

Unsolvable Problems

Announcements

● Problem Set 5 graded, will be returned at
end of lecture.

● Problem session tonight in 380-380X
from 7PM – 7:50PM.
● Optional, but highly recommended!

● CS Career Panel Tonight: 6PM in Gates
104.
● Lots of cool people there!

Unsolvable Problems

Goals for Today

● Find concrete examples of problems that
cannot be solved by computers.

● See how the procedure for finding
languages that are not R or RE is
fundamentally different from finding
languages that are not regular or
context-free.

● Set the stage for reductions and mapping
reductions on Wednesday.

Recap from Friday

Major Ideas from Last Time

● Every TM can be converted into a string
representation of itself.

● The encoding of M is denoted ⟨M⟩.

● The universal Turing machine UTM accepts an
encoding ⟨M, w⟩ of a TM M and string w, then
simulates the execution of M on w.

● The language of UTM is the language ATM:

ATM = { ⟨M, w⟩ | M is a TM that accepts w. }

● Equivalently:

ATM = { ⟨M, w⟩ | M is a TM and w ∈ (ℒ M) }

Major Ideas from Last Time
● A TM accepts a string w if it enters its accept state.

● A TM rejects a string w if it enters its reject state.

● A TM loops on a string w if neither of these happens.

● A TM does not accept a string w if it either rejects w or loops
infinitely on w.

● A TM does not reject a string w if it either accepts w or loops
infinitely on w.

● A TM halts if it accepts or rejects.

Accept

Loop

Rejectdoes not accept

does not reject

halts

What happens when we run
a TM on a TM encoding?

Languages, TMs, and TM Encodings

● Recall: The language of a TM M is the set

ℒ(M) = { w ∈ Σ* | M accepts w }
● Some of the strings in this set might be

descriptions of TMs.
● What happens if we just focus on the set

of strings that are legal TM descriptions?

M
1

M
2

M
0

M
3

M
4

M
5

…

All Turing machines,
listed in some order.
All Turing machines,
listed in some order.

M
1

M
2

M
0

M
3

M
4

M
5

w
0

w
1

w
2

w
3

w
4

w
5 …

…

All descriptions
of TMs, listed in
the same order.

All descriptions
of TMs, listed in
the same order.

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0

w
1

w
2

w
3

w
4

w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0

w
1

w
2

w
3

w
4

w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

Acc Acc Acc No Acc No …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0

w
1

w
2

w
3

w
4

w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

Acc Acc Acc No Acc No …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

Flip all “accept”
to “no” and
vice-versa

Flip all “accept”
to “no” and
vice-versa

…

…

No

Acc

…

…

Acc

No

No

Acc

Acc

No

M
1

M
2

M
0

M
3

M
4

M
5

w
0

w
1

w
2

w
3

w
4

w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … …

No No No Acc

No TM has
this behavior!
No TM has

this behavior!

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

…

…

No

Acc

…

…

Acc

No

No

Acc

Acc

No

M
1

M
2

M
0

M
3

M
4

M
5

w
0

w
1

w
2

w
3

w
4

w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … …

No No No Acc

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

…

…

No

Acc

…

…

Acc

No

No

Acc

Acc

No

M
1

M
2

M
0

M
3

M
4

M
5

w
0

w
1

w
2

w
3

w
4

w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … …

No No No Acc

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

“The language of all
TMs that do not accept
their own description.”

…

…

No

Acc

…

…

Acc

No

No

Acc

Acc

No

M
1

M
2

M
0

M
3

M
4

M
5

w
0

w
1

w
2

w
3

w
4

w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … …

No No No Acc

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

{ ⟨M⟩ | M is a TM that
does not accept ⟨M⟩ }

…

…

No

Acc

…

…

Acc

No

No

Acc

Acc

No

M
1

M
2

M
0

M
3

M
4

M
5

w
0

w
1

w
2

w
3

w
4

w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … …

No No No Acc

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

{ ⟨M⟩ | M is a TM
and ⟨M⟩ ∉ ℒ(M) }

Diagonalization Revisited

● The diagonalization language LD is
defined as

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ (ℒ M) }

● That is, LD is the set of descriptions of
Turing machines that do not accept
themselves.

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.
Proof: By contradiction; assume that LD ∈ RE. Then there must

be some TM R such that (ℒ R) = LD. We know that either
⟨R⟩ ∉ (ℒ R) or ⟨R⟩ ∈ (ℒ R). We consider each case separately:

Case 1: ⟨R⟩ ∉ (ℒ R). By definition of LD, since ⟨R⟩ ∉ (ℒ R), we
know that ⟨R⟩ ∈ LD. Since ⟨R⟩ ∉ (ℒ R) and (ℒ R) = LD,
we know that ⟨R⟩ ∉ LD. But this is impossible, since it
contradicts the fact that ⟨R⟩ ∈ LD.

Case 2: ⟨R⟩ ∈ (ℒ R). By definition of LD, since ⟨R⟩ ∈ (ℒ R), we
know that ⟨R⟩ ∉ LD. Since ⟨R⟩ ∈ (ℒ R) and (ℒ R) = LD,
we know that ⟨R⟩ ∈ LD. But this is impossible, since it
contradicts the fact that ⟨R⟩ ∉ LD.

In either case we reach a contradiction, so our assumption
must have been wrong. Thus LD ∉ RE. ■

Regular
Languages CFLsDCFLs

All Languages

RE

L
D

What Just Happened?

● What is it about LD that makes it impossible to solve
with a Turing machine?

Indirect self-reference.
● Because TMs can be encoded as strings, TMs that

compute over other TMs can be forced to compute
some property of themselves without realizing it.

● The language LD self-destructs given a Turing machine
that recognizes LD by stating “this machine accepts
itself if and only if it does not accept itself.”

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Diagonalization Revisited

● In our original proof of Cantor's theorem, we
constructed this diagonal set:

D = { x ∈ S | x ∉ f(x) }
● Note the similarity to the diagonalization language:

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ (ℒ M) }

● We began this class by using Cantor's theorem to show
the existence of an unsolvable problems.

● We have now used the exact same technique to single
out a specific unsolvable problem.

An Undecidable Problem

Major Ideas from Last Time

● A Turing machine that halts on all inputs is called
a decider.

● A language L is called decidable or recursive iff
there is a decider M such that (ℒ M) = L.

● The Turing-decidable languages are, therefore,
problems for which there is some computer that
can always produce a yes or no answer.

● A problem is decidable precisely when there is
some algorithm to solve it.

● Decidability formalizes the definition of an
algorithm.

R ≟ RE

● R is the set of all recursive languages.
● RE is the set of all recursively enumerable

languages.
● Since all deciders are TMs, R ⊆ RE.

Question: Is R = RE?
● If we can verify a “yes” answer to a

problem, can we necessarily solve that
problem directly to obtain a yes/no answer?

Regular
Languages CFLsDCFLs

All Languages

R

RE

Which Picture is Correct?

Regular
Languages CFLsDCFLs

All Languages

R RE

Which Picture is Correct?

Attacking this Problem

● To prove that R = RE, we need to show
that for any recognizer, there was some
equivalent decider.

● To prove that R ≠ RE, we need to find a
single recognizable language that is
undecidable.

Revisiting ATM

● Recall that ATM is the language

ATM = {⟨M, w⟩ | M is a TM and w ∈ (ℒ M)}

● ATM ∈ RE, because it is the language of
the universal Turing machine UTM.

● Important theorem:

R = RE iff ATM ∈ R

Lemma: If R = RE, then ATM ∈ R.
Proof: Assume R = RE. Since ATM ∈ RE, this

 means that ATM ∈ R. Therefore, ATM ∈ R. ■

The Other Direction

● We want to prove that if ATM ∈ R, then
R = RE.

● We will show that if ATM is decidable, then
given any recognizer for a language L,
we can construct a decider for L.

Decider for
A

TMw

⟨R⟩

Recognizer for
L

w

Machine R“Hard-code” a
description of

machine R into this
new machine.

“Hard-code” a
description of

machine R into this
new machine.

Decider for
A

TM w

⟨R ⟩

Machine M
M accepts w

iff

The decider for ATM accepts ⟨R, w⟩
iff

⟨R, w⟩ ∈ ATM

iff

R accepts w

iff

w ∈ (ℒ R)

M accepts w

iff

The decider for ATM accepts ⟨R, w⟩
iff

⟨R, w⟩ ∈ ATM

iff

R accepts w

iff

w ∈ (ℒ R)

R is a
recognizer
for L.

R is a
recognizer
for L.

M is a decider
for (ℒ R), so

(ℒ R) ∈ R.

M is a decider
for (ℒ R), so

(ℒ R) ∈ R.

Theorem: If ATM ∈ R, then R = RE.

Proof: Assume that ATM ∈ R. Then there must be a decider D such that
ℒ(D) = ATM. Consider any language L ∈ RE; we show that L ∈ R.
Since our choice of L was arbitrary, this shows that RE ⊆ R. Since
R ⊆ RE, this proves R = RE.

Since L ∈ RE, there is some recognizer for L; call it R. Then consider
the following TM M:

M = “On input w:
Run D on ⟨R, w⟩.
If D accepts ⟨R, w⟩, accept w.
If D rejects ⟨R, w⟩, reject w.”

We prove that (ℒ M) = L and that M is a decider. To see that (ℒ M) = L,
consider any string w. Then M accepts w iff D accepts ⟨R, w⟩. Note
that D accepts ⟨R, w⟩ iff R accepts w. Finally, R accepts w iff
w ∈ (ℒ R) = L. Thus M accepts w iff w ∈ L, so (ℒ M) = L.

To show that M is a decider, consider what happens when we run M
on an arbitrary string w. M first runs D on ⟨R, w⟩. Since D is a
decider, D eventually halts. If D accepts ⟨R, w⟩, then M accepts. If D
rejects ⟨R, w⟩, then M rejects. Thus M halts on all inputs, so it is a
decider.

Since M is a decider for L, this proves L ∈ R as required. ■

R = RE iff ATM ∈ R.

So, is ATM ∈ R?

If ATM is Decidable...

● Let P(n) ≡ “Every tournament graph with n players has a winner.”

● For any fixed n, we can check whether P(n) is true by listing all
tournament graphs and then seeing if they have a tournament
winner.

● Consider this TM:

“On input w:

 Ignore w.

 For n = 1 to ∞:

 If P(n) is false, accept.”

● This TM accepts any string w iff there is some tournament graph
with no winner.

● Using ATM, we could decide whether the theorem is true by
deciding whether this program accepts or rejects some string w.

If ATM is Decidable...

● Consider the following TM:

“On input φ, where φ is a formula in first-order logic:

 Nondeterministically guess a proof of φ.

 Deterministically verify that this proof is valid.

 If so, accept.

 Otherwise, reject.”

● This TM accepts φ iff φ is provable.

● Using ATM, we could automatically determine
whether any formula was provable by deciding if
the above TM accepts it.

Theorem: ATM is undecidable.

Corollary: R ≠ RE.

Assume, for the sake of contradiction,
that ATM is decidable.

Let H be a decider for it.

Decider
for A

TM

Yes

No

⟨M⟩

⟨M⟩

Machine H

“On input ⟨M :⟩
Construct ⟨M, ⟨M .⟩⟩
Run H on ⟨M, ⟨M .⟩⟩
If H accepts ⟨M, ⟨M , reject.⟩⟩
If H rejects ⟨M, ⟨M , accept.”⟩⟩

If ⟨M (⟩ ∈ ℒ M), reject.
If ⟨M (⟩ ∉ ℒ M), accept.

⟨M ⟩ Yes

No

This is a
decider for

LD!

This is a
decider for

LD!

Theorem: ATM ∉ R.
Proof: By contradiction; assume that ATM ∈ R and let H be a decider for

it. Then consider this machine D:

D = “On input ⟨M⟩:
Construct ⟨M, ⟨M⟩⟩.
Run H on ⟨M, ⟨M⟩⟩.
If H accepts ⟨M, ⟨M⟩⟩, reject.
If H rejects ⟨M, ⟨M⟩⟩, accept.”

We claim that (ℒ D) = LD. To see this, note that D accepts ⟨M⟩ iff H
rejects ⟨M, ⟨M⟩⟩. Since H is a decider for ATM, H rejects ⟨M, ⟨M⟩⟩ iff
⟨M, ⟨M⟩⟩ ∉ ATM. Note that ⟨M, ⟨M⟩⟩ ∉ ATM iff ⟨M⟩ ∉ (ℒ M), since
⟨M, ⟨M⟩⟩ is an encoding of a TM/string pair. Consequently, we have
that D accepts ⟨M⟩ iff ⟨M⟩ ∉ (ℒ M). Therefore, (ℒ D) = LD.

Since (ℒ D) = LD, we know that LD ∈ RE. But this is impossible,
since we know that LD ∉ RE. We have reached a contradiction, so
our assumption must have been wrong. Thus ATM ∉ R. ■

ATM = { ⟨M, w⟩ | M is a TM and w ∈ ℒ(M) }

Regular
Languages CFLsDCFLs

All Languages

R RE

The Limits of Computability

A
TM

L
D

What Just Happened?

● Initially, we proved that LD ∉ RE.

● Using this fact, we proved that ATM ∉ R by
using the following reasoning:
● If ATM ∈ R, then LD ∈ RE.

● LD ∉ RE.

● Therefore, ATM ∉ R.

Finding Unsolvable Problems

● Unlike regular languages or context-free
languages, there is no pumping lemma for R or RE
languages.

● The model of computation is just too powerful.

● Instead, we will find unsolvable problems using
reasoning like before:

● Assume that some language A is “solvable.”
● Using the “solver” for A, build a “solver” for B.
● Using advance knowledge that B is “unsolvable,”

derive a contradiction.
● Conclude, therefore, that A is “unsolvable.”

A Different Perspective on ATM

Assume H is a decider for ATM.

D = “On input ⟨M⟩:
Construct ⟨M, ⟨M⟩⟩.
Run H on ⟨M, ⟨M⟩⟩.
If H accepts ⟨M, ⟨M⟩⟩, reject.
If H rejects ⟨M, ⟨M⟩⟩, accept.”

What happens
if we run
D on ⟨D ?⟩

What happens
if we run
D on ⟨D ?⟩

D accepts ⟨D⟩

iff

H rejects ⟨D, ⟨D⟩⟩

iff

D does not accept ⟨D⟩

D accepts ⟨D⟩

iff

H rejects ⟨D, ⟨D⟩⟩

iff

D does not accept ⟨D⟩

Another Undecidable Problem

The Halting Problem

● The halting problem is the following problem:

Given a TM M and string w,
does M halt on w?

● Note that M doesn't have to accept w; it just
has to halt on w.

● As a formal language:

HALT = { ⟨M, w⟩ | M is a TM that halts on w. }
● Is HALT ∈ R? Is HALT ∈ RE?

HALT is Recognizable

● Consider this Turing machine:

H = “On input ⟨M, w⟩:

 Run M on w.

 If M accepts, accept.

 If M rejects, accept.”

● Then H accepts ⟨M, w⟩ iff M halts on w.
● Thus (ℒ H) = HALT, so HALT ∈ RE.

Theorem: HALT ∉ R.

(The halting problem is undecidable)

Proving HALT ∉ R

● Our proof will work as follows:
● Suppose that HALT ∈ R.
● Using a decider for HALT, construct a

decider for ATM.

● Reach a contradiction, since there is no
decider for ATM (ATM ∉ R).

● Conclude, therefore, that HALT ∉ R.

Deciding ATM using HALT

● Suppose you are given a TM M and a string
w.

● You are promised that M halts on w.
● Can you decide whether M accepts w?
● Yes: Just run it and see what happens.
● Now, suppose you have a decider for HALT.
● Can you decide whether M accepts w?

D = “On input ⟨M, w⟩:
Run the decider for HALT on ⟨M, w⟩.
If the decider rejects ⟨M, w⟩, reject.
Otherwise: (the decider accepts ⟨M, w⟩)

Run M on w.
If M accepts w, accept.
If M rejects w, reject.”

D accepts ⟨M, w⟩

iff

The decider for HALT accepts ⟨M, w⟩ and M accepts w

iff

M halts on w and M accepts w

iff

M accepts w

iff

⟨M, w⟩ ∈ ATM

D accepts ⟨M, w⟩

iff

The decider for HALT accepts ⟨M, w⟩ and M accepts w

iff

M halts on w and M accepts w

iff

M accepts w

iff

⟨M, w⟩ ∈ ATM

D = “On input ⟨M, w⟩:
Run the decider for HALT on ⟨M, w⟩.
If the decider rejects ⟨M, w⟩, reject.
Otherwise: (the decider accepts ⟨M, w⟩)

Run M on w.
If M accepts w, accept.
If M rejects w, reject.”

Run D on any input ⟨M, w⟩.

If the decider for HALT rejects, ⟨M, w⟩, D rejects.

Otherwise, we know M halts on w.

Then we run M on w.

We know M eventually halts on w.

If M accepts w, D accepts; if M rejects w, D rejects.

Thus D always halts.

Run D on any input ⟨M, w⟩.

If the decider for HALT rejects, ⟨M, w⟩, D rejects.

Otherwise, we know M halts on w.

Then we run M on w.

We know M eventually halts on w.

If M accepts w, D accepts; if M rejects w, D rejects.

Thus D always halts.

ℒ(D) = ATM

D is a decider.
So ATM ∈ R.

ℒ(D) = ATM

D is a decider.
So ATM ∈ R.

Theorem: HALT ∉ R.
Proof: By contradiction; assume that HALT ∈ R and let H be a decider for it.
 Consider the following machine D:

D = “On input ⟨M, w⟩:
Run H on ⟨M, w⟩.
If H rejects ⟨M, w⟩, reject.
If H accepts ⟨M, w⟩:

Run M on w.
If M accepts w, accept.
If M rejects w, reject.”

 We claim that D is a decider for ATM. First, we prove that D halts on all inputs. To
 see this, consider what happens if we run D on any TM/string pair ⟨M, w⟩. D first
 runs H on ⟨M, w⟩. If H rejects, D rejects and halts. Otherwise, since H is a
 decider, H accepts ⟨M, w⟩, so M halts on w. D then runs M on w. Since we know
 M halts on w, M either accepts or rejects. If M accepts, D accepts; if M rejects, D
 rejects. Thus D halts on all inputs.

 To see that (ℒ D) = ATM, note that D accepts ⟨M, w⟩ iff H accepts ⟨M, w⟩ and M
 accepts w. Since H accepts ⟨M, w⟩ iff M halts on w, we have that D accepts
 ⟨M, w⟩ iff M halts on w and M accepts w. Since M halts on w iff either M accepts
 w or M rejects w, the statement “M halts on w and M accepts w” is equivalent to
 “M accepts w.” Thus D accepts ⟨M, w⟩ iff M accepts w. Since M accepts w iff
 ⟨M, w⟩ ∈ ATM, this means that D accepts ⟨M, w⟩ iff ⟨M, w⟩ ∈ ATM. Thus (ℒ D) = ATM.

 Since (ℒ D) = ATM and D is a decider, this means ATM ∈ R. But this is impossible,
 since we know ATM ∉ R. We have reached a contradiction, so our assumption must
 have been wrong. Thus HALT ∉ R. ■

Regular
Languages CFLsDCFLs

All Languages

R RE

The Limits of Computability

A
TM

L
D

HALT

ATM and HALT

● Both ATM and HALT are undecidable.

● There is no way to decide whether a TM will
accept or eventually terminate.

● However, both ATM and HALT are recognizable.

● We can always run a TM on a string w and
accept if that TM accepts or halts.

● Intuition: The only general way to learn
what a TM will do on a given string is to
run it and see what happens.

Two More Unsolvable Problems

More Unsolvable Problems

● Recall from last time:

If L ∈ RE and L ∈ RE, then L ∈ R.
● Taking the contrapositive:

If L ∉ R, then L ∉ RE or L ∉ RE.
● As a corollary:

If L ∉ R and L ∈ RE, then L ∉ RE.

Regular
Languages CFLsDCFLs

All Languages

R RE

The Limits of Computability

A
TM

L
D

HALT

HALT

A
TM

Major Ideas from Today

Finding Unsolvable Problems

A
TML

D

HALT HALT

A
TM

Not RE Not R

Not RE

Not R Not RE

Finding Unsolvable Problems

● We directly proved that LD ∉ RE by using a proof
by diagonalization.

● We proved ATM ∉ R (and thus R ≠ RE) by showing
that if ATM ∈ R, then LD ∈ RE (which we know is
not true).

● We proved HALT ∉ R by showing that if HALT ∈ R,
then ATM ∈ R (which we know is not true).

● We proved ATM ∉ RE and HALT ∉ RE by showing
that if they were in RE, then ATM ∈ R and
HALT ∈ R (which we know is not true).

Finding Unsolvable Problems

● Proving languages are not in RE or not in
R is fundamentally different than proving
languages are not regular or not context
free.

● We will need to develop a more powerful
array of tools to prove problems are
undecidable or unrecognizable.

Next Time

● Reductions
● Solving one problem using a solver for

another.

● Mapping Reductions
● Relating the difficulty of problems to one

another using reductions.

● More Unsolvable Problems
● What other problems cannot be solved by

computers?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

