Unsolvable Problems

Announcements

- Problem Set 5 graded, will be returned at end of lecture.
- Problem session tonight in 380-380X from 7PM – 7:50PM.
 - Optional, but highly recommended!
- CS Career Panel Tonight: 6PM in Gates 104.
 - Lots of cool people there!

Unsolvable Problems

Goals for Today

- Find concrete examples of problems that cannot be solved by computers.
- See how the procedure for finding languages that are not **R** or **RE** is fundamentally different from finding languages that are not regular or context-free.
- Set the stage for reductions and mapping reductions on Wednesday.

Recap from Friday

Major Ideas from Last Time

- Every TM can be converted into a string representation of itself.
 - The **encoding** of *M* is denoted $\langle M \rangle$.
- The **universal Turing machine** U_{TM} accepts an encoding $\langle M, w \rangle$ of a TM M and string w, then simulates the execution of M on w.
- The language of $\boldsymbol{U}_{_{TM}}$ is the language $\boldsymbol{A}_{_{TM}}$:

 $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts } w. \}$

• Equivalently:

 $A_{_{\mathrm{TM}}} = \{ \langle M, w \rangle \mid M \text{ is a TM and } w \in \mathcal{D}(M) \}$

Major Ideas from Last Time

- A TM **accepts** a string *w* if it enters its accept state.
- A TM **rejects** a string *w* if it enters its reject state.
- A TM **loops** on a string *w* if neither of these happens.
- A TM **does not accept** a string *w* if it either rejects *w* or loops infinitely on *w*.
- A TM **does not reject** a string *w* if it either accepts *w* or loops infinitely on *w*.
- A TM halts if it accepts or rejects.

What happens when we run a TM on a TM encoding?

Languages, TMs, and TM Encodings

• Recall: The language of a TM *M* is the set

 $\mathscr{L}(M) = \{ w \in \Sigma^* \mid M \text{ accepts } w \}$

- Some of the strings in this set might be descriptions of TMs.
- What happens if we just focus on the set of strings that are legal TM descriptions?

	(Μ ₀)	(Μ ₁)	$\langle M_2 \rangle$	$\langle M_{3} \rangle$	$\langle M_4 \rangle$	$\langle M_{_5} \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1							
M_2							
M_3							
M_4							
M_5							

	(Μ ₀)	(Μ ₁)	(Μ ₂)	$\langle M_{3} \rangle$	$\langle M_4 \rangle$	(Μ ₅)	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2							
M_3							
M_4							
M_5							

	〈 Μ ₀ 〉	(Μ ₁)	$\langle M_2^{} \rangle$	$\langle M_{3} \rangle$	$\langle M_4 \rangle$	$\langle M_{_5} \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3							
M_4	-						
M_5							

	$\langle M_0 \rangle$	(Μ ₁)	$\langle M_2 \rangle$	$\langle M_{3} \rangle$	$\langle M_4 \rangle$	$\langle M_{_5} \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4							
M_5							

. . .

	(Μ ₀)	(Μ ₁)	$\langle M_2^{} \rangle$	$\langle M_{3} \rangle$	$\langle M_{_4} \rangle$	$\langle M_{_5} \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5							

. . .

	(Μ ₀)	(Μ ₁)	$\langle M_2 \rangle$	(Μ ₃)	$\langle M_{_4} \rangle$	$\langle M_{_5} \rangle$	
M_0	Acc	No	No	Acc	Acc	No	••••
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	

. . .

	(Μ ₀)	(Μ ₁)	$\langle M_2 \rangle$	$\langle M_{3} \rangle$	$\langle M_4 \rangle$	(Μ ₅)	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	

	(Μ ₀)	(Μ ₁)	$\langle M_2 \rangle$	(Μ ₃)	$\langle M_4 \rangle$	$\langle M_{_5} \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	

	(Μ ₀)	(Μ ₁)	$\langle M_2 \rangle$	$\langle M_{3} \rangle$	$\langle M_4 \rangle$	$\langle M_{_5} \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	

Acc Acc Acc No Acc No ...

	(Μ ₀)	(Μ ₁)	(Μ ₂)	$\langle M_{3} \rangle$	$\langle M_4 \rangle$	(Μ ₅)	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_{3}	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	

Flip all "accept" to "no" and vice-versa

Acc Acc Acc No Acc No ...

	(Μ ₀)	(Μ ₁)	$\langle M_2 \rangle$	$\langle M_{3} \rangle$	$\langle M_4 \rangle$	$\langle M_{_5} \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	••••
M_2	Acc	Acc	Acc	Acc	Acc	Acc	••••
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	••••
M_5	No	No	Acc	Acc	No	No	••••
			• • •	• • •	•••		

Flip all "accept" to "no" and vice-versa

	(Μ ₀)	(Μ ₁)	$\langle M_2 \rangle$	$\langle M_{3} \rangle$	$\langle M_4 \rangle$	$\langle M_{_5} \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	•••

	(Μ ₀)	(Μ ₁)	(Μ ₂)	$\langle M_{3} \rangle$	$\langle M_{_4} \rangle$	$\langle M_{_5} \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	
					••••		

What TM has this behavior?

	(Μ ₀)	(Μ ₁)	$\langle M_2 \rangle$	$\langle M_{3} \rangle$	$\langle M_4 \rangle$	$\langle M_{_5} \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	

	(Μ ₀)	(Μ ₁)	$\langle M_2 \rangle$	$\langle M_{3} \rangle$	$\langle M_4 \rangle$	$\langle M_{_5} \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	

	(Μ ₀)	(Μ ₁)	$\langle M_2 \rangle$	$\langle M_{3} \rangle$	$\langle M_4 \rangle$	$\langle M_{_5} \rangle$	
M_0	Acc	No	No	Acc	Acc	No	••••
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	

	(Μ ₀)	(Μ ₁)	$\langle M_2 \rangle$	$\langle M_{3} \rangle$	$\langle M_4 \rangle$	$\langle M_{_5} \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	

	(Μ ₀)	(Μ ₁)	$\langle M_2 \rangle$	$\langle M_{3} \rangle$	$\langle M_4 \rangle$	$\langle M_{_5} \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	

	(Μ ₀)	(Μ ₁)	$\langle M_2 \rangle$	$\langle M_{3} \rangle$	$\langle M_4 \rangle$	$\langle M_{_5} \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	

	(Μ ₀)	(Μ ₁)	$\langle M_2 \rangle$	$\langle M_{3} \rangle$	$\langle M_4 \rangle$	$\langle M_{_5} \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	

	(Μ ₀)	(Μ ₁)	$\langle M_2 \rangle$	$\langle M_{3} \rangle$	$\langle M_4 \rangle$	(Μ ₅)	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	

	(Μ ₀)	(Μ ₁)	$\langle M_2 \rangle$	$\langle M_{3} \rangle$	$\langle M_4 \rangle$	$\langle M_{_5} \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	

	(Μ ₀)	(Μ ₁)	$\langle M_2 \rangle$	$\langle M_{3} \rangle$	$\langle M_4 \rangle$	$\langle M_{_5} \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	• • •
	(Μ ₀)	(Μ ₁)	(Μ ₂)	(Μ ₃)	$\langle M_4 \rangle$	(Μ ₅)	
-------	---------------------------	--------------------------	---------------------------	---------------------------	-----------------------	----------------------------------	-------
M_0	Acc	No	No	Acc	Acc	No	• • •
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	• • •
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	•••
M_5	No	No	Acc	Acc	No	No	
		• • •		•••	•••	•••	

No TM has this behavior:

	(Μ ₀)	(Μ ₁)	$\langle M_2 \rangle$	$\langle M_{3} \rangle$	$\langle M_4 \rangle$	$\langle M_{_5} \rangle$	
M_0	Acc	No	No	Acc	Acc	No	••••
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	

	(Μ ₀)	(Μ ₁)	$\langle M_2 \rangle$	$\langle M_{3} \rangle$	$\langle M_4 \rangle$	$\langle M_{_5} \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	

	(Μ ₀)	(Μ ₁)	$\langle M_2 \rangle$	(Μ ₃)	$\langle M_4 \rangle$	$\langle M_{_5} \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	• • •

No No Acc No Acc

. . .

No

"The language of all TMs that do not accept their own description."

	(Μ ₀)	(Μ ₁)	$\langle M_2 \rangle$	$\langle M_{3} \rangle$	$\langle M_4 \rangle$	$\langle M_{_5} \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	

{ (*M*) | *M* is a TM that does not accept (*M*) }

	(Μ ₀)	(Μ ₁)	(Μ ₂)	$\langle M_{3} \rangle$	$\langle M_{_4} \rangle$	$\langle M_{_5} \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	

{ (M) | M is a TMand $(M) \notin \mathcal{L}(M)$ }

Diagonalization Revisited

- The diagonalization language $L_{\rm D}$ is defined as

 $L_{_{\mathbb{D}}} = \{ \langle M \rangle \mid M \text{ is a TM and } \langle M \rangle \notin \mathscr{D}(M) \}$

• That is, $L_{\rm D}$ is the set of descriptions of Turing machines that do not accept themselves.

Theorem: $L_{D} \notin \mathbf{RE}$. *Proof:* By contradiction; assume that $L_{D} \in \mathbf{RE}$.

Theorem: $L_{\rm D} \notin \mathbf{RE}$. *Proof:* By contradiction; assume that $L_{\rm D} \in \mathbf{RE}$. Then there must be some TM R such that $\mathscr{L}(R) = L_{\rm D}$.

Theorem: $L_{\rm D} \notin \mathbf{RE}$.

Proof: By contradiction; assume that $L_{\rm D} \in \mathbf{RE}$. Then there must be some TM *R* such that $\mathscr{L}(R) = L_{\rm D}$. We know that either $\langle R \rangle \notin \mathscr{L}(R)$ or $\langle R \rangle \in \mathscr{L}(R)$.

Theorem: $L_{\rm D} \notin \mathbf{RE}$.

Proof: By contradiction; assume that $L_{\rm D} \in \mathbf{RE}$. Then there must be some TM *R* such that $\mathscr{L}(R) = L_{\rm D}$. We know that either $\langle R \rangle \notin \mathscr{L}(R)$ or $\langle R \rangle \in \mathscr{L}(R)$. We consider each case separately:

Case 1: $\langle R \rangle \notin \mathscr{L}(R)$.

Theorem: $L_{\rm D} \notin \mathbf{RE}$.

- *Proof:* By contradiction; assume that $L_{\rm D} \in \mathbf{RE}$. Then there must be some TM *R* such that $\mathscr{L}(R) = L_{\rm D}$. We know that either $\langle R \rangle \notin \mathscr{L}(R)$ or $\langle R \rangle \in \mathscr{L}(R)$. We consider each case separately:
 - *Case 1:* ⟨*R*⟩ ∉ 𝔅(*R*). By definition of L_D , since ⟨*R*⟩ ∉ 𝔅(*R*), we know that ⟨*R*⟩ ∈ L_D .

Theorem: $L_{\rm D} \notin \mathbf{RE}$.

- *Proof:* By contradiction; assume that $L_{\rm D} \in \mathbf{RE}$. Then there must be some TM *R* such that $\mathscr{L}(R) = L_{\rm D}$. We know that either $\langle R \rangle \notin \mathscr{L}(R)$ or $\langle R \rangle \in \mathscr{L}(R)$. We consider each case separately:
 - *Case 1:* ⟨*R*⟩ ∉ ℒ(*R*). By definition of *L*_D, since ⟨*R*⟩ ∉ ℒ(*R*), we know that ⟨*R*⟩ ∈ *L*_D. Since ⟨*R*⟩ ∉ ℒ(*R*) and ℒ(*R*) = *L*_D, we know that ⟨*R*⟩ ∉ *L*_D.

Theorem: $L_{\rm D} \notin \mathbf{RE}$.

- *Proof:* By contradiction; assume that $L_{\rm D} \in \mathbf{RE}$. Then there must be some TM *R* such that $\mathscr{L}(R) = L_{\rm D}$. We know that either $\langle R \rangle \notin \mathscr{L}(R)$ or $\langle R \rangle \in \mathscr{L}(R)$. We consider each case separately:
 - Case 1: $\langle R \rangle \notin \mathscr{L}(R)$. By definition of L_{D} , since $\langle R \rangle \notin \mathscr{L}(R)$, we know that $\langle R \rangle \in L_{D}$. Since $\langle R \rangle \notin \mathscr{L}(R)$ and $\mathscr{L}(R) = L_{D}$, we know that $\langle R \rangle \notin L_{D}$. But this is impossible, since it contradicts the fact that $\langle R \rangle \in L_{D}$.

- *Proof:* By contradiction; assume that $L_{\rm D} \in \mathbf{RE}$. Then there must be some TM *R* such that $\mathscr{L}(R) = L_{\rm D}$. We know that either $\langle R \rangle \notin \mathscr{L}(R)$ or $\langle R \rangle \in \mathscr{L}(R)$. We consider each case separately:
 - *Case 1:* $\langle R \rangle \notin \mathscr{L}(R)$. By definition of L_{D} , since $\langle R \rangle \notin \mathscr{L}(R)$, we know that $\langle R \rangle \in L_{D}$. Since $\langle R \rangle \notin \mathscr{L}(R)$ and $\mathscr{L}(R) = L_{D}$, we know that $\langle R \rangle \notin L_{D}$. But this is impossible, since it contradicts the fact that $\langle R \rangle \in L_{D}$.
 - $\label{eq:case 2: (R) \in P(R). By definition of $L_{_{\mathrm{D}}}$, since (R) \in P(R)$, we know that (R) $\notin L_{_{\mathrm{D}}}$.}$

- *Proof:* By contradiction; assume that $L_{\rm D} \in \mathbf{RE}$. Then there must be some TM *R* such that $\mathscr{L}(R) = L_{\rm D}$. We know that either $\langle R \rangle \notin \mathscr{L}(R)$ or $\langle R \rangle \in \mathscr{L}(R)$. We consider each case separately:
 - *Case 1:* $\langle R \rangle \notin \mathscr{L}(R)$. By definition of L_{D} , since $\langle R \rangle \notin \mathscr{L}(R)$, we know that $\langle R \rangle \in L_{D}$. Since $\langle R \rangle \notin \mathscr{L}(R)$ and $\mathscr{L}(R) = L_{D}$, we know that $\langle R \rangle \notin L_{D}$. But this is impossible, since it contradicts the fact that $\langle R \rangle \in L_{D}$.
 - *Case 2:* ⟨*R*⟩ ∈ ℒ(*R*). By definition of *L*_D, since ⟨*R*⟩ ∈ ℒ(*R*), we know that ⟨*R*⟩ ∉ *L*_D. Since ⟨*R*⟩ ∈ ℒ(*R*) and ℒ(*R*) = *L*_D, we know that ⟨*R*⟩ ∈ *L*_D.

- *Proof:* By contradiction; assume that $L_{\rm D} \in \mathbf{RE}$. Then there must be some TM *R* such that $\mathscr{L}(R) = L_{\rm D}$. We know that either $\langle R \rangle \notin \mathscr{L}(R)$ or $\langle R \rangle \in \mathscr{L}(R)$. We consider each case separately:
 - *Case 1:* $\langle R \rangle \notin \mathscr{L}(R)$. By definition of L_{D} , since $\langle R \rangle \notin \mathscr{L}(R)$, we know that $\langle R \rangle \in L_{D}$. Since $\langle R \rangle \notin \mathscr{L}(R)$ and $\mathscr{L}(R) = L_{D}$, we know that $\langle R \rangle \notin L_{D}$. But this is impossible, since it contradicts the fact that $\langle R \rangle \in L_{D}$.
 - *Case 2:* $\langle R \rangle \in \mathscr{L}(R)$. By definition of L_{D} , since $\langle R \rangle \in \mathscr{L}(R)$, we know that $\langle R \rangle \notin L_{D}$. Since $\langle R \rangle \in \mathscr{L}(R)$ and $\mathscr{L}(R) = L_{D}$, we know that $\langle R \rangle \in L_{D}$. But this is impossible, since it contradicts the fact that $\langle R \rangle \notin L_{D}$.

Theorem: $L_{\rm D} \notin \mathbf{RE}$.

Proof: By contradiction; assume that $L_{\rm D} \in \mathbf{RE}$. Then there must be some TM *R* such that $\mathscr{L}(R) = L_{\rm D}$. We know that either $\langle R \rangle \notin \mathscr{L}(R)$ or $\langle R \rangle \in \mathscr{L}(R)$. We consider each case separately:

- *Case 1:* $\langle R \rangle \notin \mathscr{L}(R)$. By definition of L_{D} , since $\langle R \rangle \notin \mathscr{L}(R)$, we know that $\langle R \rangle \in L_{D}$. Since $\langle R \rangle \notin \mathscr{L}(R)$ and $\mathscr{L}(R) = L_{D}$, we know that $\langle R \rangle \notin L_{D}$. But this is impossible, since it contradicts the fact that $\langle R \rangle \in L_{D}$.
- *Case 2:* $\langle R \rangle \in \mathscr{L}(R)$. By definition of L_{D} , since $\langle R \rangle \in \mathscr{L}(R)$, we know that $\langle R \rangle \notin L_{D}$. Since $\langle R \rangle \in \mathscr{L}(R)$ and $\mathscr{L}(R) = L_{D}$, we know that $\langle R \rangle \in L_{D}$. But this is impossible, since it contradicts the fact that $\langle R \rangle \notin L_{D}$.

In either case we reach a contradiction, so our assumption must have been wrong.

Theorem: $L_{\rm D} \notin \mathbf{RE}$.

Proof: By contradiction; assume that $L_{\rm D} \in \mathbf{RE}$. Then there must be some TM *R* such that $\mathscr{L}(R) = L_{\rm D}$. We know that either $\langle R \rangle \notin \mathscr{L}(R)$ or $\langle R \rangle \in \mathscr{L}(R)$. We consider each case separately:

- *Case 1:* $\langle R \rangle \notin \mathscr{L}(R)$. By definition of L_{D} , since $\langle R \rangle \notin \mathscr{L}(R)$, we know that $\langle R \rangle \in L_{D}$. Since $\langle R \rangle \notin \mathscr{L}(R)$ and $\mathscr{L}(R) = L_{D}$, we know that $\langle R \rangle \notin L_{D}$. But this is impossible, since it contradicts the fact that $\langle R \rangle \in L_{D}$.
- *Case 2:* $\langle R \rangle \in \mathscr{L}(R)$. By definition of L_{D} , since $\langle R \rangle \in \mathscr{L}(R)$, we know that $\langle R \rangle \notin L_{D}$. Since $\langle R \rangle \in \mathscr{L}(R)$ and $\mathscr{L}(R) = L_{D}$, we know that $\langle R \rangle \in L_{D}$. But this is impossible, since it contradicts the fact that $\langle R \rangle \notin L_{D}$.

In either case we reach a contradiction, so our assumption must have been wrong. Thus $L_{\rm D} \notin \mathbf{RE}$.

Theorem: $L_{\rm D} \notin \mathbf{RE}$.

Proof: By contradiction; assume that $L_{\rm D} \in \mathbf{RE}$. Then there must be some TM *R* such that $\mathscr{L}(R) = L_{\rm D}$. We know that either $\langle R \rangle \notin \mathscr{L}(R)$ or $\langle R \rangle \in \mathscr{L}(R)$. We consider each case separately:

Case 1: $\langle R \rangle \notin \mathscr{L}(R)$. By definition of L_{D} , since $\langle R \rangle \notin \mathscr{L}(R)$, we know that $\langle R \rangle \in L_{D}$. Since $\langle R \rangle \notin \mathscr{L}(R)$ and $\mathscr{L}(R) = L_{D}$, we know that $\langle R \rangle \notin L_{D}$. But this is impossible, since it contradicts the fact that $\langle R \rangle \in L_{D}$.

Case 2: $\langle R \rangle \in \mathscr{L}(R)$. By definition of L_{D} , since $\langle R \rangle \in \mathscr{L}(R)$, we know that $\langle R \rangle \notin L_{D}$. Since $\langle R \rangle \in \mathscr{L}(R)$ and $\mathscr{L}(R) = L_{D}$, we know that $\langle R \rangle \in L_{D}$. But this is impossible, since it contradicts the fact that $\langle R \rangle \notin L_{D}$.

In either case we reach a contradiction, so our assumption must have been wrong. Thus $L_{D} \notin \mathbf{RE}$.

All Languages

What Just Happened? $L_{D} = \{ \langle M \rangle \mid M \text{ is a TM and } \langle M \rangle \notin \mathscr{L}(M) \}$

- What is it about $L_{\rm D}$ that makes it impossible to solve with a Turing machine?

Indirect self-reference.

- Because TMs can be encoded as strings, TMs that compute over other TMs can be forced to compute some property of themselves *without realizing it*.
- The language $L_{\rm D}$ self-destructs given a Turing machine that recognizes $L_{\rm D}$ by stating "this machine accepts itself if and only if it does not accept itself."

Diagonalization Revisited

• In our original proof of Cantor's theorem, we constructed this diagonal set:

 $D = \{ x \in S \mid x \notin f(x) \}$

• Note the similarity to the diagonalization language:

 $L_{\rm D} = \{ \langle M \rangle \mid M \text{ is a TM and } \langle M \rangle \notin \mathcal{L}(M) \}$

- We began this class by using Cantor's theorem to show the existence of an unsolvable problems.
- We have now used the exact same technique to single out a specific unsolvable problem.

An Undecidable Problem

Major Ideas from Last Time

- A Turing machine that halts on all inputs is called a **decider**.
- A language L is called **decidable** or **recursive** iff there is a decider M such that $\mathscr{L}(M) = L$.
- The Turing-decidable languages are, therefore, problems for which there is some computer that can always produce a yes or no answer.
- A problem is decidable precisely when there is some algorithm to solve it.
- Decidability formalizes the definition of an algorithm.

R [?] **RE**

- **R** is the set of all recursive languages.
- **RE** is the set of all recursively enumerable languages.
- Since all deciders are TMs, R ⊆ RE.
 Question: Is R = RE?
- If we can verify a "yes" answer to a problem, can we necessarily solve that problem directly to obtain a yes/no answer?

Which Picture is Correct?

R

RE

Regular DCFLs CFLS

Which Picture is Correct?

R

Regular DCFLs CFLS

All Languages

Attacking this Problem

- To prove that $\mathbf{R} = \mathbf{R}\mathbf{E}$, we need to show that for any recognizer, there was some equivalent decider.
- To prove that R ≠ RE, we need to find a single recognizable language that is undecidable.

Revisiting $A_{\ensuremath{\text{TM}}}$

- Recall that $A_{_{T\!M}}$ is the language

 $A_{_{\mathbb{T}\!M}} = \{ \langle M, w \rangle \mid M \text{ is a TM and } w \in \mathcal{D}(M) \}$

- $A_{M} \in \mathbf{RE}$, because it is the language of the universal Turing machine U_{M} .
- Important theorem:

 $\mathbf{R} = \mathbf{R}\mathbf{E}$ iff $\mathbf{A}_{\mathrm{TM}} \in \mathbf{R}$

Lemma: If $\mathbf{R} = \mathbf{R}\mathbf{E}$, then $A_{TM} \in \mathbf{R}$. Proof: Assume $\mathbf{R} = \mathbf{R}\mathbf{E}$. Since $A_{TM} \in \mathbf{R}\mathbf{E}$, this means that $A_{TM} \in \mathbf{R}$. Therefore, $A_{TM} \in \mathbf{R}$.

The Other Direction

- We want to prove that if $A_{M} \in \mathbf{R}$, then $\mathbf{R} = \mathbf{R}\mathbf{E}$.
- We will show that if A_{TM} is decidable, then given any recognizer for a language L, we can construct a decider for L.

Machine M

Machine M

Proof: Assume that $A_{TM} \in \mathbf{R}$.

Proof: Assume that $A_{TM} \in \mathbf{R}$. Then there must be a decider D such that $\mathscr{L}(D) = A_{TM}$.

Proof: Assume that $A_{TM} \in \mathbf{R}$. Then there must be a decider *D* such that $\mathscr{L}(D) = A_{TM}$. Consider any language $L \in \mathbf{RE}$; we show that $L \in \mathbf{R}$.

Proof: Assume that $A_{TM} \in \mathbf{R}$. Then there must be a decider D such that $\mathscr{L}(D) = A_{TM}$. Consider any language $L \in \mathbf{RE}$; we show that $L \in \mathbf{R}$. Since our choice of L was arbitrary, this shows that $\mathbf{RE} \subseteq \mathbf{R}$.

Proof: Assume that $A_{TM} \in \mathbf{R}$. Then there must be a decider D such that $\mathscr{L}(D) = A_{TM}$. Consider any language $L \in \mathbf{RE}$; we show that $L \in \mathbf{R}$. Since our choice of L was arbitrary, this shows that $\mathbf{RE} \subseteq \mathbf{R}$. Since $\mathbf{R} \subseteq \mathbf{RE}$, this proves $\mathbf{R} = \mathbf{RE}$.

Proof: Assume that $A_{TM} \in \mathbf{R}$. Then there must be a decider D such that $\mathscr{L}(D) = A_{TM}$. Consider any language $L \in \mathbf{RE}$; we show that $L \in \mathbf{R}$. Since our choice of L was arbitrary, this shows that $\mathbf{RE} \subseteq \mathbf{R}$. Since $\mathbf{R} \subseteq \mathbf{RE}$, this proves $\mathbf{R} = \mathbf{RE}$.

Since $L \in \mathbf{RE}$, there is some recognizer for *L*; call it *R*.

Proof: Assume that $A_{TM} \in \mathbf{R}$. Then there must be a decider D such that $\mathscr{L}(D) = A_{TM}$. Consider any language $L \in \mathbf{RE}$; we show that $L \in \mathbf{R}$. Since our choice of L was arbitrary, this shows that $\mathbf{RE} \subseteq \mathbf{R}$. Since $\mathbf{R} \subseteq \mathbf{RE}$, this proves $\mathbf{R} = \mathbf{RE}$.

Since $L \in \mathbf{RE}$, there is some recognizer for *L*; call it *R*. Then consider the following TM *M*:

$$\begin{split} M &= \text{``On input } w: \\ & \text{Run } D \text{ on } \langle R, w \rangle. \\ & \text{If } D \text{ accepts } \langle R, w \rangle, \text{ accept } w. \\ & \text{If } D \text{ rejects } \langle R, w \rangle, \text{ reject } w. \text{''} \end{split}$$

Proof: Assume that $A_{TM} \in \mathbf{R}$. Then there must be a decider D such that $\mathscr{L}(D) = A_{TM}$. Consider any language $L \in \mathbf{RE}$; we show that $L \in \mathbf{R}$. Since our choice of L was arbitrary, this shows that $\mathbf{RE} \subseteq \mathbf{R}$. Since $\mathbf{R} \subseteq \mathbf{RE}$, this proves $\mathbf{R} = \mathbf{RE}$.

Since $L \in \mathbf{RE}$, there is some recognizer for L; call it R. Then consider the following TM M:

M = "On input w: $Run D on \langle R, w \rangle.$ If D accepts $\langle R, w \rangle$, accept w. If D rejects $\langle R, w \rangle$, reject w."

We prove that $\mathscr{D}(M) = L$ and that *M* is a decider.

Proof: Assume that $A_{TM} \in \mathbf{R}$. Then there must be a decider D such that $\mathscr{L}(D) = A_{TM}$. Consider any language $L \in \mathbf{RE}$; we show that $L \in \mathbf{R}$. Since our choice of L was arbitrary, this shows that $\mathbf{RE} \subseteq \mathbf{R}$. Since $\mathbf{R} \subseteq \mathbf{RE}$, this proves $\mathbf{R} = \mathbf{RE}$.

Since $L \in \mathbf{RE}$, there is some recognizer for *L*; call it *R*. Then consider the following TM *M*:

M = "On input w: $Run D on \langle R, w \rangle.$ If D accepts $\langle R, w \rangle$, accept w. If D rejects $\langle R, w \rangle$, reject w."

We prove that $\mathscr{L}(M) = L$ and that M is a decider. To see that $\mathscr{L}(M) = L$, consider any string w.

Proof: Assume that $A_{TM} \in \mathbf{R}$. Then there must be a decider D such that $\mathscr{L}(D) = A_{TM}$. Consider any language $L \in \mathbf{RE}$; we show that $L \in \mathbf{R}$. Since our choice of L was arbitrary, this shows that $\mathbf{RE} \subseteq \mathbf{R}$. Since $\mathbf{R} \subseteq \mathbf{RE}$, this proves $\mathbf{R} = \mathbf{RE}$.

Since $L \in \mathbf{RE}$, there is some recognizer for *L*; call it *R*. Then consider the following TM *M*:

M = "On input w: $Run D on \langle R, w \rangle.$ If D accepts $\langle R, w \rangle$, accept w. If D rejects $\langle R, w \rangle$, reject w."

We prove that $\mathscr{D}(M) = L$ and that M is a decider. To see that $\mathscr{D}(M) = L$, consider any string w. Then M accepts w iff D accepts $\langle R, w \rangle$.

Proof: Assume that $A_{TM} \in \mathbf{R}$. Then there must be a decider D such that $\mathscr{L}(D) = A_{TM}$. Consider any language $L \in \mathbf{RE}$; we show that $L \in \mathbf{R}$. Since our choice of L was arbitrary, this shows that $\mathbf{RE} \subseteq \mathbf{R}$. Since $\mathbf{R} \subseteq \mathbf{RE}$, this proves $\mathbf{R} = \mathbf{RE}$.

Since $L \in \mathbf{RE}$, there is some recognizer for *L*; call it *R*. Then consider the following TM *M*:

$$\begin{split} M &= \text{``On input } w: \\ & \text{Run } D \text{ on } \langle R, w \rangle. \\ & \text{If } D \text{ accepts } \langle R, w \rangle, \text{ accept } w. \\ & \text{If } D \text{ rejects } \langle R, w \rangle, \text{ reject } w. \text{''} \end{split}$$

We prove that $\mathscr{D}(M) = L$ and that M is a decider. To see that $\mathscr{D}(M) = L$, consider any string w. Then M accepts w iff D accepts $\langle R, w \rangle$. Note that D accepts $\langle R, w \rangle$ iff R accepts w.

Proof: Assume that $A_{TM} \in \mathbf{R}$. Then there must be a decider D such that $\mathscr{L}(D) = A_{TM}$. Consider any language $L \in \mathbf{RE}$; we show that $L \in \mathbf{R}$. Since our choice of L was arbitrary, this shows that $\mathbf{RE} \subseteq \mathbf{R}$. Since $\mathbf{R} \subseteq \mathbf{RE}$, this proves $\mathbf{R} = \mathbf{RE}$.

Since $L \in \mathbf{RE}$, there is some recognizer for *L*; call it *R*. Then consider the following TM *M*:

$$\begin{split} M &= \text{``On input } w: \\ & \text{Run } D \text{ on } \langle R, w \rangle. \\ & \text{If } D \text{ accepts } \langle R, w \rangle, \text{ accept } w. \\ & \text{If } D \text{ rejects } \langle R, w \rangle, \text{ reject } w. \text{''} \end{split}$$

We prove that $\mathscr{D}(M) = L$ and that M is a decider. To see that $\mathscr{D}(M) = L$, consider any string w. Then M accepts w iff D accepts $\langle R, w \rangle$. Note that D accepts $\langle R, w \rangle$ iff R accepts w. Finally, R accepts w iff $w \in \mathscr{D}(R) = L$.

Proof: Assume that $A_{TM} \in \mathbf{R}$. Then there must be a decider D such that $\mathscr{L}(D) = A_{TM}$. Consider any language $L \in \mathbf{RE}$; we show that $L \in \mathbf{R}$. Since our choice of L was arbitrary, this shows that $\mathbf{RE} \subseteq \mathbf{R}$. Since $\mathbf{R} \subseteq \mathbf{RE}$, this proves $\mathbf{R} = \mathbf{RE}$.

Since $L \in \mathbf{RE}$, there is some recognizer for *L*; call it *R*. Then consider the following TM *M*:

$$\begin{split} M &= \text{``On input } w: \\ & \text{Run } D \text{ on } \langle R, w \rangle. \\ & \text{If } D \text{ accepts } \langle R, w \rangle, \text{ accept } w. \\ & \text{If } D \text{ rejects } \langle R, w \rangle, \text{ reject } w. \text{''} \end{split}$$

We prove that $\mathscr{L}(M) = L$ and that M is a decider. To see that $\mathscr{L}(M) = L$, consider any string w. Then M accepts w iff D accepts $\langle R, w \rangle$. Note that D accepts $\langle R, w \rangle$ iff R accepts w. Finally, R accepts w iff $w \in \mathscr{L}(R) = L$. Thus M accepts w iff $w \in L$, so $\mathscr{L}(M) = L$.

Proof: Assume that $A_{TM} \in \mathbf{R}$. Then there must be a decider D such that $\mathscr{L}(D) = A_{TM}$. Consider any language $L \in \mathbf{RE}$; we show that $L \in \mathbf{R}$. Since our choice of L was arbitrary, this shows that $\mathbf{RE} \subseteq \mathbf{R}$. Since $\mathbf{R} \subseteq \mathbf{RE}$, this proves $\mathbf{R} = \mathbf{RE}$.

Since $L \in \mathbf{RE}$, there is some recognizer for *L*; call it *R*. Then consider the following TM *M*:

$$\begin{split} M &= \text{``On input } w: \\ & \text{Run } D \text{ on } \langle R, w \rangle. \\ & \text{If } D \text{ accepts } \langle R, w \rangle, \text{ accept } w. \\ & \text{If } D \text{ rejects } \langle R, w \rangle, \text{ reject } w. \text{''} \end{split}$$

We prove that $\mathscr{L}(M) = L$ and that M is a decider. To see that $\mathscr{L}(M) = L$, consider any string w. Then M accepts w iff D accepts $\langle R, w \rangle$. Note that D accepts $\langle R, w \rangle$ iff R accepts w. Finally, R accepts w iff $w \in \mathscr{L}(R) = L$. Thus M accepts w iff $w \in L$, so $\mathscr{L}(M) = L$.

To show that M is a decider, consider what happens when we run M on an arbitrary string w.

Proof: Assume that $A_{TM} \in \mathbf{R}$. Then there must be a decider D such that $\mathscr{L}(D) = A_{TM}$. Consider any language $L \in \mathbf{RE}$; we show that $L \in \mathbf{R}$. Since our choice of L was arbitrary, this shows that $\mathbf{RE} \subseteq \mathbf{R}$. Since $\mathbf{R} \subseteq \mathbf{RE}$, this proves $\mathbf{R} = \mathbf{RE}$.

Since $L \in \mathbf{RE}$, there is some recognizer for *L*; call it *R*. Then consider the following TM *M*:

$$\begin{split} M &= \text{``On input } w: \\ & \text{Run } D \text{ on } \langle R, w \rangle. \\ & \text{If } D \text{ accepts } \langle R, w \rangle, \text{ accept } w. \\ & \text{If } D \text{ rejects } \langle R, w \rangle, \text{ reject } w. \text{''} \end{split}$$

We prove that $\mathscr{L}(M) = L$ and that M is a decider. To see that $\mathscr{L}(M) = L$, consider any string w. Then M accepts w iff D accepts $\langle R, w \rangle$. Note that D accepts $\langle R, w \rangle$ iff R accepts w. Finally, R accepts w iff $w \in \mathscr{L}(R) = L$. Thus M accepts w iff $w \in L$, so $\mathscr{L}(M) = L$.

To show that M is a decider, consider what happens when we run M on an arbitrary string w. M first runs D on $\langle R, w \rangle$.

Proof: Assume that $A_{TM} \in \mathbf{R}$. Then there must be a decider D such that $\mathscr{L}(D) = A_{TM}$. Consider any language $L \in \mathbf{RE}$; we show that $L \in \mathbf{R}$. Since our choice of L was arbitrary, this shows that $\mathbf{RE} \subseteq \mathbf{R}$. Since $\mathbf{R} \subseteq \mathbf{RE}$, this proves $\mathbf{R} = \mathbf{RE}$.

Since $L \in \mathbf{RE}$, there is some recognizer for L; call it R. Then consider the following TM M:

$$\begin{split} M &= \text{``On input } w: \\ & \text{Run } D \text{ on } \langle R, w \rangle. \\ & \text{If } D \text{ accepts } \langle R, w \rangle, \text{ accept } w. \\ & \text{If } D \text{ rejects } \langle R, w \rangle, \text{ reject } w. \text{''} \end{split}$$

We prove that $\mathscr{L}(M) = L$ and that M is a decider. To see that $\mathscr{L}(M) = L$, consider any string w. Then M accepts w iff D accepts $\langle R, w \rangle$. Note that D accepts $\langle R, w \rangle$ iff R accepts w. Finally, R accepts w iff $w \in \mathscr{L}(R) = L$. Thus M accepts w iff $w \in L$, so $\mathscr{L}(M) = L$.

To show that M is a decider, consider what happens when we run M on an arbitrary string w. M first runs D on $\langle R, w \rangle$. Since D is a decider, D eventually halts.

Proof: Assume that $A_{TM} \in \mathbf{R}$. Then there must be a decider D such that $\mathscr{L}(D) = A_{TM}$. Consider any language $L \in \mathbf{RE}$; we show that $L \in \mathbf{R}$. Since our choice of L was arbitrary, this shows that $\mathbf{RE} \subseteq \mathbf{R}$. Since $\mathbf{R} \subseteq \mathbf{RE}$, this proves $\mathbf{R} = \mathbf{RE}$.

Since $L \in \mathbf{RE}$, there is some recognizer for L; call it R. Then consider the following TM M:

$$\begin{split} M &= \text{``On input } w \text{:} \\ & \text{Run } D \text{ on } \langle R, w \rangle \text{.} \\ & \text{If } D \text{ accepts } \langle R, w \rangle \text{, accept } w \text{.} \\ & \text{If } D \text{ rejects } \langle R, w \rangle \text{, reject } w \text{.''} \end{split}$$

We prove that $\mathscr{L}(M) = L$ and that M is a decider. To see that $\mathscr{L}(M) = L$, consider any string w. Then M accepts w iff D accepts $\langle R, w \rangle$. Note that D accepts $\langle R, w \rangle$ iff R accepts w. Finally, R accepts w iff $w \in \mathscr{L}(R) = L$. Thus M accepts w iff $w \in L$, so $\mathscr{L}(M) = L$.

To show that *M* is a decider, consider what happens when we run *M* on an arbitrary string *w*. *M* first runs *D* on $\langle R, w \rangle$. Since *D* is a decider, *D* eventually halts. If *D* accepts $\langle R, w \rangle$, then *M* accepts.

Proof: Assume that $A_{TM} \in \mathbf{R}$. Then there must be a decider D such that $\mathscr{L}(D) = A_{TM}$. Consider any language $L \in \mathbf{RE}$; we show that $L \in \mathbf{R}$. Since our choice of L was arbitrary, this shows that $\mathbf{RE} \subseteq \mathbf{R}$. Since $\mathbf{R} \subseteq \mathbf{RE}$, this proves $\mathbf{R} = \mathbf{RE}$.

Since $L \in \mathbf{RE}$, there is some recognizer for *L*; call it *R*. Then consider the following TM *M*:

$$\begin{split} M &= \text{``On input } w: \\ & \text{Run } D \text{ on } \langle R, w \rangle. \\ & \text{If } D \text{ accepts } \langle R, w \rangle, \text{ accept } w. \\ & \text{If } D \text{ rejects } \langle R, w \rangle, \text{ reject } w. \text{''} \end{split}$$

We prove that $\mathscr{L}(M) = L$ and that M is a decider. To see that $\mathscr{L}(M) = L$, consider any string w. Then M accepts w iff D accepts $\langle R, w \rangle$. Note that D accepts $\langle R, w \rangle$ iff R accepts w. Finally, R accepts w iff $w \in \mathscr{L}(R) = L$. Thus M accepts w iff $w \in L$, so $\mathscr{L}(M) = L$.

To show that *M* is a decider, consider what happens when we run *M* on an arbitrary string *w*. *M* first runs *D* on $\langle R, w \rangle$. Since *D* is a decider, *D* eventually halts. If *D* accepts $\langle R, w \rangle$, then *M* accepts. If *D* rejects $\langle R, w \rangle$, then *M* rejects.

Proof: Assume that $A_{TM} \in \mathbf{R}$. Then there must be a decider D such that $\mathscr{L}(D) = A_{TM}$. Consider any language $L \in \mathbf{RE}$; we show that $L \in \mathbf{R}$. Since our choice of L was arbitrary, this shows that $\mathbf{RE} \subseteq \mathbf{R}$. Since $\mathbf{R} \subseteq \mathbf{RE}$, this proves $\mathbf{R} = \mathbf{RE}$.

Since $L \in \mathbf{RE}$, there is some recognizer for *L*; call it *R*. Then consider the following TM *M*:

$$\begin{split} M &= \text{``On input } w: \\ & \text{Run } D \text{ on } \langle R, w \rangle. \\ & \text{If } D \text{ accepts } \langle R, w \rangle, \text{ accept } w. \\ & \text{If } D \text{ rejects } \langle R, w \rangle, \text{ reject } w. \text{''} \end{split}$$

We prove that $\mathscr{L}(M) = L$ and that M is a decider. To see that $\mathscr{L}(M) = L$, consider any string w. Then M accepts w iff D accepts $\langle R, w \rangle$. Note that D accepts $\langle R, w \rangle$ iff R accepts w. Finally, R accepts w iff $w \in \mathscr{L}(R) = L$. Thus M accepts w iff $w \in L$, so $\mathscr{L}(M) = L$.

To show that *M* is a decider, consider what happens when we run *M* on an arbitrary string *w*. *M* first runs *D* on $\langle R, w \rangle$. Since *D* is a decider, *D* eventually halts. If *D* accepts $\langle R, w \rangle$, then *M* accepts. If *D* rejects $\langle R, w \rangle$, then *M* rejects. Thus *M* halts on all inputs, so it is a decider.

Proof: Assume that $A_{TM} \in \mathbf{R}$. Then there must be a decider D such that $\mathscr{L}(D) = A_{TM}$. Consider any language $L \in \mathbf{RE}$; we show that $L \in \mathbf{R}$. Since our choice of L was arbitrary, this shows that $\mathbf{RE} \subseteq \mathbf{R}$. Since $\mathbf{R} \subseteq \mathbf{RE}$, this proves $\mathbf{R} = \mathbf{RE}$.

Since $L \in \mathbf{RE}$, there is some recognizer for L; call it R. Then consider the following TM M:

$$\begin{split} M &= \text{``On input } w: \\ & \text{Run } D \text{ on } \langle R, w \rangle. \\ & \text{If } D \text{ accepts } \langle R, w \rangle, \text{ accept } w. \\ & \text{If } D \text{ rejects } \langle R, w \rangle, \text{ reject } w. \text{''} \end{split}$$

We prove that $\mathscr{L}(M) = L$ and that M is a decider. To see that $\mathscr{L}(M) = L$, consider any string w. Then M accepts w iff D accepts $\langle R, w \rangle$. Note that D accepts $\langle R, w \rangle$ iff R accepts w. Finally, R accepts w iff $w \in \mathscr{L}(R) = L$. Thus M accepts w iff $w \in L$, so $\mathscr{L}(M) = L$.

To show that *M* is a decider, consider what happens when we run *M* on an arbitrary string *w*. *M* first runs *D* on $\langle R, w \rangle$. Since *D* is a decider, *D* eventually halts. If *D* accepts $\langle R, w \rangle$, then *M* accepts. If *D* rejects $\langle R, w \rangle$, then *M* rejects. Thus *M* halts on all inputs, so it is a decider.

Since *M* is a decider for *L*, this proves $L \in \mathbf{R}$ as required.

Proof: Assume that $A_{TM} \in \mathbf{R}$. Then there must be a decider D such that $\mathscr{L}(D) = A_{TM}$. Consider any language $L \in \mathbf{RE}$; we show that $L \in \mathbf{R}$. Since our choice of L was arbitrary, this shows that $\mathbf{RE} \subseteq \mathbf{R}$. Since $\mathbf{R} \subseteq \mathbf{RE}$, this proves $\mathbf{R} = \mathbf{RE}$.

Since $L \in \mathbf{RE}$, there is some recognizer for L; call it R. Then consider the following TM M:

$$\begin{split} M &= \text{``On input } w: \\ & \text{Run } D \text{ on } \langle R, w \rangle. \\ & \text{If } D \text{ accepts } \langle R, w \rangle, \text{ accept } w. \\ & \text{If } D \text{ rejects } \langle R, w \rangle, \text{ reject } w. \text{''} \end{split}$$

We prove that $\mathscr{L}(M) = L$ and that M is a decider. To see that $\mathscr{L}(M) = L$, consider any string w. Then M accepts w iff D accepts $\langle R, w \rangle$. Note that D accepts $\langle R, w \rangle$ iff R accepts w. Finally, R accepts w iff $w \in \mathscr{L}(R) = L$. Thus M accepts w iff $w \in L$, so $\mathscr{L}(M) = L$.

To show that *M* is a decider, consider what happens when we run *M* on an arbitrary string *w*. *M* first runs *D* on $\langle R, w \rangle$. Since *D* is a decider, *D* eventually halts. If *D* accepts $\langle R, w \rangle$, then *M* accepts. If *D* rejects $\langle R, w \rangle$, then *M* rejects. Thus *M* halts on all inputs, so it is a decider.

Since *M* is a decider for *L*, this proves $L \in \mathbf{R}$ as required.

$\mathbf{R} = \mathbf{R}\mathbf{E} \quad \text{iff} \quad A_{TM} \in \mathbf{R}.$ So, is $A_{TM} \in \mathbf{R}$?

If A_{TM} is Decidable...

- Let $P(n) \equiv$ "Every tournament graph with *n* players has a winner."
- For any fixed n, we can check whether P(n) is true by listing all tournament graphs and then seeing if they have a tournament winner.
- Consider this TM:

"On input *w*:

Ignore w.

For n = 1 to ∞ :

If P(n) is false, accept."

- This TM accepts any string *w* iff there is some tournament graph with no winner.
- Using A_{TM}, we could decide whether the theorem is true by deciding whether this program accepts or rejects some string *w*.
If A_{TM} is Decidable...

- Consider the following TM:
 - "On input φ, where φ is a formula in first-order logic:
 Nondeterministically guess a proof of φ.
 Deterministically verify that this proof is valid.
 If so, accept.
 Otherwise, reject."
- This TM accepts ϕ iff ϕ is provable.
- Using A_{TM} , we could automatically determine whether *any* formula was provable by deciding if the above TM accepts it.

Theorem: A_{TM} is undecidable. **Corollary:** $R \neq RE$.

Assume, for the sake of contradiction, that $A_{\rm TM}$ is decidable.

Let *H* be a decider for it.

If *M* accepts $\langle M \rangle$, accept. If *M* does not accept $\langle M \rangle$, reject.

If $\langle M \rangle \in \mathcal{L}(M)$, accept. If *M* does not accept $\langle M \rangle$, reject.

If $\langle M \rangle \in \mathcal{L}(M)$, accept. If $\langle M \rangle \notin \mathcal{L}(M)$, reject.

If $\langle M \rangle \in \mathcal{L}(M)$, accept. If $\langle M \rangle \notin \mathcal{L}(M)$, reject.

If $\langle M \rangle \in \mathcal{L}(M)$, accept. If $\langle M \rangle \notin \mathcal{L}(M)$, reject.

If $\langle M \rangle \in \mathcal{L}(M)$, reject. If $\langle M \rangle \notin \mathcal{L}(M)$, accept.

If $\langle M \rangle \in \mathcal{L}(M)$, reject. If $\langle M \rangle \notin \mathcal{L}(M)$, accept.

This is a decider for L_D!

 $A_{TM} = \{ (M, w) | M \text{ is a TM and } w \in \mathcal{L}(M) \}$

Theorem: $A_{TM} \notin \mathbf{R}$.

$A_{TM} = \{ (M, w) | M \text{ is a TM and } w \in \mathcal{L}(M) \}$

Theorem: $A_{TM} \notin \mathbf{R}$. *Proof:* By contradiction; assume that $A_{TM} \in \mathbf{R}$ and let H be a decider for it.

Theorem: $A_{TM} \notin \mathbf{R}$.Proof: By contradiction; assume that $A_{TM} \in \mathbf{R}$ and let H be a decider forit. Then consider this machine D:

Theorem: $A_{TM} \notin \mathbf{R}$.Proof: By contradiction; assume that $A_{TM} \in \mathbf{R}$ and let H be a decider forit. Then consider this machine D:

We claim that $\mathscr{L}(D) = L_{D}$.

Theorem: $A_{TM} \notin \mathbf{R}$.Proof: By contradiction; assume that $A_{TM} \in \mathbf{R}$ and let H be a decider forit. Then consider this machine D:

We claim that $\mathscr{L}(D) = L_{D}$. To see this, note that D accepts $\langle M \rangle$ iff H rejects $\langle M, \langle M \rangle \rangle$.

Theorem: $A_{TM} \notin \mathbf{R}$.Proof: By contradiction; assume that $A_{TM} \in \mathbf{R}$ and let H be a decider forit. Then consider this machine D:

 $D = "On input \langle M \rangle:$ Construct $\langle M, \langle M \rangle \rangle$. Run H on $\langle M, \langle M \rangle \rangle$. If H accepts $\langle M, \langle M \rangle \rangle$, reject. If H rejects $\langle M, \langle M \rangle \rangle$, accept."

We claim that $\mathscr{D}(D) = L_{D}$. To see this, note that D accepts $\langle M \rangle$ iff H rejects $\langle M, \langle M \rangle \rangle$. Since H is a decider for A_{TM} , H rejects $\langle M, \langle M \rangle \rangle$ iff $\langle M, \langle M \rangle \rangle \notin A_{TM}$.

Theorem: $A_{_{TM}} \notin \mathbf{R}$.

Proof: By contradiction; assume that $A_{TM} \in \mathbf{R}$ and let H be a decider for it. Then consider this machine D:

We claim that $\mathscr{L}(D) = L_{D}$. To see this, note that D accepts $\langle M \rangle$ iff H rejects $\langle M, \langle M \rangle \rangle$. Since H is a decider for A_{TM} , H rejects $\langle M, \langle M \rangle \rangle$ iff $\langle M, \langle M \rangle \rangle \notin A_{TM}$. Note that $\langle M, \langle M \rangle \rangle \notin A_{TM}$ iff $\langle M \rangle \notin \mathscr{L}(M)$, since $\langle M, \langle M \rangle \rangle$ is an encoding of a TM/string pair.

Theorem: $A_{TM} \notin \mathbf{R}$.

Proof: By contradiction; assume that $A_{TM} \in \mathbf{R}$ and let H be a decider for it. Then consider this machine D:

We claim that $\mathscr{D}(D) = L_D$. To see this, note that D accepts $\langle M \rangle$ iff H rejects $\langle M, \langle M \rangle \rangle$. Since H is a decider for A_{TM} , H rejects $\langle M, \langle M \rangle \rangle$ iff $\langle M, \langle M \rangle \rangle \notin A_{TM}$. Note that $\langle M, \langle M \rangle \rangle \notin A_{TM}$ iff $\langle M \rangle \notin \mathscr{D}(M)$, since $\langle M, \langle M \rangle \rangle$ is an encoding of a TM/string pair. Consequently, we have that D accepts $\langle M \rangle$ iff $\langle M \rangle \notin \mathscr{D}(M)$.

Theorem: $A_{TM} \notin \mathbf{R}$.

Proof: By contradiction; assume that $A_{TM} \in \mathbf{R}$ and let H be a decider for it. Then consider this machine D:

 $\begin{array}{ll} D = \text{``On input } \langle M \rangle \text{:} \\ & \text{Construct } \langle M, \langle M \rangle \rangle \text{.} \\ & \text{Run } H \text{ on } \langle M, \langle M \rangle \rangle \text{.} \\ & \text{If } H \text{ accepts } \langle M, \langle M \rangle \rangle, \text{ reject.} \\ & \text{If } H \text{ rejects } \langle M, \langle M \rangle \rangle, \text{ accept.''} \end{array}$

We claim that $\mathscr{D}(D) = L_{D}$. To see this, note that D accepts $\langle M \rangle$ iff H rejects $\langle M, \langle M \rangle \rangle$. Since H is a decider for A_{TM} , H rejects $\langle M, \langle M \rangle \rangle$ iff $\langle M, \langle M \rangle \rangle \notin A_{TM}$. Note that $\langle M, \langle M \rangle \rangle \notin A_{TM}$ iff $\langle M \rangle \notin \mathscr{D}(M)$, since $\langle M, \langle M \rangle \rangle$ is an encoding of a TM/string pair. Consequently, we have that D accepts $\langle M \rangle$ iff $\langle M \rangle \notin \mathscr{D}(M)$. Therefore, $\mathscr{D}(D) = L_{D}$.

Theorem: $A_{TM} \notin \mathbf{R}$.

Proof: By contradiction; assume that $A_{TM} \in \mathbf{R}$ and let H be a decider for it. Then consider this machine D:

We claim that $\mathscr{D}(D) = L_{D}$. To see this, note that D accepts $\langle M \rangle$ iff H rejects $\langle M, \langle M \rangle \rangle$. Since H is a decider for A_{TM} , H rejects $\langle M, \langle M \rangle \rangle$ iff $\langle M, \langle M \rangle \rangle \notin A_{TM}$. Note that $\langle M, \langle M \rangle \rangle \notin A_{TM}$ iff $\langle M \rangle \notin \mathscr{D}(M)$, since $\langle M, \langle M \rangle \rangle$ is an encoding of a TM/string pair. Consequently, we have that D accepts $\langle M \rangle$ iff $\langle M \rangle \notin \mathscr{D}(M)$. Therefore, $\mathscr{D}(D) = L_{D}$.

Since $\mathscr{L}(D) = L_{D}$, we know that $L_{D} \in \mathbf{RE}$.

Theorem: $A_{TM} \notin \mathbf{R}$.

Proof: By contradiction; assume that $A_{TM} \in \mathbf{R}$ and let H be a decider for it. Then consider this machine D:

We claim that $\mathscr{D}(D) = L_D$. To see this, note that D accepts $\langle M \rangle$ iff H rejects $\langle M, \langle M \rangle \rangle$. Since H is a decider for A_{TM} , H rejects $\langle M, \langle M \rangle \rangle$ iff $\langle M, \langle M \rangle \notin A_{TM}$. Note that $\langle M, \langle M \rangle \notin A_{TM}$ iff $\langle M \rangle \notin \mathscr{D}(M)$, since $\langle M, \langle M \rangle \rangle$ is an encoding of a TM/string pair. Consequently, we have that D accepts $\langle M \rangle$ iff $\langle M \rangle \notin \mathscr{D}(M)$. Therefore, $\mathscr{D}(D) = L_D$.

Since $\mathscr{L}(D) = L_{D}$, we know that $L_{D} \in \mathbf{RE}$. But this is impossible, since we know that $L_{D} \notin \mathbf{RE}$.

Theorem: $A_{TM} \notin \mathbf{R}$.

Proof: By contradiction; assume that $A_{TM} \in \mathbf{R}$ and let H be a decider for it. Then consider this machine D:

We claim that $\mathscr{D}(D) = L_D$. To see this, note that D accepts $\langle M \rangle$ iff H rejects $\langle M, \langle M \rangle \rangle$. Since H is a decider for A_{TM} , H rejects $\langle M, \langle M \rangle \rangle$ iff $\langle M, \langle M \rangle \notin A_{TM}$. Note that $\langle M, \langle M \rangle \notin A_{TM}$ iff $\langle M \rangle \notin \mathscr{D}(M)$, since $\langle M, \langle M \rangle \rangle$ is an encoding of a TM/string pair. Consequently, we have that D accepts $\langle M \rangle$ iff $\langle M \rangle \notin \mathscr{D}(M)$. Therefore, $\mathscr{D}(D) = L_D$.

Since $\mathscr{L}(D) = L_D$, we know that $L_D \in \mathbf{RE}$. But this is impossible, since we know that $L_D \notin \mathbf{RE}$. We have reached a contradiction, so our assumption must have been wrong.

Theorem: $A_{TM} \notin \mathbf{R}$.

Proof: By contradiction; assume that $A_{TM} \in \mathbf{R}$ and let H be a decider for it. Then consider this machine D:

We claim that $\mathscr{D}(D) = L_{D}$. To see this, note that D accepts $\langle M \rangle$ iff H rejects $\langle M, \langle M \rangle \rangle$. Since H is a decider for A_{TM} , H rejects $\langle M, \langle M \rangle \rangle$ iff $\langle M, \langle M \rangle \rangle \notin A_{TM}$. Note that $\langle M, \langle M \rangle \rangle \notin A_{TM}$ iff $\langle M \rangle \notin \mathscr{D}(M)$, since $\langle M, \langle M \rangle \rangle$ is an encoding of a TM/string pair. Consequently, we have that D accepts $\langle M \rangle$ iff $\langle M \rangle \notin \mathscr{D}(M)$. Therefore, $\mathscr{D}(D) = L_{D}$.

Since $\mathscr{L}(D) = L_D$, we know that $L_D \in \mathbf{RE}$. But this is impossible, since we know that $L_D \notin \mathbf{RE}$. We have reached a contradiction, so our assumption must have been wrong. Thus $A_{TM} \notin \mathbf{R}$.

Theorem: $A_{TM} \notin \mathbf{R}$.

Proof: By contradiction; assume that $A_{TM} \in \mathbf{R}$ and let H be a decider for it. Then consider this machine D:

We claim that $\mathscr{D}(D) = L_{D}$. To see this, note that D accepts $\langle M \rangle$ iff H rejects $\langle M, \langle M \rangle \rangle$. Since H is a decider for A_{TM} , H rejects $\langle M, \langle M \rangle \rangle$ iff $\langle M, \langle M \rangle \rangle \notin A_{TM}$. Note that $\langle M, \langle M \rangle \rangle \notin A_{TM}$ iff $\langle M \rangle \notin \mathscr{D}(M)$, since $\langle M, \langle M \rangle \rangle$ is an encoding of a TM/string pair. Consequently, we have that D accepts $\langle M \rangle$ iff $\langle M \rangle \notin \mathscr{D}(M)$. Therefore, $\mathscr{D}(D) = L_{D}$.

Since $\mathscr{D}(D) = L_D$, we know that $L_D \in \mathbf{RE}$. But this is impossible, since we know that $L_D \notin \mathbf{RE}$. We have reached a contradiction, so our assumption must have been wrong. Thus $A_{TM} \notin \mathbf{R}$.

The Limits of Computability

R

Regular DCFLs CFLS

RE

What Just Happened?

- Initially, we proved that $L_{D} \notin \mathbf{RE}$.
- Using this fact, we proved that $A_{_{\rm TM}} \notin \mathbf{R}$ by using the following reasoning:
 - If $A_{TM} \in \mathbf{R}$, then $L_{D} \in \mathbf{RE}$.
 - $L_{\rm D} \notin \mathbf{RE}$.
 - Therefore, $A_{M} \notin \mathbf{R}$.

Finding Unsolvable Problems

- Unlike regular languages or context-free languages, there is no pumping lemma for **R** or **RE** languages.
 - The model of computation is just too powerful.
- Instead, we will find unsolvable problems using reasoning like before:
 - Assume that some language A is "solvable."
 - Using the "solver" for *A*, build a "solver" for *B*.
 - Using advance knowledge that *B* is "unsolvable," derive a contradiction.
 - Conclude, therefore, that *A* is "unsolvable."

A Different Perspective on A_{TM}

Assume *H* is a decider for A_{TM} .

 $D = "On input \langle M \rangle:$ Construct $\langle M, \langle M \rangle \rangle.$ Run H on $\langle M, \langle M \rangle \rangle.$ If H accepts $\langle M, \langle M \rangle \rangle$, reject. If H rejects $\langle M, \langle M \rangle \rangle$, accept."
A Different Perspective on $A_{\rm TM}$

Assume *H* is a decider for A_{TM} .

 $D = "On input \langle M \rangle:$ Construct $\langle M, \langle M \rangle \rangle.$ Run H on $\langle M, \langle M \rangle \rangle.$ If H accepts $\langle M, \langle M \rangle \rangle$, reject. If H rejects $\langle M, \langle M \rangle \rangle$, accept."

A Different Perspective on $A_{\!\rm TM}$

Assume *H* is a decider for A_{TM} .

 $D = "On input \langle M \rangle:$ Construct $\langle M, \langle M \rangle \rangle.$ Run H on $\langle M, \langle M \rangle \rangle.$ If H accepts $\langle M, \langle M \rangle \rangle$, reject. If H rejects $\langle M, \langle M \rangle \rangle$, accept."

D accepts $\langle D \rangle$

A Different Perspective on $A_{\!\rm TM}$

Assume *H* is a decider for A_{TM} .

 $D = "On input \langle M \rangle:$ Construct $\langle M, \langle M \rangle \rangle$. Run H on $\langle M, \langle M \rangle \rangle$. If H accepts $\langle M, \langle M \rangle \rangle$, reject. If H rejects $\langle M, \langle M \rangle \rangle$, accept."

D accepts $\langle D \rangle$

iff

H rejects $\langle D, \langle D \rangle \rangle$

A Different Perspective on $A_{\!\rm TM}$

Assume *H* is a decider for A_{TM} .

Another Undecidable Problem

The Halting Problem

- The halting problem is the following problem:
 Given a TM M and string w, does M halt on w?
- Note that *M* doesn't have to *accept w*; it just has to *halt* on *w*.
- As a formal language: $HALT = \{ \langle M, w \rangle \mid M \text{ is a TM that halts on } w. \}$
- Is $HALT \in \mathbf{R}$? Is $HALT \in \mathbf{RE}$?

HALT is Recognizable

• Consider this Turing machine:

 $H = \text{``On input } \langle M, w \rangle:$ Run M on w. If M accepts, accept. If M rejects, accept.''

- Then H accepts $\langle M, w \rangle$ iff M halts on w.
- Thus $\mathscr{D}(H) = HALT$, so $HALT \in \mathbf{RE}$.

Theorem: HALT ∉ **R**.

(The halting problem is undecidable)

Proving $HALT \notin \mathbf{R}$

- Our proof will work as follows:
 - Suppose that $HALT \in \mathbf{R}$.
 - Using a decider for HALT, construct a decider for $A_{\mbox{\tiny IM}}.$
 - Reach a contradiction, since there is no decider for A_{TM} ($A_{TM} \notin \mathbf{R}$).
 - Conclude, therefore, that $HALT \notin \mathbf{R}$.

Proving $HALT \notin \mathbf{R}$

Our proof will work as follows: Suppose that $HALT \in \mathbf{R}$.

- Using a decider for HALT, construct a decider for $A_{\rm IM}$.
 - Reach a contradiction, since there is no decider for A_{TM} ($A_{TM} \notin \mathbf{R}$).
 - Conclude, therefore, that *HALT* \notin **R**.

Proving $HALT \notin \mathbf{R}$

Our proof will work as follows: Suppose that $HALT \in \mathbf{R}$.

- Using a decider for HALT, construct a decider for $A_{\rm TM}$.

Reach a contradiction, since there is no decider for A_{TM} ($A_{TM} \notin \mathbf{R}$).

Conclude, This is the creative step of the proof. How exactly are we going to do this?

Deciding $A_{_{\rm TM}}$ using HALT

- Suppose you are given a TM *M* and a string *w*.
- You are promised that *M* halts on *w*.
- Can you decide whether *M* accepts *w*?
- Yes: Just run it and see what happens.
- Now, suppose you have a decider for *HALT*.
- Can you decide whether *M* accepts *w*?

D ="On input $\langle M, w \rangle$:

- Run the decider for *HALT* on $\langle M, w \rangle$.
 - If the decider rejects $\langle M, w \rangle$, reject.

Otherwise: (the decider accepts $\langle M, w \rangle$)

Run M on w.

If *M* accepts *w*, accept.

If M rejects w, reject."

D accepts $\langle M, w \rangle$

D accepts $\langle M, w \rangle$

iff

The decider for HALT accepts $\langle M, w \rangle$ and M accepts w

Run *D* on any input $\langle M, w \rangle$.

Run *D* on any input $\langle M, w \rangle$.

If the decider for *HALT* rejects, $\langle M, w \rangle$, *D* rejects.

Run *D* on any input $\langle M, w \rangle$.

If the decider for *HALT* rejects, $\langle M, w \rangle$, *D* rejects.

Otherwise, we know *M* halts on *w*.

Run *D* on any input $\langle M, w \rangle$.

If the decider for *HALT* rejects, $\langle M, w \rangle$, *D* rejects.

Otherwise, we know *M* halts on *w*.

Then we run M on w.

Run *D* on any input $\langle M, w \rangle$.

If the decider for *HALT* rejects, $\langle M, w \rangle$, *D* rejects.

Otherwise, we know M halts on w.

Then we run M on w.

We know *M* eventually halts on *w*.

Run *D* on any input $\langle M, w \rangle$.

If the decider for *HALT* rejects, $\langle M, w \rangle$, *D* rejects.

Otherwise, we know M halts on w.

Then we run M on w.

We know *M* eventually halts on *w*.

If *M* accepts *w*, *D* accepts; if *M* rejects *w*, *D* rejects.

Run *D* on any input $\langle M, w \rangle$.

If the decider for *HALT* rejects, $\langle M, w \rangle$, *D* rejects.

Otherwise, we know M halts on w.

Then we run M on w.

We know *M* eventually halts on *w*.

If *M* accepts *w*, *D* accepts; if *M* rejects *w*, *D* rejects.

Thus *D* always halts.

D = "On input $\langle M, w \rangle$: Run the decider for *HALT* on $\langle M, w \rangle$. If the decider rejects $\langle M, w \rangle$, reject. Otherwise: (the decider accepts $\langle M, w \rangle$) Run M on w. $\mathscr{L}(D) = \mathbf{A}_{\mathrm{TM}}$ If M accepts w, accept. *D* is a decider. If M rejects w, reject." So $A_{TM} \in \mathbf{R}$. Run D on any input $\langle M, w \rangle$. If the decider for *HALT* rejects, $\langle M, w \rangle$, *D* rejects. Otherwise, we know *M* halts on *w*. Then we run *M* on *w*. We know *M* eventually halts on *w*. If *M* accepts *w*, *D* accepts; if *M* rejects *w*, *D* rejects. Thus *D* always halts.

Theorem: $HALT \notin \mathbf{R}$.

Proof: By contradiction; assume that $HALT \in \mathbf{R}$ and let H be a decider for it. Consider the following machine D:

```
D = "On input \langle M, w \rangle:

Run H on \langle M, w \rangle.

If H rejects \langle M, w \rangle, reject.

If H accepts \langle M, w \rangle:

Run M on w.

If M accepts w, accept.

If M rejects w, reject."
```

We claim that *D* is a decider for A_{TM} . First, we prove that *D* halts on all inputs. To see this, consider what happens if we run *D* on any TM/string pair $\langle M, w \rangle$. *D* first runs *H* on $\langle M, w \rangle$. If *H* rejects, *D* rejects and halts. Otherwise, since *H* is a decider, *H* accepts $\langle M, w \rangle$, so *M* halts on *w*. *D* then runs *M* on *w*. Since we know *M* halts on *w*, *M* either accepts or rejects. If *M* accepts, *D* accepts; if *M* rejects, *D* rejects. Thus *D* halts on all inputs.

To see that $\mathscr{L}(D) = A_{TM}$, note that D accepts $\langle M, w \rangle$ iff H accepts $\langle M, w \rangle$ and M accepts w. Since H accepts $\langle M, w \rangle$ iff M halts on w, we have that D accepts $\langle M, w \rangle$ iff M halts on w and M accepts w. Since M halts on w iff either M accepts w or M rejects w, the statement "M halts on w and M accepts w" is equivalent to "M accepts w." Thus D accepts $\langle M, w \rangle$ iff M accepts w. Since M accepts w iff $\langle M, w \rangle \in A_{TM}$, this means that D accepts $\langle M, w \rangle$ iff $\langle M, w \rangle \in A_{TM}$. Thus $\mathscr{L}(D) = A_{TM}$.

Since $\mathscr{L}(D) = A_{TM}$ and D is a decider, this means $A_{TM} \in \mathbf{R}$. But this is impossible, since we know $A_{TM} \notin \mathbf{R}$. We have reached a contradiction, so our assumption must have been wrong. Thus $HALT \notin \mathbf{R}$.

The Limits of Computability

All Languages

$\boldsymbol{A}_{\!_{TM}}$ and $H\!ALT$

- Both A_{TM} and *HALT* are undecidable.
 - There is no way to decide whether a TM will accept or eventually terminate.
- However, both $A_{_{\rm TM}}$ and HALT are recognizable.
 - We can always run a TM on a string *w* and accept if that TM accepts or halts.
- Intuition: The only general way to learn what a TM will do on a given string is to run it and see what happens.

Two More Unsolvable Problems

More Unsolvable Problems

- Recall from last time: If $L \in \mathbb{RE}$ and $\overline{L} \in \mathbb{RE}$, then $L \in \mathbb{R}$.
- Taking the contrapositive:

If $L \notin \mathbf{R}$, then $L \notin \mathbf{RE}$ or $\overline{L} \notin \mathbf{RE}$.

• As a corollary:

If $L \notin \mathbf{R}$ and $L \in \mathbf{RE}$, then $\overline{L} \notin \mathbf{RE}$.

Major Ideas from Today

Finding Unsolvable Problems

Finding Unsolvable Problems

- We directly proved that $L_{\rm D} \notin \mathbf{RE}$ by using a proof by diagonalization.
- We proved $A_{TM} \notin \mathbf{R}$ (and thus $\mathbf{R} \neq \mathbf{RE}$) by showing that if $A_{TM} \in \mathbf{R}$, then $L_{D} \in \mathbf{RE}$ (which we know is not true).
- We proved $HALT \notin \mathbf{R}$ by showing that if $HALT \in \mathbf{R}$, then $A_{TM} \in \mathbf{R}$ (which we know is not true).
- We proved $\overline{A}_{TM} \notin \mathbf{RE}$ and $\overline{HALT} \notin \mathbf{RE}$ by showing that if they were in \mathbf{RE} , then $A_{TM} \in \mathbf{R}$ and $HALT \in \mathbf{R}$ (which we know is not true).

Finding Unsolvable Problems

- Proving languages are not in **RE** or not in **R** is *fundamentally different* than proving languages are not regular or not context free.
- We will need to develop a more powerful array of tools to prove problems are undecidable or unrecognizable.

Next Time

Reductions

• Solving one problem using a solver for another.

Mapping Reductions

• Relating the difficulty of problems to one another using reductions.

• More Unsolvable Problems

• What other problems cannot be solved by computers?