w'.



Machine H

M' = "On input $\langle N, z \rangle$: Run N on z. If N halts, accept."

 $H = \text{``On input } \langle M, w \rangle$:

Compute $\langle M', \langle M, w \rangle \rangle$.

Run R on $\langle M', \langle M, w \rangle \rangle$.

If R accepts $\langle M', \langle M, w \rangle \rangle$, accept. If R rejects $\langle M', \langle M, w \rangle \rangle$, reject."

H accepts $\langle M, w \rangle$ R accepts $\langle M', \langle M, w \rangle \rangle$ $\langle M', \langle M, w \rangle \rangle \in A_{TM}$ iff M' accepts $\langle M, w \rangle$ iff M halts on w iff $\langle M, w \rangle \in HALT$

Proof: We exhibit a mapping reduction f from HALT to A_{TM} .

Proof: We exhibit a mapping reduction f from HALT to A_{TM} .

Let the machine M' be defined as follows:

Proof: We exhibit a mapping reduction f from HALT to A_{TM} . Let the machine M' be defined as follows:

M' = "On input $\langle N, z \rangle$:
 Run N on z.
 If N halts on z, accept."

Proof: We exhibit a mapping reduction f from HALT to A_{TM} . Let the machine M' be defined as follows:

M' = "On input $\langle N, z \rangle$:
 Run N on z.
 If N halts on z, accept."

Then let $f(\langle M, w \rangle) = \langle M', \langle M, w \rangle \rangle$.

Proof: We exhibit a mapping reduction f from HALT to A_{TM} . Let the machine M' be defined as follows:

M' = "On input $\langle N, z \rangle$: Run N on z. If N halts on z, accept."

Then let $f(\langle M, w \rangle) = \langle M', \langle M, w \rangle \rangle$. We claim that f is computable and omit the details from this proof.

Proof: We exhibit a mapping reduction f from HALT to A_{TM} . Let the machine M' be defined as follows:

M' = "On input $\langle N, z \rangle$: Run N on z. If N halts on z, accept."

Then let $f(\langle M, w \rangle) = \langle M', \langle M, w \rangle \rangle$. We claim that f is computable and omit the details from this proof. We further claim that $\langle M, w \rangle \in HALT$ iff $f(\langle M, w \rangle) \in A_{TM}$.

Proof: We exhibit a mapping reduction f from HALT to A_{TM} . Let the machine M' be defined as follows:

M' = "On input $\langle N, z \rangle$: Run N on z. If N halts on z, accept."

Then let $f(\langle M, w \rangle) = \langle M', \langle M, w \rangle \rangle$. We claim that f is computable and omit the details from this proof. We further claim that $\langle M, w \rangle \in HALT$ iff $f(\langle M, w \rangle) \in A_{TM}$. To see this, note that $f(\langle M, w \rangle) = \langle M', \langle M, w \rangle \rangle \in A_{TM}$ iff M' accepts $\langle M, w \rangle$.

Proof: We exhibit a mapping reduction f from HALT to A_{TM} . Let the machine M' be defined as follows:

M' = "On input $\langle N, z \rangle$: Run N on z. If N halts on z, accept."

Then let $f(\langle M, w \rangle) = \langle M', \langle M, w \rangle \rangle$. We claim that f is computable and omit the details from this proof. We further claim that $\langle M, w \rangle \in HALT$ iff $f(\langle M, w \rangle) \in A_{TM}$. To see this, note that $f(\langle M, w \rangle) = \langle M', \langle M, w \rangle \rangle \in A_{TM}$ iff M' accepts $\langle M, w \rangle$. By construction, M' accepts $\langle M, w \rangle$ iff M halts on w.

Proof: We exhibit a mapping reduction f from HALT to A_{TM} . Let the machine M' be defined as follows:

M' = "On input $\langle N, z \rangle$: Run N on z. If N halts on z, accept."

Then let $f(\langle M, w \rangle) = \langle M', \langle M, w \rangle \rangle$. We claim that f is computable and omit the details from this proof. We further claim that $\langle M, w \rangle \in HALT$ iff $f(\langle M, w \rangle) \in A_{TM}$. To see this, note that $f(\langle M, w \rangle) = \langle M', \langle M, w \rangle \rangle \in A_{TM}$ iff M' accepts $\langle M, w \rangle$. By construction, M' accepts $\langle M, w \rangle$ iff M halts on W. Finally, note that M halts on W iff $\langle M, w \rangle \in HALT$.

Proof: We exhibit a mapping reduction f from HALT to A_{TM} . Let the machine M' be defined as follows:

M' = "On input $\langle N, z \rangle$: Run N on z. If N halts on z, accept."

Then let $f(\langle M, w \rangle) = \langle M', \langle M, w \rangle \rangle$. We claim that f is computable and omit the details from this proof. We further claim that $\langle M, w \rangle \in HALT$ iff $f(\langle M, w \rangle) \in A_{TM}$. To see this, note that $f(\langle M, w \rangle) = \langle M', \langle M, w \rangle \rangle \in A_{TM}$ iff M' accepts $\langle M, w \rangle$. By construction, M' accepts $\langle M, w \rangle$ iff M halts on M. Finally, note that M halts on M iff M iff

Proof: We exhibit a mapping reduction f from HALT to A_{TM} . Let the machine M' be defined as follows:

M' = "On input $\langle N, z \rangle$: Run N on z. If N halts on z, accept."

Then let $f(\langle M, w \rangle) = \langle M', \langle M, w \rangle$. We claim that f is computable and omit the details from this proof. We further claim that $\langle M, w \rangle \in HALT$ iff $f(\langle M, w \rangle) \in A_{TM}$. To see this, note that $f(\langle M, w \rangle) = \langle M', \langle M, w \rangle) \in A_{TM}$ iff M' accepts $\langle M, w \rangle$. By construction, M' accepts $\langle M, w \rangle$ iff M halts on M. Finally, note that M halts on M iff M i

Proof: We exhibit a mapping reduction f from HALT to A_{TM} . Let the machine M' be defined as follows:

M' = "On input $\langle N, z \rangle$: Run N on z. If N halts on z, accept."

Then let $f(\langle M, w \rangle) = \langle M', \langle M, w \rangle$. We claim that f is computable and omit the details from this proof. We further claim that $\langle M, w \rangle \in HALT$ iff $f(\langle M, w \rangle) \in A_{TM}$. To see this, note that $f(\langle M, w \rangle) = \langle M', \langle M, w \rangle) \in A_{TM}$ iff M' accepts $\langle M, w \rangle$. By construction, M' accepts $\langle M, w \rangle$ iff M halts on W. Finally, note that M halts on W iff $\langle M, w \rangle \in HALT$. Thus $\langle M, w \rangle \in HALT$ iff $f(\langle M, w \rangle) \in A_{TM}$. Therefore, f is a mapping reduction from HALT to A_{TM} , so $HALT \leq_M A_{TM}$.

A Math Joke

HALT is Undecidable

- We proved $HALT \in \mathbf{RE}$ by showing that $HALT \leq_{M} A_{TM}$.
- We can prove $HALT \notin \mathbf{R}$ by showing that $A_{TM} \leq_{M} HALT$.
- Note that this has to be a completely separate reduction! We're transforming $A_{\mathbb{T}M}$ into HALT this time, not the other way around.

$$A_{TM} \leq_M HALT$$

We want to find a computable function f such that

$$\langle M, w \rangle \in A_{TM}$$
 iff $f(\langle M, w \rangle) \in HALT$.

- Assume $f(\langle M, w \rangle)$ has the form $\langle M', w' \rangle$ for some TM M' and string w'.
- We want

$$\langle M, w \rangle \in A_{TM}$$
 iff $\langle M', w' \rangle \in HALT$.

• Substituting definitions:

$$M$$
 accepts w iff M' halts on w' .

• How might we design M' and w'?

$A_{TM} \leq_M HALT$

- We need to choose a TM/string pair M' and w' such that M' halts on w' iff M accepts w.
- Repeated idea: Construct M' and w' such that running M' on w' simulates M on w and bases its decision on what happens.
- One option:

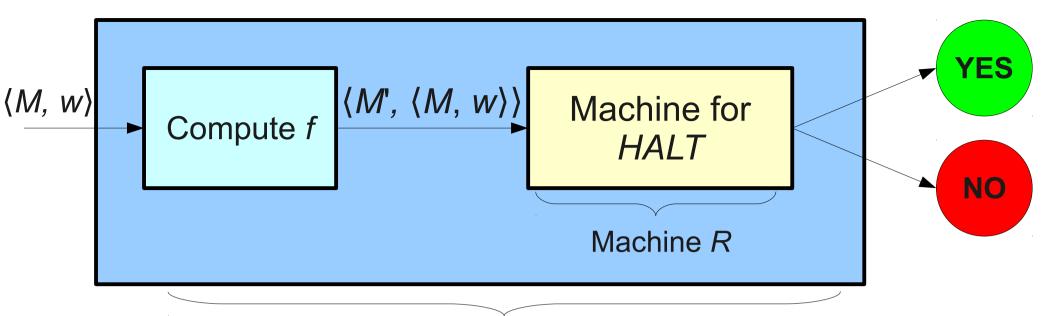
 $M' = \text{"On input } \langle N, z \rangle$:

Run N on z.

If N accepts z, accept.

If N rejects z, loop infinitely."

$$w' = \langle M, w \rangle$$



Machine H

 $M' = \text{"On input } \langle N, z \rangle$:

Run N on z.

If N accepts, accept.

If N rejects, loop infinitely."

 $H = \text{``On input } \langle M, w \rangle:$ $Compute \langle M', \langle M, w \rangle \rangle.$ $Run R on \langle M', \langle M, w \rangle \rangle.$ $If R accepts \langle M', \langle M, w \rangle \rangle, accept.$ $If R rejects \langle M', \langle M, w \rangle \rangle, reject.$

H accepts $\langle M, w \rangle$ R accepts $\langle M', \langle M, w \rangle \rangle$ $\langle M', \langle M, w \rangle \rangle \in HALT$ iff M' halts on $\langle M, w \rangle$ M accepts w $\langle M, w \rangle \in A_{TM}$

An Important Detail

- In the course of this reduction, we construct a new machine M'.
- We never actually run the machine M'! That might loop forever.
- We instead just build a description of that machine and fed it into our machine for HALT.
- The answer given back by this machine about what M' would do if we were to run it can then be used to solve A_{TM} .

Proof: We exhibit a mapping reduction from A_{TM} to HALT.

Proof: We exhibit a mapping reduction from A_{TM} to HALT.

Let M' be the following TM:

Proof: We exhibit a mapping reduction from A_{TM} to HALT.

Let M' be the following TM:

M' = "On input $\langle N, z \rangle$:
 Run N on z.
 If N accepts, accept.
 If N rejects, loop infinitely."

Proof: We exhibit a mapping reduction from A_{TM} to HALT.

Let M' be the following TM:

M' = "On input $\langle N, z \rangle$:
 Run N on z.
 If N accepts, accept.
 If N rejects, loop infinitely."

Then let $f(\langle M, w \rangle) = \langle M', \langle M, w \rangle \rangle$.

Proof: We exhibit a mapping reduction from A_{TM} to HALT. Let M' be the following TM:

M' = "On input $\langle N, z \rangle$:
 Run N on z.
 If N accepts, accept.
 If N rejects, loop infinitely."

Then let $f(\langle M, w \rangle) = \langle M', \langle M, w \rangle \rangle$. We claim that f is computable and omit the details from this proof.

Proof: We exhibit a mapping reduction from A_{TM} to HALT. Let M' be the following TM:

M' = "On input $\langle N, z \rangle$:
 Run N on z.
 If N accepts, accept.
 If N rejects, loop infinitely."

Then let $f(\langle M, w \rangle) = \langle M', \langle M, w \rangle \rangle$. We claim that f is computable and omit the details from this proof. We further claim that $\langle M, w \rangle \in A_{TM}$ iff $f(\langle M, w \rangle) \in HALT$.

Proof: We exhibit a mapping reduction from A_{TM} to *HALT*. Let M' be the following TM:

M' = "On input $\langle N, z \rangle$:
 Run N on z.
 If N accepts, accept.
 If N rejects, loop infinitely."

Then let $f(\langle M, w \rangle) = \langle M', \langle M, w \rangle \rangle$. We claim that f is computable and omit the details from this proof. We further claim that $\langle M, w \rangle \in A_{TM}$ iff $f(\langle M, w \rangle) \in HALT$. To see this, note that $f(\langle M, w \rangle) = \langle M', \langle M, w \rangle \rangle \in HALT$ iff M' halts on $\langle M, w \rangle$.

Proof: We exhibit a mapping reduction from A_{TM} to *HALT*. Let M' be the following TM:

M' = "On input $\langle N, z \rangle$:
 Run N on z.
 If N accepts, accept.
 If N rejects, loop infinitely."

Then let $f(\langle M, w \rangle) = \langle M', \langle M, w \rangle \rangle$. We claim that f is computable and omit the details from this proof. We further claim that $\langle M, w \rangle \in A_{TM}$ iff $f(\langle M, w \rangle) \in HALT$. To see this, note that $f(\langle M, w \rangle) = \langle M', \langle M, w \rangle \rangle \in HALT$ iff M' halts on $\langle M, w \rangle$. By construction, M' halts on $\langle M, w \rangle$ iff M accepts w.

Proof: We exhibit a mapping reduction from A_{TM} to *HALT*. Let M' be the following TM:

M' = "On input $\langle N, z \rangle$:
 Run N on z.
 If N accepts, accept.
 If N rejects, loop infinitely."

Then let $f(\langle M, w \rangle) = \langle M', \langle M, w \rangle \rangle$. We claim that f is computable and omit the details from this proof. We further claim that $\langle M, w \rangle \in A_{TM}$ iff $f(\langle M, w \rangle) \in HALT$. To see this, note that $f(\langle M, w \rangle) = \langle M', \langle M, w \rangle \rangle \in HALT$ iff M' halts on $\langle M, w \rangle$. By construction, M' halts on $\langle M, w \rangle$ iff M accepts W. Finally, M accepts W iff W if W

Proof: We exhibit a mapping reduction from A_{TM} to *HALT*. Let M' be the following TM:

M' = "On input $\langle N, z \rangle$:
 Run N on z.
 If N accepts, accept.
 If N rejects, loop infinitely."

Then let $f(\langle M, w \rangle) = \langle M', \langle M, w \rangle \rangle$. We claim that f is computable and omit the details from this proof. We further claim that $\langle M, w \rangle \in A_{TM}$ iff $f(\langle M, w \rangle) \in HALT$. To see this, note that $f(\langle M, w \rangle) = \langle M', \langle M, w \rangle) \in HALT$ iff M' halts on $\langle M, w \rangle$. By construction, M' halts on $\langle M, w \rangle$ iff M accepts w. Finally, M accepts w iff $\langle M, w \rangle \in A_{TM}$. Thus we have that $\langle M, w \rangle \in A_{TM}$ iff $f(\langle M, w \rangle) \in HALT$.

Proof: We exhibit a mapping reduction from A_{TM} to *HALT*. Let M' be the following TM:

M' = "On input $\langle N, z \rangle$:
 Run N on z.
 If N accepts, accept.
 If N rejects, loop infinitely."

Then let $f(\langle M, w \rangle) = \langle M', \langle M, w \rangle \rangle$. We claim that f is computable and omit the details from this proof. We further claim that $\langle M, w \rangle \in A_{TM}$ iff $f(\langle M, w \rangle) \in HALT$. To see this, note that $f(\langle M, w \rangle) = \langle M', \langle M, w \rangle \rangle \in HALT$ iff M' halts on $\langle M, w \rangle$. By construction, M' halts on $\langle M, w \rangle$ iff M accepts W. Finally, M accepts W iff W is a mapping reduction from A_{TM} to W iff W is a mapping reduction from A_{TM} to W iff W is a mapping reduction from A_{TM} to W if W is a mapping reduction from A_{TM} to W is a mapping reduction from A_{TM} is a mappi

Proof: We exhibit a mapping reduction from A_{TM} to *HALT*. Let M' be the following TM:

M' = "On input $\langle N, z \rangle$:
 Run N on z.
 If N accepts, accept.
 If N rejects, loop infinitely."

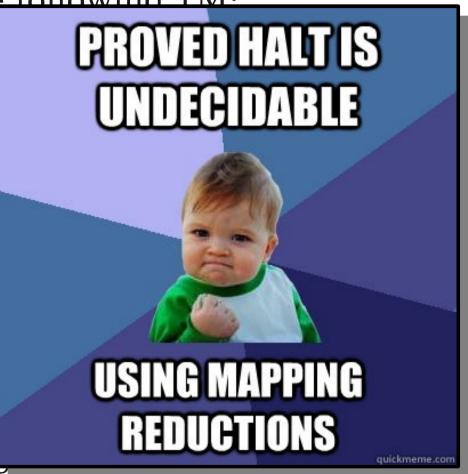
Then let $f(\langle M, w \rangle) = \langle M', \langle M, w \rangle \rangle$. We claim that f is computable and omit the details from this proof. We further claim that $\langle M, w \rangle \in A_{TM}$ iff $f(\langle M, w \rangle) \in HALT$. To see this, note that $f(\langle M, w \rangle) = \langle M', \langle M, w \rangle \rangle \in HALT$ iff M' halts on $\langle M, w \rangle$. By construction, M' halts on $\langle M, w \rangle$ iff M accepts w. Finally, M accepts w iff $\langle M, w \rangle \in A_{TM}$. Thus we have that $\langle M, w \rangle \in A_{TM}$ iff $f(\langle M, w \rangle) \in HALT$. Therefore, f is a mapping reduction from A_{TM} to HALT, so $A_{TM} \leq_M HALT$.

Proof: We exhibit a mapping reduction from A_{TM} to *HALT*.

Let M' be the following TM.

M' = "OnI

Then let $f(\langle M \rangle)$ computable a further claim see this, note M' halts on $\langle J \rangle$ iff M accepts Thus we have



Therefore, f is a mapping reduction from A_{TM} to HALT, so $A_{TM} \leq_M HALT$.

A Note on Directionality

Note the Direction

• To show that a language *A* is **RE**, reduce it to something that is known to be **RE**:

$$A \leq_{\mathrm{M}} some$$
-**RE**-problem

• To show that a language A is not \mathbf{R} , reduce a problem that is known not to be \mathbf{R} to A:

$$some-non-\mathbf{R}-problem \leq_{\mathrm{M}} A$$

 The single most common mistake with reductions is doing the reduction in the wrong direction.

Next Time

co-RE and Beyond

• What lies outside of **RE**? How much of it can be solved by computers?

More Reductions

More examples of mapping reductions.