

R and RE Languages

Announcements

● Problem Set 6 due now.

● Problem Set 7 out, due next Friday, November
16th.
● Play around with Turing machines, the R and

RE languages, and their limits.
● Some problems require Monday's lecture; if you

want to get a jump on that, look at Sipser,
Chapter 4.

● Late days don't cross Thanksgiving break.
● No checkpoint, even though the syllabus says

there's one.

Important Ideas for Today

● The material from today will lay the
groundwork for the next few weeks.

● Key concepts:
● High-level specifications
● R and RE languages.
● Encodings.
● Universal machines.
● Nondeterministic Turing machines.

● There is a lot of material today; please do not
hesitate to ask questions!

High-Level Descriptions

The Church-Turing Thesis

● The Church-Turing thesis states that all
effective models of computation are
equivalent to or weaker than a Turing
machine.

● As as a result, we can start to be less
precise with our TM descriptions.

High-Level Descriptions

● A high-level description of a Turing machine is a
description of the form

 M = “On input x:
 Do something with x.”

● Example:

M = “On input x:

 Repeat the following:

 If |x| ≤ 1, accept.

 If the first and last symbols of x aren't
 the same, reject.

 Remove the first and last characters of x.”

High-Level Descriptions

● A high-level description of a Turing machine is a
description of the form

 M = “On input x:
 Do something with x.”

● Example:

M = “On input x:

 Construct y, the reverse of x.

 If x = y, accept.

 Otherwise, reject.”

High-Level Descriptions

● A high-level description of a Turing machine is a
description of the form

 M = “On input x:
 Do something with x.”

● Example:

M = “On input x:

 If x is a palindrome, accept.

 Otherwise, reject.”

High-Level Descriptions

● A high-level description of a Turing machine is a
description of the form

 M = “On input x:
 Do something with x.”

● Example:

M = “On input x:

 Check that x has the form 0n1m2p.

 If not, reject.

 If nm = p, accept.

 Otherwise, reject.”

High-Level Descriptions

● A high-level description of a Turing machine is a
description of the form

 M = “On input x:
 Do something with x.”

● Example:

M = “On input x:

 Check that x has the form p?t,
 where p, t ∈ {0, 1}*.

 If not, reject.

 If so, if p is a substring of t, accept.

 Otherwise, reject.”

Formatted Input

● Many languages require the input to be in some
particular format.
● (Think about ADD or SEARCH from the problem

sets).
● We can encode this directly into our TMs:

M = “On input p?t, where p, t ∈ {0, 1}*

 If p is a substring of t, accept.

 Otherwise, reject.”
● Machines of this form implicitly reject any inputs that

don't have the right format.

Formatted Input

● Many languages require the input to be in some
particular format.
● (Think about ADD or SEARCH from the problem

sets).
● We can encode this directly into our TMs:

M = “On input 0m1n2p:

 If mn = p, accept.

 Otherwise, reject.”
● Machines of this form implicitly reject any inputs that

don't have the right format.

What's Allowed?

● General rule of thumb:

You can include anything in
a high-level description,

as long as you could write
a computer program for it.

● A few exceptions: no user input, no
randomness, etc.

● This is a consequence of the Church-Turing
thesis.

R and RE Languages

Some Important Terminology

● A TM accepts a string w if it enters an accept state.

● A TM rejects a string w if it enters a reject state.

● A TM loops infinitely (or just loops) on a string w if
neither of these happens.

● A TM does not accept a string w if it either rejects w or
loops infinitely on w.

● A TM does not reject a string w if it either accepts w or
loops infinitely on w.

● A TM halts if it accepts or rejects.

Accept

Loop

Reject
does not accept

does not reject

halts

Recall: Language of a TM

● The language of a Turing machine M, denoted
(ℒ M), is the set of all strings that M accepts:

ℒ(M) = { w ∈ Σ* | M accepts w }

● For any w ∈ (ℒ M), M accepts w.

● For any w ∉ (ℒ M), M does not accept w.
● It might loop forever, or it might explicitly reject.

● A language is called recognizable or recursively
enumerable if it is the language of some TM.

● Notation: RE is the set of all recognizable
languages.

L ∈ RE iff L is recognizable

Why “Recognizable?”

● Given TM M with language ℒ(M), running M on a
string w will not necessarily tell you whether w ∈ (ℒ M).

● If the machine is running, you can't tell whether

● It is eventually going to halt, but just needs more time,
and

● It is never going to halt.

● However, if you know for a fact that w ∈ (ℒ M), then the
machine can confirm this (it eventually accepts).

● The machine can't decide whether or not w ∈ (ℒ M), but
it can recognize strings that are in the language.

● We sometimes call a TM for a language L a recognizer
for L.

Deciders

● Some Turing machines always halt; they
never go into an infinite loop.

● Turing machines of this sort are called
deciders.

● For deciders, accepting is the same as
not rejecting and rejecting is the same as
not accepting.

Accept

Reject
 halts (always)

does not accept

does not reject

Decidable Languages

● A language L is called decidable iff there is a
decider M such that (ℒ M) = L.

● These languages are also sometimes called
recursive.

● Given a decider M, you can learn whether or not a
string w ∈ (ℒ M).

● Run M on w.
● Although it make take a staggeringly long time, M

will eventually accept or reject w.

● The set R is the set of all decidable languages.

w ∈ R iff w is decidable

Why R Matters

● If a language is in R, there is an algorithm that can
decide membership in that language.

● Run the decider and see what it says.

● If there is an algorithm that can decide membership in
a language, that language is in R.

● By the Church-Turing thesis, any effective model of
computation is equivalent in power to a Turing machine.

● Thus if there is any algorithm for deciding membership in
the language, there must be a decider for it.

● Thus the language is in R.

● A language is in R iff there is an algorithm for
deciding membership in that language.

R ≟ RE

● Every decider is a Turing machine, but not
every Turing machine is a decider.

● Thus R ⊆ RE.

● Hugely important theoretical question:

Is R = RE?
● That is, if we can verify that a string is in a

language, can we decide whether that string is
in the language?

● We will need to build up some more formalisms
to answer this question.

Encodings

An Interesting Observation

● WB programs give us a way to check whether
a string is contained within a given RE
language.

● WB programs themselves are strings.
● This means that we can run WB programs,

taking other WB programs as input!
● Major questions:

● Is this specific to WB programs?
● What can we do with this knowledge?

There is a subtle flaw in this reasoning:

“Because WB programs are strings,
WB programs can be run on the

source code of other WB programs.”

What is it?

The Alphabet Problem

● WB programs are described using multiple
characters: letters, digits, colons, newlines, etc.,
plus potentially all tape symbols being used.

● Not all WB programs are written for languages
over this alphabet; in fact, most do not.

● We cannot directly write the source of a WB
program onto the input tape of another WB
program.

● Can we fix this?

A Better Encoding

● We will restrict ourselves to talking about languages
over alphabets containing at least two symbols.

● It's always possible to encode a string in any alphabet
using just two symbols.

● This is how real computers work.

01000100 01001001 01001011 01000100 01001001 01001011

D DI IK K

Notation for Encodings

● If P is a WB program, we will denote its
binary encoding as ⟨P⟩.

● Don't worry too much about the details
about how exactly you would compute
⟨P⟩; the important part is that there's at
least one way to do it.

Encoding Other Automata

● Using similar techniques, we can encode
all the other automata we've seen so far
as binary strings.

● For example, if M is a Turing machine,
⟨M⟩ refers to a binary encoding of it.

● More generally, if we have any object O
we want to encode as a binary string, we
can write it out as ⟨O⟩.

Encoding Multiple Objects

● Suppose that we want to provide an encoding
of multiple objects.
● Several Turing machines.
● A Turing machine and a string.
● A graph and a path in the graph.
● A rock and a hard place.
● Guns and Roses.
● Repeal and Replace.
● “I just met you” and “this is crazy.”

● There are many ways that we can do this.

One Encoding Scheme

0 10 01

0 0 1 1 0 00 0 1 1 0

⟨X1⟩ ⟨X2⟩

⟨X1, X2⟩

Encoding Multiple Objects

● Given several different objects O1, O2, …,
On, we can represent the encoding of those
n objects as ⟨O1, O2, …, On⟩.

● Example:
● If M is a Turing machine and w is a string,

then ⟨M, w⟩ is an encoding of that program and
that string.

● If G is a context-free grammar and P is a PDA,
then ⟨G, P⟩ is an encoding of that grammar and
that PDA.

We can now encode TMs as strings.

TMs can accept strings as input.

What can we do with this knowledge?

Universal Machines

Universal Machines and Programs

● Theorem: There is a Turing machine UTM called the
universal Turing machine that, when run on ⟨M, w⟩,
where M is a Turing machine and w is a string, simulates
M running on w.

● As a high-level description:

UTM = “On input ⟨M, w⟩, where M is a TM and w ∈ Σ*

 Run M on w.

 If M accepts w, accept.

 If M rejects w, reject.”

If M loops on w, then UTM loops
as well. This is usually omitted

from the description.

If M loops on w, then UTM loops
as well. This is usually omitted

from the description.

Sketch of the Universal WB Program

● It is a bit easier to understand the
universal WB program than the universal
TM.

● We will write the universal WB program
in WB6 (finite variables, multiple tracks,
multiple tapes, multiple stacks) for
simplicity, and can then “compile” it
down into normal WB.

Sketch of the Universal WB Program

● To run a WB program, at each point in time we
need to track three pieces of information:
● The contents of the tape.
● The location of the read head.
● The index of the current instruction.

● Our program will enter a loop and repeatedly do
the following:
● Find the next instruction to execute.
● Simulate that execution on the simulated tape.

0 : M o v ...

...

e l e f t . 1 : G

0 1 x 0 0 A 0 <

o>

...

Simulated tape of the program being executed.

Program tape holding the program being executed.

Scratch tape for intermediate computation.

Variables for intermediate storage.

Instr

Sketch of the Universal WB
Program

>

Letter

The Language of UTM

● From a formal language perspective, what is the
language of a the universal TM UTM?

● The universal Turing machine accepts all strings
of the form ⟨M, w⟩, where M is a Turing machine
that accepts string w.

● This language is called ATM:

ATM = { ⟨M, w⟩ | M is a TM that accepts w. }

● Since (Uℒ TM) = ATM, we know ATM is recursively
enumerable.

Why This Matters (Philosophically)

● As a historically significant achievement.
● The universal Turing machine might be the very

first “complicated” program ever designed for a
computer.

● Motivation for the “stored-program” model of
computers.

● As a justification for the Church-Turing thesis.
● All sufficiently powerful models of computation can

simulate one another.

Why This Matters (Practically)

● Turing machines can run other Turing machines.

● A TM can use the universal TM as a subroutine to
simulate the execution of other TMs.

● This lets TMs base their behaviors on the behavior of
other TMs.

● As a stepping stone to building elaborate models of
computation.

● More on that later today.

● As a stepping stone to finding unsolvable problems.

● More on that on Monday.

RE is Closed Under Intersection

Recognizer
for L1

 w
Recognizer

for L2

 w

M' = “On input w:
Run M1 on w.
If M1 accepts:

Run M2 on w.
If M2 accepts w, accept.
If M2 rejects w, reject.

If M1 rejects w, reject.”

M1

M2

If M1 loops on w, we will
never get past this line.
When running a TM as a
subroutine, make sure you
remember to account for

this!

If M1 loops on w, we will
never get past this line.
When running a TM as a
subroutine, make sure you
remember to account for

this!

Same
here.

Same
here.

Theorem: RE is closed under intersection.
Proof: Consider any L1, L2 ∈ RE. We will prove that L1 ∩ L2 ∈ RE

by constructing a TM M such that (ℒ M) = L1 ∩ L2.

Let M1 and M2 be recognizers for L1 and L2, respectively. Then
construct the machine M as follows:

M = “On input w:
Run M1 on w.
If M1 accepts w:

Run M2 on w.
If M2 accepts w, accept.
If M2 rejects w, reject.

If M1 rejects w, reject.”

We show that (ℒ M) = L1 ∩ L2 by proving that M accepts w iff
w ∈ L1 ∩ L2. To see this, note that M accepts w iff both M1

accepts w and M2 accepts w. M1 accepts w iff w ∈ L1 and M2

accepts w iff w ∈ L2. Thus M accepts w iff w ∈ L1 and w ∈ L2,
so M accepts w iff w ∈ L1 ∩ L2. Thus (ℒ M) = L1 ∩ L2. Since
ℒ(M) = L1 ∩ L2, we have that L1 ∩ L2 ∈ RE, as required. ■

R is Closed Under Complement

If L ∈ R, then L ∈ R as well.

Decider
for L

w

M

M' = “On input w:
 Run M on w.
 If M accepts w, reject.
 If M rejects w, accept.”

Will this work if M is
a recognizer, rather

than a decider?

Will this work if M is
a recognizer, rather

than a decider?

Theorem: R is closed under complementation.
Proof: Consider any L ∈ R. We will prove that L ∈ R by constructing a

decider M' such that (ℒ M') = L.

Let M be a decider for L. Then construct the machine M' as follows:

M' = “On input w ∈ Σ*:
Run M on w.
If M accepts w, reject.
If M rejects w, accept.”

We need to show that M' is a decider and that (ℒ M') = L.

To show that M' is a decider, we will prove that it always halts.
Consider what happens if we run M' on any input w. First, M' runs
M on w. Since M is a decider, M either accepts w or rejects w. If
M accepts w, M' rejects w. If M rejects w, M' accepts w. Thus M'
always accepts or rejects, so M' is a decider.

To show that (ℒ M') = L, we will prove that M' accepts w iff w ∈ L.
Note that M' accepts w iff w ∈ Σ* and M rejects w. Since M is a
decider, M rejects w iff M does not accept w. M does not accept w iff
w ∉ (ℒ M). Thus M' accepts w iff w ∈ Σ* and w ∉ (ℒ M), so M' accepts
w iff w ∈ L. Therefore, (ℒ M') = L.

Since M' is a decider with (ℒ M') = L, we have L ∈ R, as required. ■

A

An Important Result

● Suppose that L ∈ RE and L ∈ RE.
● Let M and M be recognizers for L and L,

respectively.

0

Simulate M Simulate M

1 2 x B x 1

M' = “On input w,
Run M and M on w in parallel.
If M accepts w, accept.
If M accepts w, reject.”

M' is a
decider!
M' is a
decider!

Theorem: If L ∈ RE and L ∈ RE, then L ∈ R.
Proof: Let M be a recognizer for L and M be a recognizer for L.

Consider the TM M' defined as follows:

M' = “On input w:
Run M and M on w in parallel.
If M accepts w, accept.
If M accepts w, reject.”

We prove that (ℒ M') = L and that M' is a decider. To see that M'
is a decider, consider any string w ∈ Σ*. Either w ∈ L or w ∉ L,
but not both. If w ∉ L, then w ∈ L. Thus either w ∈ L or w ∈ L,
but not both. If w ∈ L, then M will eventually accept w and M'
halts. If w ∈ L, then M will eventually accept w and M' halts.
Thus M' halts on all inputs.

To see that (ℒ M') = L, note that M' accepts w iff M accepts w
and M does not accept w. Since M accepts w iff w ∈ L and M
accepts w iff w ∉ L, if M accepts w, M does not accept w. Thus
M' accepts w iff M accepts w iff w ∈ L. Thus (ℒ M') = L.

Since (ℒ M') = L and M' is a decider, we have L ∈ R, as
required. ■

Nondeterministic Turing Machines

Nondeterministic Turing Machines

● A nondeterministic Turing machine
(abbreviated NTM) is a Turing machine
in which there may be multiple
transitions defined for a particular
state/input combination.

● If any possible set of choices causes the
machine to accept, it accepts.

Nondeterminisic TMs

● An NTM accepts a string w if it enters an
accept state on some path.

● An NTM rejects a string w if it enters a reject
state on every path.

● An NTM loops on a string w if neither of these
happen (it doesn't accept on any path and
doesn't reject on every path).

Accept

Loop

Reject

Nondeterministic Algorithms

● A natural number greater than 1 is composite if it is not prime.

● Let Σ = { 1 } and consider the language

COMPOSITE = { 1n | n ∈ Σ* is composite }

● We can build a multitape, nondeterministic TM for
COMPOSITE as follows:

● M = “On input 1n:

● Nondeterministically write out q 1s on a second tape (2 ≤ q < n)

● Nondeterministically write out r 1s on a third tape (2 ≤ r < n)

● Deterministically check if qr = n.

● If so, accept.

● Otherwise, reject”

Applications of NTMs

● Consider the following question:

Given a TM M, does M
accept any strings?

● Equivalently:

Given a TM M, is ℒ(M) ≠ Ø?
● As a language question:

LNE = {⟨M⟩ | M is a TM and ℒ(M) ≠ Ø}

● Question: Is LNE ∈ RE?

Nondeterminism to the Rescue!

● Consider the following NTM:

N = “On input ⟨M⟩, where M is a Turing machine:

 Nondeterministically guess a string x ∈ Σ*.

 Deterministically run M on x.

 If M accepts x, accept.

 If M rejects x, reject.”

● Is this a legal nondeterministic Turing machine?

● If so, how would we prove (ℒ M) = LNE?

● Does this say whether LNE ∈ RE?

Guessing an Arbitrary String

Γ → 0, R
Γ → 1, R

Γ → Γ, Rstart

Guessing an Arbitrary String

Γ → 0, R
Γ → 1, R

Γ → Γ, Rstart

Guessing an Arbitrary String

0

Γ → 0, R
Γ → 1, R

Γ → Γ, Rstart

Guessing an Arbitrary String

10

Γ → 0, R
Γ → 1, R

Γ → Γ, Rstart

Guessing an Arbitrary String

1 10

Γ → 0, R
Γ → 1, R

Γ → Γ, Rstart

Guessing an Arbitrary String

1 10

Γ → 0, R
Γ → 1, R

Γ → Γ, Rstart

Proofs on NTMs

● Given a nondeterministic TM M and a
language L, how do we prove that (ℒ M) = L?

● Prove the following:

For any w ∈ Σ*, w ∈ L iff there
is a series of choices M can make

such that M accepts w.
● Note the biconditional and the existential.

N = “On input ⟨M⟩, where M is a Turing machine:
 Nondeterministically guess a string x ∈ Σ*.
 Deterministically run M on x.
 If M accepts x, accept.
 If M rejects x, reject.”

LNE = { ⟨M⟩ | M is a TM and (ℒ M) ≠ Ø }

Theorem: (ℒ N) = LNE.

Proof: We will prove that N accepts w iff w ∈ LNE. To do this,
note that by construction, N accepts w iff w = ⟨M⟩ for
some TM M and there is some choice of x such M accepts x.
Also note that M accepts x iff x ∈ (ℒ M), so N accepts w iff
w = ⟨M⟩ for some TM M and there is some choice of x such
that x ∈ (ℒ M). Finally, note that there is some choice of x
such that x ∈ (ℒ M) iff (ℒ M) ≠ Ø. This means that N accepts
w iff w = ⟨M⟩ for some TM M and (ℒ M) ≠ Ø. Thus by
definition of LNE, we have that N accepts w iff w ∈ LNE. ■

The Power of Nondeterminism

Turing-Recognizable
Languages

Nondeterministic Turing-
Recognizable Languages

● In the case of finite automata, we saw that the
DFA and NFA had equivalent power.

● In the case of pushdown automata, we saw that
the DPDA was strictly weaker than the NPDA.

● What is the relative power of TMs and NTMs?

A Rather Remarkable Theorem

● Theorem: A language is recursively
enumerable iff it is accepted by a
nondeterministic Turing machine.

● How is this possible?

Instantaneous Descriptions

● An instantaneous description (or ID) of the execution
of a program (TM, WB program, etc.) is a string
encoding of a snapshot of that program at one instant in
time.

● For Turing machines, it contains
● The contents of the tape,
● Where the tape head is, and
● What state the machine is in.

● For WB programs, it contains
● The contents of the tape,
● Where the tape head is, and
● What line of code is next to be executed.

IDs and Universal Machines

● There is a close connection between an
ID and universal machines.

● The universal machine UTM works by
repeatedly reading the ID of the machine
being simulated, then executing one step
of that machine.

An ID for WB Programs

0 : M o v ...

...

e l e f t . 1 : G

0 1 1 0 0 0 0 <

o>

Simulated tape of the program being executed.

Program tape holding the program being executed.

>

0 1 1 0 0 0 0 <> × 1

This means “the tape head
is under the next symbol.”

This means “the tape head
is under the next symbol.”

We write the line
number at the end

of the ID.

We write the line
number at the end

of the ID.

Manipulating IDs

● Because IDs are strings (just like
machine or program encodings), we can
perform all sorts of operations on them:
● Copy them to other tapes for later use.
● Inspect them to see the state of the machine

at any instant in time.
● Transform them to represent making

changes to the program as it is running.

The Key Idea

● Store IDs of all of
branches of
computation and
execute them in a
breadth-first search.

● Uses the “tree
computation”
interpretation of
nondeterminism.

● If there is an accepting
computation, we will
eventually find it.

… … …

Simulating an NTM

● Given an NTM M, we can simulate it with a
deterministic TM as follows:

● “On input w:
● Put the initial ID of M running on w into a

separate tape.
● While that tape contains IDs:

– Move the first ID to a work tape.
– If this ID is in an accepting state, accept.
– If the ID is not in a rejecting state:

● For all possible next steps, use the universal TM to simulate
the NTM making that choice, then append the resulting ID to
the other tape.

● Reject.”

0 : M o v ...

...

e l e f t . 1 : G

0 1 0 0 0 1 0 <

o>

...

Simulated tape of the program being executed.

Program tape holding the program being executed.

Scratch tape for intermediate computation.

Variables for intermediate storage.

Instr

>

Letter

...> 0 1 × < 1 3 # > × 1 1 < 2 4 #
Stored IDs

Why This Matters

● NTMs make it easier to solve a variety of
problems.

Theorem: LNE ∈ RE.

● This is incredibly difficult to prove
without nondeterminism.

● You will see more applications of
nondeterminism in the problem set.

Next Time

● Unsolvable Problems
● What languages are not in R or RE?
● What problems are provably impossible to

solve?
● Does R = RE?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72

