Unsolvable Problems

Announcements

- Problem Set 5 graded, will be returned at end of lecture.
- Problem session tonight in 380-380X from 7PM - 7:50PM.
- Optional, but highly recommended!
- CS Career Panel Tonight: 6PM in Gates 104.
- Lots of cool people there!

Unsolvable Problems

Goals for Today

- Find concrete examples of problems that cannot be solved by computers.
- See how the procedure for finding languages that are not \mathbf{R} or $\mathbf{R E}$ is fundamentally different from finding languages that are not regular or context-free.
- Set the stage for reductions and mapping reductions on Wednesday.

Recap from Friday

Major Ideas from Last Time

- Every TM can be converted into a string representation of itself.
- The encoding of M is denoted $\langle M\rangle$.
- The universal Turing machine U_{TM} accepts an encoding $\langle M, w\rangle$ of a TM M and string w, then simulates the execution of M on w.
- The language of $\mathrm{U}_{\mathrm{Tм}}$ is the language \mathbf{A}_{TM} :

$$
\mathrm{A}_{\mathrm{TM}}=\{\langle M, w\rangle \mid M \text { is a TM that accepts } w .\}
$$

- Equivalently:

$$
\mathrm{A}_{\mathrm{TM}}=\{\langle M, w\rangle \mid M \text { is a TM and } w \in \mathscr{L}(M)\}
$$

Major Ideas from Last Time

- A TM accepts a string w if it enters its accept state.
- A TM rejects a string w if it enters its reject state.
- A TM loops on a string w if neither of these happens.
- A TM does not accept a string w if it either rejects w or loops infinitely on w.
- A TM does not reject a string w if it either accepts w or loops infinitely on w.
- A TM halts if it accepts or rejects.

What happens when we run a TM on a TM encoding?

Languages, TMs, and TM Encodings

- Recall: The language of a TM M is the set

$$
\mathscr{L}(M)=\left\{w \in \Sigma^{*} \mid M \text { accepts } w\right\}
$$

- Some of the strings in this set might be descriptions of TMs.
- What happens if we just focus on the set of strings that are legal TM descriptions?

M_{0}
 M_{1}
 M_{2} M_{3}
 M_{4}
 M_{5}

$\left\langle M_{0}\right\rangle\left\langle M_{1}\right\rangle\left\langle M_{2}\right\rangle\left\langle M_{3}\right\rangle\left\langle M_{4}\right\rangle\left\langle M_{5}\right\rangle$							
M	Acc	No	No	Acc	Acc	No	
M_{1}	Acc	Acc	Acc	Acc	Acc	Acc	
M_{2}	Acc	Acc	Ac	Acc	Acc	Acc	
3	No	Acc	Acc	No	Ac	Acc	
M_{4}	Acc	No	Acc	No	Acc	No	
M_{5}	No	No	Acc	Acc	No	No	
	..	\ldots	\ldots	\ldots	

					(M, ${ }^{\text {, }}$	(M_{5})	
M	Acc	No	No	Acc	Acc	No	
M_{1}	Acc	Acc	Acc	Acc	Acc	Acc	
M	Acc	Acc	Acc	Acc	Acc	Acc	
M	No	Acc	Acc	No	Acc	Acc	
	Acc	No	Acc	No	Acc	No	
M_{5}	No	No	Acc	Acc	No	No	
	\ldots	\ldots	

Acc Acc Acc No Acc No

Mo	Acc	No	No	Acc	Acc	No	
M	Acc	Acc	Acc	Acc	Acc	Acc	
	Acc	Acc	Acc	Acc	Acc	Acc	
3	No	Acc	Acc	No	Acc	Acc	
M_{4}	Acc	No	Acc	No	Acc	No	
M_{5}	No	No	Acc	Acc	No	No	
	\ldots	\ldots	\ldots	\ldots	\ldots		
	No	No	No	Acc	No	Acc	

	Acc	No	No	Acc	Acc	No	
	Acc	Acc	Acc	Acc	Acc	Acc	
	A	Acc	Acc	Ac	Acc	cc	
	No	Acc	Acc	No	Acc	Acc	
	Acc	No	Acc	No	Acc	No	
M_{5}	No	No	Acc	Acc	No	No	
		\ldots	.	\ldots			

"The language of all TMs that do not accept their own description."

No No No Acc No Acc

$\{\langle M\rangle \mid M$ is a TM that does not accept $\langle M\rangle\}$

No No No Acc No Acc

$\{(M\rangle \mid M$ is a TM

 and $\langle\boldsymbol{M}\rangle \notin \mathscr{L}(M)\}$No No No Acc No Acc...

Diagonalization Revisited

- The diagonalization language L_{D} is defined as
$L_{\mathrm{D}}=\{\langle M\rangle \mid M$ is a TM and $\langle M\rangle \notin \mathscr{L}(M)\}$
- That is, L_{D} is the set of descriptions of Turing machines that do not accept themselves.

$L_{\mathrm{D}}=\{\langle M\rangle \mid M$ is a TM and $\langle M\rangle \notin \mathscr{L}(M)\}$

Theorem: $L_{\mathrm{D}} \notin \mathbf{R E}$.
Proof: By contradiction; assume that $L_{\mathrm{D}} \in \mathbf{R E}$. Then there must be some TM R such that $\mathscr{L}(R)=L_{\mathrm{D}}$. We know that either $\langle R\rangle \notin \mathscr{L}(R)$ or $\langle R\rangle \in \mathscr{L}(R)$. We consider each case separately:

Case 1: $\langle R\rangle \notin \mathscr{L}(R)$. By definition of L_{D}, since $\langle R\rangle \notin \mathscr{L}(R)$, we know that $\langle R\rangle \in L_{\mathrm{D}}$. Since $\langle R\rangle \notin \mathscr{L}(R)$ and $\mathscr{L}(R)=L_{\mathrm{D}}$, we know that $\langle R\rangle \notin L_{\mathrm{D}}$. But this is impossible, since it contradicts the fact that $\langle R\rangle \in L_{\mathrm{D}}$.

Case 2: $\langle R\rangle \in \mathscr{L}(R)$. By definition of L_{D}, since $\langle R\rangle \in \mathscr{L}(R)$, we know that $\langle R\rangle \notin L_{\mathrm{D}}$. Since $\langle R\rangle \in \mathscr{L}(R)$ and $\mathscr{P}(R)=L_{\mathrm{D}}$, we know that $\langle R\rangle \in L_{D}$. But this is impossible, since it contradicts the fact that $\langle R\rangle \notin L_{\mathrm{D}}$.

In either case we reach a contradiction, so our assumption must have been wrong. Thus $L_{\mathrm{D}} \notin \mathbf{R E}$. \square

All Languages

What Just Happened?

$L_{\mathrm{D}}=\{\langle M\rangle \mid M$ is a $T M$ and $\langle M\rangle \notin \mathscr{L}(M)\}$

- What is it about L_{D} that makes it impossible to solve with a Turing machine?

Indirect self-reference.

- Because TMs can be encoded as strings, TMs that compute over other TMs can be forced to compute some property of themselves without realizing it.
- The language L_{D} self-destructs given a Turing machine that recognizes L_{D} by stating "this machine accepts itself if and only if it does not accept itself."

Diagonalization Revisited

- In our original proof of Cantor's theorem, we constructed this diagonal set:

$$
D=\{x \in S \mid x \notin f(x)\}
$$

- Note the similarity to the diagonalization language:

$$
L_{\mathrm{D}}=\{\langle M\rangle \mid M \text { is a } T M \text { and }\langle M\rangle \notin \mathcal{L}(M)\}
$$

- We began this class by using Cantor's theorem to show the existence of an unsolvable problems.
- We have now used the exact same technique to single out a specific unsolvable problem.

An Undecidable Problem

Major Ideas from Last Time

- A Turing machine that halts on all inputs is called a decider.
- A language L is called decidable or recursive iff there is a decider M such that $\mathscr{L}(M)=L$.
- The Turing-decidable languages are, therefore, problems for which there is some computer that can always produce a yes or no answer.
- A problem is decidable precisely when there is some algorithm to solve it.
- Decidability formalizes the definition of an algorithm.

$\mathbf{R} \stackrel{\stackrel{n}{=}}{ } \mathbf{R E}$

- \mathbf{R} is the set of all recursive languages.
- RE is the set of all recursively enumerable languages.
- Since all deciders are TMs, $\mathbf{R} \subseteq \mathbf{R E}$.

$$
\text { Question: Is } \mathbf{R}=\mathbf{R E} \text { ? }
$$

- If we can verify a "yes" answer to a problem, can we necessarily solve that problem directly to obtain a yes/no answer?

Which Picture is Correct?

Which Picture is Correct?

Attacking this Problem

- To prove that $\mathbf{R}=\mathbf{R E}$, we need to show that for any recognizer, there was some equivalent decider.
- To prove that $\mathbf{R} \neq \mathbf{R E}$, we need to find a single recognizable language that is undecidable.

Revisiting A_{TM}

- Recall that A_{TM} is the language
$\mathrm{A}_{\mathrm{IM}}=\{\langle M, w\rangle \mid M$ is a TM and $w \in \mathscr{L}(M)\}$
- $\mathrm{A}_{\mathrm{TM}} \in \mathbf{R E}$, because it is the language of the universal Turing machine U_{T}.
- Important theorem:

$$
\mathbf{R}=\mathbf{R E} \quad \text { iff } \quad A_{\mathrm{TM}} \in \mathbf{R}
$$

Lemma: If $\mathbf{R}=\mathbf{R E}$, then $\mathrm{A}_{\mathrm{TM}} \in \mathbf{R}$. Proof: Assume $\mathbf{R}=\mathbf{R E}$. Since $\mathrm{A}_{\mathrm{TM}} \in \mathbf{R E}$, this means that $\mathrm{A}_{\mathrm{TM}} \in \mathbf{R}$. Therefore, $\mathrm{A}_{\mathrm{TM}} \in \mathbf{R}$. \square

The Other Direction

- We want to prove that if $\mathrm{A}_{\mathrm{M}} \in \mathbf{R}$, then $\mathbf{R}=\mathbf{R E}$.
- We will show that if A_{TM} is decidable, then given any recognizer for a language L, we can construct a decider for L.

w Recognizer for

"Hard-code" a Machine R description of
machine R into this
new machine.

Machine M
M accepts w
iff
The decider for A_{TM} accepts $\langle R, w\rangle$ iff
$\langle R, w\rangle \in \mathrm{A}_{\mathrm{TM}}$ jiff
R accepts w
jiff
$w \in \mathscr{L}(R)$
M is a decider for $\mathcal{L}(R)$, so $\mathcal{L}(R) \in R$ 。

Theorem: If $\mathrm{A}_{\mathrm{TM}} \in \mathbf{R}$, then $\mathbf{R}=\mathbf{R E}$.
Proof: Assume that $\mathrm{A}_{\mathrm{TM}} \in \mathbf{R}$. Then there must be a decider D such that $\mathscr{L}(D)=\mathrm{A}_{\mathrm{TM}}$. Consider any language $L \in \mathbf{R E}$; we show that $L \in \mathbf{R}$. Since our choice of L was arbitrary, this shows that $\mathbf{R E} \subseteq \mathbf{R}$. Since $\mathbf{R} \subseteq \mathbf{R E}$, this proves $\mathbf{R}=\mathbf{R E}$.
Since $L \in \mathbf{R E}$, there is some recognizer for L; call it R. Then consider the following TM M:
$M=$ "On input $w:$
Run D on $\langle R, w\rangle$.
If D accepts $\langle R, w\rangle$, accept w.
If D rejects $\langle R, w\rangle$, reject w."
We prove that $\mathscr{L}(M)=L$ and that M is a decider. To see that $\mathscr{L}(M)=L$, consider any string w. Then M accepts w iff D accepts $\langle R, w\rangle$. Note that D accepts $\langle R, w\rangle$ iff R accepts w. Finally, R accepts w iff $w \in \mathscr{L}(R)=L$. Thus M accepts w iff $w \in L$, so $\mathscr{L}(M)=L$.
To show that M is a decider, consider what happens when we run M on an arbitrary string w. M first runs D on $\langle R, w\rangle$. Since D is a decider, D eventually halts. If D accepts $\langle R, w\rangle$, then M accepts. If D rejects $\langle R, w\rangle$, then M rejects. Thus M halts on all inputs, so it is a decider.

Since M is a decider for L, this proves $L \in \mathbf{R}$ as required.

$\mathbf{R}=\mathbf{R E} \quad$ iff $\quad \mathrm{A}_{\mathrm{TM}} \in \mathbf{R}$.

So, is $\mathrm{A}_{\mathrm{TM}} \in \mathbf{R}$?

If $\mathrm{A}_{\text {тм }}$ is Decidable...

- Let $P(n) \equiv$ "Every tournament graph with n players has a winner."
- For any fixed n, we can check whether $P(n)$ is true by listing all tournament graphs and then seeing if they have a tournament winner.
- Consider this TM:
"On input w : Ignore w.

For $n=1$ to ∞ :
If $P(n)$ is false, accept."

- This TM accepts any string w iff there is some tournament graph with no winner.
- Using A_{TM}, we could decide whether the theorem is true by deciding whether this program accepts or rejects some string w.

If $A_{T M}$ is Decidable...

- Consider the following TM:
"On input φ, where φ is a formula in first-order logic:
Nondeterministically guess a proof of φ.
Deterministically verify that this proof is valid.
If so, accept.
Otherwise, reject."
- This TM accepts φ iff φ is provable.
- Using $A_{\text {TM }}$ we could automatically determine whether any formula was provable by deciding if the above TM accepts it.

Theorem: A_{TM} is undecidable.

Corollary: $\mathbf{R} \neq \mathbf{R E}$.

Assume, for the sake of contradiction, that A_{TM} is decidable.

Let H be a decider for it.

"On input $\langle M\rangle$:
Construct $\langle M,\langle M\rangle\rangle$.
Run H on $\langle M,\langle M\rangle\rangle$.
If H accepts $\langle M,\langle M\rangle\rangle$, reject. If H rejects $\langle M,\langle M\rangle\rangle$, accept."

If $\langle M\rangle \in \mathcal{L}(M)$, reject.
If $\langle M\rangle \notin \mathcal{L}(M)$, accept.
This is a
decider for
L_{D} :

$\mathbf{A}_{\mathrm{TM}}=\{\langle\mathbf{M}, \mathbf{w}\rangle \mid \boldsymbol{M}$ is a TM and $\boldsymbol{w} \in \mathscr{L}(\mathbf{M})\}$

Theorem: $\mathrm{A}_{\mathrm{TM}} \notin \mathbf{R}$.
Proof: By contradiction; assume that $\mathrm{A}_{\mathrm{TM}} \in \mathbf{R}$ and let H be a decider for it. Then consider this machine D :

$$
D=\text { "On input }\langle M\rangle:
$$

Construct $\langle M,\langle M\rangle\rangle$.
Run H on $\langle M,\langle M\rangle\rangle$.
If H accepts $\langle M,\langle M\rangle\rangle$, reject.
If H rejects $\langle M,\langle M\rangle\rangle$, accept."
We claim that $\mathscr{L}(D)=L_{\mathrm{D}}$. To see this, note that D accepts $\langle M\rangle$ iff H rejects $\langle M,\langle M\rangle\rangle$. Since H is a decider for $\mathrm{A}_{\mathrm{TM}}, H$ rejects $\langle M,\langle M\rangle\rangle$ iff $\langle M,\langle M\rangle\rangle \notin \mathrm{A}_{\mathrm{TM}}$. Note that $\langle M,\langle M\rangle\rangle \notin \mathrm{A}_{\mathrm{TM}}$ iff $\langle M\rangle \notin \mathscr{D}(M)$, since $\langle M,\langle M\rangle\rangle$ is an encoding of a TM/string pair. Consequently, we have that D accepts $\langle M\rangle$ iff $\langle M\rangle \notin \mathscr{L}(M)$. Therefore, $\mathscr{L}(D)=L_{\mathrm{D}}$.

Since $\mathscr{L}(D)=L_{\mathrm{D}}$, we know that $L_{\mathrm{D}} \in \mathbf{R E}$. But this is impossible, since we know that $L_{\mathrm{D}} \notin \mathbf{R E}$. We have reached a contradiction, so our assumption must have been wrong. Thus $\mathrm{A}_{\mathrm{TM}} \notin \mathbf{R}$. \square

The Limits of Computability

What Just Happened?

- Initially, we proved that $L_{D} \notin \mathbf{R E}$.
- Using this fact, we proved that $\mathrm{A}_{\mathrm{TM}} \notin \mathbf{R}$ by using the following reasoning:
- If $A_{T M} \in \mathbf{R}$, then $L_{D} \in \mathbf{R E}$.
- $L_{\mathrm{D}} \notin \mathbf{R E}$.
- Therefore, $\mathrm{A}_{\mathrm{TM}} \notin \mathbf{R}$.

Finding Unsolvable Problems

- Unlike regular languages or context-free languages, there is no pumping lemma for \mathbf{R} or $\mathbf{R E}$ languages.
- The model of computation is just too powerful.
- Instead, we will find unsolvable problems using reasoning like before:
- Assume that some language A is "solvable."
- Using the "solver" for A, build a "solver" for B.
- Using advance knowledge that B is "unsolvable," derive a contradiction.
- Conclude, therefore, that A is "unsolvable."

A Different Perspective on $A_{\text {TM }}$

Assume H is a decider for $\mathrm{A}_{\text {TM }}$.
$D=$ "On input $\langle M\rangle$:
Construct $\langle M,\langle M\rangle\rangle$.
Run H on $\langle M,\langle M\rangle\rangle$.
If H accepts $\langle M,\langle M\rangle\rangle$, reject.
If H rejects $\langle M,\langle M\rangle\rangle$, accept."

What happens if we run
D on $\langle D\rangle$?
D accepts $\langle D\rangle$
iff
H rejects $\langle D,\langle D\rangle\rangle$
iff
D does not accept $\langle D\rangle$

Another Undecidable Problem

The Halting Problem

- The halting problem is the following problem:

Given a TM M and string w, does M halt on w ?

- Note that M doesn't have to accept w; it just has to halt on w.
- As a formal language:

HALT $=\{\langle M, w\rangle \mid M$ is a TM that halts on w.

- Is $H A L T \in \mathbf{R}$? Is HALT $\in \mathbf{R E}$?

HALT is Recognizable

- Consider this Turing machine:

$$
H=" \text { On input }\langle M, w\rangle:
$$

Run M on w.
If M accepts, accept.
If M rejects, accept."

- Then H accepts $\langle M, w\rangle$ iff M halts on w.
- Thus $\mathscr{L}(H)=H A L T$, so HALT $\in \mathbf{R E}$.

Theorem: HALT $\notin \mathbf{R}$.

(The halting problem is undecidable)

Proving HALT $\notin \mathbf{R}$

- Our proof will work as follows:
- Suppose that HALT $\in \mathbf{R}$.
- Using a decider for HALT, construct a decider for A_{DN}.
- Reach a contradiction, since there is no decider for $\mathrm{A}_{\mathrm{M}}\left(\mathrm{A}_{\mathrm{M}} \notin \mathbf{R}\right)$.
- Conclude, therefore, that HALT $\notin \mathbf{R}$.

Deciding A_{TM} using $H A L T$

- Suppose you are given a TM M and a string w.
- You are promised that M halts on w.
- Can you decide whether M accepts w ?
- Yes: Just run it and see what happens.
- Now, suppose you have a decider for HALT.
- Can you decide whether M accepts w ?
$D=$ "On input $\langle M, w\rangle:$
Run the decider for HALT on $\langle M, w\rangle$. If the decider rejects $\langle M, w\rangle$, reject. Otherwise: (the decider accepts $\langle M, w\rangle$) Run M on w. If M accepts w, accept. If M rejects w, reject."

D accepts $\langle M, w\rangle$

iff
The decider for HALT accepts $\langle M, w\rangle$ and M accepts w iff
M halts on w and M accepts w
iff
M accepts w
iff
$\langle M, w\rangle \in \mathrm{A}_{\mathrm{TM}}$
$D=$ "On input $\langle M, w\rangle$:
Run the decider for HALT on $\langle M, w\rangle$.
If the decider rejects $\langle M, w\rangle$, reject.
Otherwise: (the decider accepts $\langle M, w\rangle$)
Run M on w. If M accepts w, accept. If M rejects w, reject."
$\mathscr{L}(D)=\mathrm{A}_{\mathrm{TM}}$
D is a decider. So $\mathrm{A}_{\mathrm{TM}} \in \mathbf{R}$.

Run D on any input $\langle M, w\rangle$.

If the decider for $H A L T$ rejects, $\langle M, w\rangle, D$ rejects.
Otherwise, we know M halts on w.
Then we run M on w.
We know M eventually halts on w.
If M accepts w, D accepts; if M rejects w, D rejects.
Thus D always halts.

Theorem: HALT $\notin \mathbf{R}$.
Proof: By contradiction; assume that $H A L T \in \mathbf{R}$ and let H be a decider for it. Consider the following machine D :

$$
\begin{aligned}
& D=\text { "On input }\langle M, w\rangle: \\
& \text { Run } H \text { on }\langle M, w\rangle \text {. } \\
& \text { If } H \text { rejects }\langle M, w\rangle \text {, reject. } \\
& \text { If } H \text { accepts }\langle M, w\rangle \text { : } \\
& \text { Run } M \text { on } w . \\
& \text { If } M \text { accepts } w \text {, accept. } \\
& \text { If } M \text { rejects } w \text {, reject." }
\end{aligned}
$$

We claim that D is a decider for A_{TM}. First, we prove that D halts on all inputs. To see this, consider what happens if we run D on any TM/string pair $\langle M, w\rangle$. D first runs H on $\langle M, w\rangle$. If H rejects, D rejects and halts. Otherwise, since H is a decider, H accepts $\langle M, w\rangle$, so M halts on w. D then runs M on w. Since we know M halts on w, M either accepts or rejects. If M accepts, D accepts; if M rejects, D rejects. Thus D halts on all inputs.
To see that $\mathscr{L}(D)=\mathrm{A}_{\text {TM }}$, note that D accepts $\langle M, w\rangle$ iff H accepts $\langle M, w\rangle$ and M accepts w. Since H accepts $\langle M, w\rangle$ iff M halts on w, we have that D accepts $\langle M, w\rangle$ iff M halts on w and M accepts w. Since M halts on w iff either M accepts w or M rejects w, the statement " M halts on w and M accepts w " is equivalent to " M accepts w." Thus D accepts $\langle M, w\rangle$ iff M accepts w. Since M accepts w iff $\langle M, w\rangle \in \mathrm{A}_{\mathrm{TM}}$, this means that D accepts $\langle M, w\rangle$ iff $\langle M, w\rangle \in \mathrm{A}_{\mathrm{TM}}$. Thus $\mathscr{L}(D)=\mathrm{A}_{\mathrm{TM}}$. Since $\mathscr{L}(D)=\mathrm{A}_{\mathrm{TM}}$ and D is a decider, this means $\mathrm{A}_{\mathrm{TM}} \in \mathbf{R}$. But this is impossible, since we know $\mathrm{A}_{\mathrm{TM}} \notin \mathbf{R}$. We have reached a contradiction, so our assumption must have been wrong. Thus HALT $\notin \mathbf{R}$.

The Limits of Computability

A_{TM} and HALT

- Both $\mathrm{A}_{\text {тм }}$ and HALT are undecidable.
- There is no way to decide whether a TM will accept or eventually terminate.
- However, both $\mathrm{A}_{\text {тм }}$ and HALT are recognizable.
- We can always run a TM on a string w and accept if that TM accepts or halts.
- Intuition: The only general way to learn what a TM will do on a given string is to run it and see what happens.

Two More Unsolvable Problems

More Unsolvable Problems

- Recall from last time:

If $L \in \mathbf{R E}$ and $\bar{L} \in \mathbf{R E}$, then $L \in \mathbf{R}$.

- Taking the contrapositive:

If $L \notin \mathbf{R}$, then $L \notin \mathbf{R E}$ or $\bar{L} \notin \mathbf{R E}$.

- As a corollary:

$$
\text { If } L \notin \mathbf{R} \text { and } L \in \mathbf{R E} \text {, then } \bar{L} \notin \mathbf{R E} \text {. }
$$

The Limits of Computability

Major Ideas from Today

Finding Unsolvable Problems

Finding Unsolvable Problems

- We directly proved that $L_{\mathrm{D}} \notin \mathbf{R E}$ by using a proof by diagonalization.
- We proved $\mathrm{A}_{\mathrm{TM}} \notin \mathbf{R}$ (and thus $\mathbf{R} \neq \mathbf{R E}$) by showing that if $\mathrm{A}_{\mathrm{TM}} \in \mathbf{R}$, then $L_{\mathrm{D}} \in \mathbf{R E}$ (which we know is not true).
- We proved HALT $\notin \mathbf{R}$ by showing that if $H A L T \in \mathbf{R}$, then $\mathrm{A}_{\mathrm{TM}} \in \mathbf{R}$ (which we know is not true).
- We proved $\overline{\mathrm{A}}_{\mathrm{TM}} \notin \mathbf{R E}$ and $\overline{H A L T} \notin \mathbf{R E}$ by showing that if they were in $\mathbf{R E}$, then $\mathrm{A}_{\mathrm{TM}} \in \mathbf{R}$ and $H A L T \in \mathbf{R}$ (which we know is not true).

Finding Unsolvable Problems

- Proving languages are not in RE or not in \mathbf{R} is fundamentally different than proving languages are not regular or not context free.
- We will need to develop a more powerful array of tools to prove problems are undecidable or unrecognizable.

Next Time

- Reductions
- Solving one problem using a solver for another.
- Mapping Reductions
- Relating the difficulty of problems to one another using reductions.
- More Unsolvable Problems
- What other problems cannot be solved by computers?

