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Announcements

● Problem Set 5 graded, will be returned at 
end of lecture.

● Problem session tonight in 380-380X 
from 7PM – 7:50PM.
● Optional, but highly recommended!

● CS Career Panel Tonight: 6PM in Gates 
104.
● Lots of cool people there!
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Goals for Today

● Find concrete examples of problems that 
cannot be solved by computers.

● See how the procedure for finding 
languages that are not R or RE is 
fundamentally different from finding 
languages that are not regular or 
context-free.

● Set the stage for reductions and mapping 
reductions on Wednesday.



  

Recap from Friday



  

Major Ideas from Last Time

● Every TM can be converted into a string 
representation of itself.

● The encoding of M is denoted ⟨M⟩.

● The universal Turing machine UTM accepts an 
encoding ⟨M, w⟩ of a TM M and string w, then 
simulates the execution of M on w.

● The language of UTM is the language ATM:

ATM = { ⟨M, w⟩ | M is a TM that accepts w. }

● Equivalently:

ATM = { ⟨M, w⟩ | M is a TM and w ∈ (ℒ M) }



  

Major Ideas from Last Time
● A TM accepts a string w if it enters its accept state.

● A TM rejects a string w if it enters its reject state.

● A TM loops on a string w if neither of these happens.

● A TM does not accept a string w if it either rejects w or loops 
infinitely on w.

● A TM does not reject a string w if it either accepts w or loops 
infinitely on w.

● A TM halts if it accepts or rejects.

Accept

Loop

Rejectdoes not accept                                   

does not reject                                  

halts



  

What happens when we run
a TM on a TM encoding?



  

Languages, TMs, and TM Encodings

● Recall: The language of a TM M is the set

ℒ(M) = { w ∈ Σ* | M accepts w }  
● Some of the strings in this set might be 

descriptions of TMs.
● What happens if we just focus on the set 

of strings that are legal TM descriptions?
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All descriptions 
of TMs, listed in 
the same order.

All descriptions 
of TMs, listed in 
the same order.
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to “no” and 
vice-versa
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this behavior?
What TM has 
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“The language of all
TMs that do not accept
their own description.”
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Diagonalization Revisited

● The diagonalization language LD is 
defined as

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ (ℒ M) }   

● That is, LD is the set of descriptions of 
Turing machines that do not accept 
themselves. 



  

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.
Proof: By contradiction; assume that LD ∈ RE.  Then there must

be some TM R such that (ℒ R) = LD.  We know that either
⟨R⟩ ∉ (ℒ R) or ⟨R⟩ ∈ (ℒ R).  We consider each case separately:

  

Case 1: ⟨R⟩ ∉ (ℒ R).  By definition of LD, since ⟨R⟩ ∉ (ℒ R), we
know that ⟨R⟩ ∈ LD.  Since ⟨R⟩ ∉ (ℒ R) and (ℒ R) = LD,
we know that ⟨R⟩ ∉ LD.  But this is impossible, since it
contradicts the fact that ⟨R⟩ ∈ LD.

 
 

Case 2: ⟨R⟩ ∈ (ℒ R).  By definition of LD, since ⟨R⟩ ∈ (ℒ R), we
know that ⟨R⟩ ∉ LD.  Since ⟨R⟩ ∈ (ℒ R) and (ℒ R) = LD,
we know that ⟨R⟩ ∈ LD.  But this is impossible, since it
contradicts the fact that ⟨R⟩ ∉ LD.

 
 

In either case we reach a contradiction, so our assumption
must have been wrong.  Thus LD ∉ RE. ■
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What Just Happened?

● What is it about LD that makes it impossible to solve 
with a Turing machine?

Indirect self-reference.     
● Because TMs can be encoded as strings, TMs that 

compute over other TMs can be forced to compute 
some property of themselves without realizing it.

● The language LD self-destructs given a Turing machine 
that recognizes LD by stating “this machine accepts 
itself if and only if it does not accept itself.”

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }



  

Diagonalization Revisited

● In our original proof of Cantor's theorem, we 
constructed this diagonal set:

D = { x ∈ S | x ∉ f(x) }  
● Note the similarity to the diagonalization language:

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ (ℒ M) }

● We began this class by using Cantor's theorem to show 
the existence of an unsolvable problems.

● We have now used the exact same technique to single 
out a specific unsolvable problem.



  

An Undecidable Problem



  

Major Ideas from Last Time

● A Turing machine that halts on all inputs is called 
a decider.

● A language L is called decidable or recursive iff 
there is a decider M such that (ℒ M) = L.

● The Turing-decidable languages are, therefore, 
problems for which there is some computer that 
can always produce a yes or no answer.

● A problem is decidable precisely when there is 
some algorithm to solve it.

● Decidability formalizes the definition of an 
algorithm.



  

R  ≟ RE

● R is the set of all recursive languages.
● RE is the set of all recursively enumerable 

languages.
● Since all deciders are TMs, R ⊆ RE.

Question: Is R = RE?   
● If we can verify a “yes” answer to a 

problem, can we necessarily solve that 
problem directly to obtain a yes/no answer?
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Attacking this Problem

● To prove that R = RE, we need to show 
that for any recognizer, there was some 
equivalent decider.

● To prove that R ≠ RE, we need to find a 
single recognizable language that is 
undecidable.



  

Revisiting ATM

● Recall that ATM is the language

ATM = {⟨M, w⟩ | M is a TM and w ∈ (ℒ M)}

● ATM ∈ RE, because it is the language of 
the universal Turing machine UTM.

● Important theorem:

R = RE   iff   ATM ∈ R    



  

Lemma: If R = RE, then ATM ∈ R.
Proof: Assume R = RE.  Since ATM ∈ RE, this

       means that ATM ∈ R.  Therefore, ATM ∈ R. ■



  

The Other Direction

● We want to prove that if ATM ∈ R, then 
R = RE.

● We will show that if ATM is decidable, then 
given any recognizer for a language L, 
we can construct a decider for L.



  

Recognizer for
L

w



  

Recognizer for
L

w

Machine R



  

Decider for
A

TMw

⟨M⟩

Recognizer for
L

w

Machine R



  

Decider for
A

TMw

⟨M⟩

Recognizer for
L

w

Machine R



  

Decider for
A

TMw                         

⟨M⟩

Recognizer for
L

w

Machine R



  

Decider for
A

TMw                         

⟨R⟩

Recognizer for
L

w

Machine R



  

Decider for
A

TMw                         

⟨R⟩

Recognizer for
L

w

Machine R“Hard-code” a 
description of 

machine R into this 
new machine.

“Hard-code” a 
description of 

machine R into this 
new machine.



  

Decider for
A

TM   w               

⟨R   ⟩

Machine M



  

Decider for
A

TM   w               

⟨R   ⟩

Machine M

R is a
recognizer
for L.

R is a
recognizer
for L.



  

Decider for
A

TM   w               

⟨R   ⟩

Machine M
M accepts w

  

iff
 

The decider for ATM accepts ⟨R, w⟩ 
iff

 

⟨R, w⟩ ∈ ATM 

iff
  

R accepts w
 

iff
 

w ∈ (ℒ R)

M accepts w
  

iff
 

The decider for ATM accepts ⟨R, w⟩ 
iff

 

⟨R, w⟩ ∈ ATM 

iff
  

R accepts w
 

iff
 

w ∈ (ℒ R)

R is a
recognizer
for L.

R is a
recognizer
for L.



  

Decider for
A

TM   w               

⟨R   ⟩

Machine M
M accepts w

  

iff
 

The decider for ATM accepts ⟨R, w⟩ 
iff

 

⟨R, w⟩ ∈ ATM 

iff
  

R accepts w
 

iff
 

w ∈ (ℒ R)

M accepts w
  

iff
 

The decider for ATM accepts ⟨R, w⟩ 
iff

 

⟨R, w⟩ ∈ ATM 

iff
  

R accepts w
 

iff
 

w ∈ (ℒ R)

R is a
recognizer
for L.

R is a
recognizer
for L.



  

Decider for
A

TM   w               

⟨R   ⟩

Machine M
M accepts w

  

iff
 

The decider for ATM accepts ⟨R, w⟩ 
iff

 

⟨R, w⟩ ∈ ATM 

iff
  

R accepts w
 

iff
 

w ∈ (ℒ R)

M accepts w
  

iff
 

The decider for ATM accepts ⟨R, w⟩ 
iff

 

⟨R, w⟩ ∈ ATM 

iff
  

R accepts w
 

iff
 

w ∈ (ℒ R)

R is a
recognizer
for L.

R is a
recognizer
for L.



  

Decider for
A

TM   w               

⟨R   ⟩

Machine M
M accepts w

  

iff
 

The decider for ATM accepts ⟨R, w⟩ 
iff

 

⟨R, w⟩ ∈ ATM 

iff
  

R accepts w
 

iff
 

w ∈ (ℒ R)

M accepts w
  

iff
 

The decider for ATM accepts ⟨R, w⟩ 
iff

 

⟨R, w⟩ ∈ ATM 

iff
  

R accepts w
 

iff
 

w ∈ (ℒ R)

R is a
recognizer
for L.

R is a
recognizer
for L.



  

Decider for
A

TM   w               

⟨R   ⟩

Machine M
M accepts w

  

iff
 

The decider for ATM accepts ⟨R, w⟩ 
iff

 

⟨R, w⟩ ∈ ATM 

iff
  

R accepts w
 

iff
 

w ∈ (ℒ R)

M accepts w
  

iff
 

The decider for ATM accepts ⟨R, w⟩ 
iff

 

⟨R, w⟩ ∈ ATM 

iff
  

R accepts w
 

iff
 

w ∈ (ℒ R)

R is a
recognizer
for L.

R is a
recognizer
for L.



  

Decider for
A

TM   w               

⟨R   ⟩

Machine M
M accepts w

  

iff
 

The decider for ATM accepts ⟨R, w⟩ 
iff

 

⟨R, w⟩ ∈ ATM 

iff
  

R accepts w
 

iff
 

w ∈ (ℒ R)

M accepts w
  

iff
 

The decider for ATM accepts ⟨R, w⟩ 
iff

 

⟨R, w⟩ ∈ ATM 

iff
  

R accepts w
 

iff
 

w ∈ (ℒ R)

R is a
recognizer
for L.

R is a
recognizer
for L.

M is a decider 
for (ℒ R), so 

(ℒ R)  ∈ R.

M is a decider 
for (ℒ R), so 

(ℒ R)  ∈ R.



  

Theorem: If ATM ∈ R, then R = RE.
  

Proof: Assume that ATM ∈ R.  Then there must be a decider D such that
ℒ(D) = ATM.  Consider any language L ∈ RE; we show that L ∈ R.  
Since our choice of L was arbitrary, this shows that RE ⊆ R.  Since
R ⊆ RE, this proves R = RE.

  

Since L ∈ RE, there is some recognizer for L; call it R.  Then consider
the following TM M:

 

M = “On input w:
Run D on ⟨R, w⟩.
If D accepts ⟨R, w⟩, accept w.
If D rejects ⟨R, w⟩, reject w.”

 

We prove that (ℒ M) = L and that M is a decider.  To see that (ℒ M) = L,
consider any string w.  Then M accepts w iff D accepts ⟨R, w⟩.  Note
that D accepts ⟨R, w⟩ iff R accepts w.  Finally, R accepts w iff
w ∈ (ℒ R) = L.  Thus M accepts w iff w ∈ L, so (ℒ M) = L.

 

To show that M is a decider, consider what happens when we run M
on an arbitrary string w.  M first runs D on ⟨R, w⟩.  Since D is a
decider, D eventually halts.  If D accepts ⟨R, w⟩, then M accepts.  If D
rejects ⟨R, w⟩, then M rejects.  Thus M halts on all inputs, so it is a
decider.

  

Since M is a decider for L, this proves L ∈ R as required. ■
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R = RE   iff   ATM ∈ R.

So, is ATM ∈ R?



  

If ATM is Decidable...

● Let P(n) ≡ “Every tournament graph with n players has a winner.”

● For any fixed n, we can check whether P(n) is true by listing all 
tournament graphs and then seeing if they have a tournament 
winner.

● Consider this TM:

“On input w:

    Ignore w.

    For n = 1 to ∞:

        If P(n) is false, accept.”

● This TM accepts any string w iff there is some tournament graph 
with no winner.

● Using ATM, we could decide whether the theorem is true by 
deciding whether this program accepts or rejects some string w.



  

If ATM is Decidable...

● Consider the following TM:
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     Nondeterministically guess a proof of φ.

     Deterministically verify that this proof is valid.

     If so, accept.

     Otherwise, reject.”

● This TM accepts φ iff φ is provable.

● Using ATM, we could automatically determine 
whether any formula was provable by deciding if 
the above TM accepts it.



  

Theorem: ATM is undecidable.

Corollary: R ≠ RE.



  

Assume, for the sake of contradiction,
that ATM is decidable.

Let H be a decider for it.
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Theorem: ATM ∉ R.
Proof: By contradiction; assume that ATM ∈ R and let H be a decider for

it.  Then consider this machine D:

D = “On input ⟨M⟩:
Construct ⟨M, ⟨M⟩⟩.
Run H on ⟨M, ⟨M⟩⟩.
If H accepts ⟨M, ⟨M⟩⟩, reject.
If H rejects ⟨M, ⟨M⟩⟩, accept.”

We claim that (ℒ D) = LD.  To see this, note that D accepts ⟨M⟩ iff H
rejects ⟨M, ⟨M⟩⟩.  Since H is a decider for ATM, H rejects ⟨M, ⟨M⟩⟩ iff 
⟨M, ⟨M⟩⟩ ∉ ATM.  Note that ⟨M, ⟨M⟩⟩ ∉ ATM iff ⟨M⟩ ∉ (ℒ M), since
⟨M, ⟨M⟩⟩ is an encoding of a TM/string pair.  Consequently, we have
that D accepts ⟨M⟩ iff ⟨M⟩ ∉ (ℒ M).  Therefore, (ℒ D) = LD.

Since (ℒ D) = LD, we know that LD ∈ RE.  But this is impossible,
since we know that LD ∉ RE.  We have reached a contradiction, so
our assumption must have been wrong.  Thus ATM ∉ R. ■

ATM = { ⟨M, w⟩ | M is a TM and w ∈ ℒ(M) }
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What Just Happened?

● Initially, we proved that LD ∉ RE.

● Using this fact, we proved that ATM ∉ R by 
using the following reasoning:
● If ATM ∈ R, then LD ∈ RE.

● LD ∉ RE.

● Therefore, ATM ∉ R.



  

Finding Unsolvable Problems

● Unlike regular languages or context-free 
languages, there is no pumping lemma for R or RE 
languages.

● The model of computation is just too powerful.

● Instead, we will find unsolvable problems using 
reasoning like before:

● Assume that some language A is “solvable.”
● Using the “solver” for A, build a “solver” for B.
● Using advance knowledge that B is “unsolvable,” 

derive a contradiction.
● Conclude, therefore, that A is “unsolvable.”



  

A Different Perspective on ATM

Assume H is a decider for ATM.

D = “On input ⟨M⟩:
Construct ⟨M, ⟨M⟩⟩.
Run H on ⟨M, ⟨M⟩⟩.
If H accepts ⟨M, ⟨M⟩⟩, reject.
If H rejects ⟨M, ⟨M⟩⟩, accept.”
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Another Undecidable Problem



  

The Halting Problem

● The halting problem is the following problem:

Given a TM M and string w,
does M halt on w? 

● Note that M doesn't have to accept w; it just 
has to halt on w.

● As a formal language:

HALT = { ⟨M, w⟩ | M is a TM that halts on w. }  
● Is HALT ∈ R?  Is HALT ∈ RE?



  

HALT is Recognizable

● Consider this Turing machine:

H = “On input ⟨M, w⟩:

             Run M on w.

             If M accepts, accept.

             If M rejects, accept.”

● Then H accepts ⟨M, w⟩ iff M halts on w.
● Thus (ℒ H) = HALT, so HALT ∈ RE.



  

Theorem: HALT ∉ R.

(The halting problem is undecidable)



  

Proving HALT ∉ R

● Our proof will work as follows:
● Suppose that HALT ∈ R.
● Using a decider for HALT, construct a 

decider for ATM.

● Reach a contradiction, since there is no 
decider for ATM (ATM ∉ R).

● Conclude, therefore, that HALT ∉ R.
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Deciding ATM using HALT

● Suppose you are given a TM M and a string 
w.

● You are promised that M halts on w.
● Can you decide whether M accepts w?
● Yes: Just run it and see what happens.
● Now, suppose you have a decider for HALT.
● Can you decide whether M accepts w?



  

D = “On input ⟨M, w⟩:
Run the decider for HALT on ⟨M, w⟩.
If the decider rejects ⟨M, w⟩, reject.
Otherwise: (the decider accepts ⟨M, w⟩)

Run M on w.
If M accepts w, accept.
If M rejects w, reject.”
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Thus D always halts.

Run D on any input ⟨M, w⟩.

If the decider for HALT rejects, ⟨M, w⟩, D rejects.

Otherwise, we know M halts on w.

Then we run M on w.

We know M eventually halts on w.

If M accepts w, D accepts; if M rejects w, D rejects.

Thus D always halts.

ℒ(D) = ATM

D is a decider.
So ATM ∈ R.

ℒ(D) = ATM

D is a decider.
So ATM ∈ R.



  

Theorem: HALT ∉ R.
Proof: By contradiction; assume that HALT ∈ R and let H be a decider for it.
   Consider the following machine D:
 

D = “On input ⟨M, w⟩:
Run H on ⟨M, w⟩.
If H rejects ⟨M, w⟩, reject.
If H accepts ⟨M, w⟩:

Run M on w.
If M accepts w, accept.
If M rejects w, reject.”

 

   We claim that D is a decider for ATM.  First, we prove that D halts on all inputs.  To
   see this, consider what happens if we run D on any TM/string pair ⟨M, w⟩.  D first
   runs H on ⟨M, w⟩.  If H rejects, D rejects and halts.  Otherwise, since H is a
   decider, H accepts ⟨M, w⟩, so M halts on w.  D then runs M on w.  Since we know
   M halts on w, M either accepts or rejects.  If M accepts, D accepts; if M rejects, D
   rejects. Thus D halts on all inputs.
 

   To see that (ℒ D) = ATM, note that D accepts ⟨M, w⟩ iff H accepts ⟨M, w⟩ and M
   accepts w.  Since H accepts ⟨M, w⟩ iff M halts on w, we have that D accepts
   ⟨M, w⟩ iff M halts on w and M accepts w.  Since M halts on w iff either M accepts
   w or M rejects w, the statement “M halts on w and M accepts w” is equivalent to
   “M accepts w.”  Thus D accepts ⟨M, w⟩ iff M accepts w.  Since M accepts w iff
   ⟨M, w⟩ ∈ ATM, this means that D accepts ⟨M, w⟩ iff ⟨M, w⟩ ∈ ATM.  Thus (ℒ D) = ATM.
 

   Since (ℒ D) = ATM and D is a decider, this means ATM ∈ R.  But this is impossible,
   since we know ATM ∉ R.  We have reached a contradiction, so our assumption must
   have been wrong.  Thus HALT ∉ R. ■
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ATM and HALT

● Both ATM and HALT are undecidable.

● There is no way to decide whether a TM will 
accept or eventually terminate.

● However, both ATM and HALT are recognizable.

● We can always run a TM on a string w and 
accept if that TM accepts or halts.

● Intuition: The only general way to learn 
what a TM will do on a given string is to 
run it and see what happens.



  

Two More Unsolvable Problems



  

More Unsolvable Problems

● Recall from last time:

If L ∈ RE and L ∈ RE, then L ∈ R.
● Taking the contrapositive:

If L ∉ R, then L ∉ RE or L ∉ RE.
● As a corollary:

If L ∉ R and L ∈ RE, then L ∉ RE.
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Major Ideas from Today



  

Finding Unsolvable Problems
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Finding Unsolvable Problems

● We directly proved that LD ∉ RE by using a proof 
by diagonalization.

● We proved ATM ∉ R (and thus R ≠ RE) by showing 
that if ATM ∈ R, then LD ∈ RE (which we know is 
not true).

● We proved HALT ∉ R by showing that if HALT ∈ R, 
then ATM ∈ R (which we know is not true).

● We proved ATM ∉ RE and HALT ∉ RE by showing 
that if they were in RE, then ATM ∈ R and
HALT ∈ R (which we know is not true).



  

Finding Unsolvable Problems

● Proving languages are not in RE or not in 
R is fundamentally different than proving 
languages are not regular or not context 
free.

● We will need to develop a more powerful 
array of tools to prove problems are 
undecidable or unrecognizable.



  

Next Time

● Reductions
● Solving one problem using a solver for 

another.

● Mapping Reductions
● Relating the difficulty of problems to one 

another using reductions.

● More Unsolvable Problems
● What other problems cannot be solved by 

computers?
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