
  

R and RE Languages



  

Announcements

● Problem Set 6 due now.

● Problem Set 7 out, due next Friday, November 
16th.
● Play around with Turing machines, the R and 

RE languages, and their limits.
● Some problems require Monday's lecture; if you 

want to get a jump on that, look at Sipser, 
Chapter 4.

● Late days don't cross Thanksgiving break.
● No checkpoint, even though the syllabus says 

there's one.



  

Important Ideas for Today

● The material from today will lay the 
groundwork for the next few weeks.

● Key concepts:
● High-level specifications
● R and RE languages.
● Encodings.
● Universal machines.
● Nondeterministic Turing machines.

● There is a lot of material today; please do not 
hesitate to ask questions!



  

High-Level Descriptions



  

The Church-Turing Thesis

● The Church-Turing thesis states that all 
effective models of computation are 
equivalent to or weaker than a Turing 
machine.

● As as a result, we can start to be less 
precise with our TM descriptions.



  

High-Level Descriptions

● A high-level description of a Turing machine is a 
description of the form

                 M = “On input x:
                              Do something with x.”

● Example:

M = “On input x:

              Repeat the following:

                  If |x| ≤ 1, accept.

                  If the first and last symbols of x aren't 
                          the same, reject.

                  Remove the first and last characters of x.”



  

High-Level Descriptions

● A high-level description of a Turing machine is a 
description of the form

                 M = “On input x:
                              Do something with x.”

● Example:

M = “On input x:

              Construct y, the reverse of x.

              If x = y, accept.

              Otherwise, reject.”



  

High-Level Descriptions

● A high-level description of a Turing machine is a 
description of the form

                 M = “On input x:
                              Do something with x.”

● Example:

M = “On input x:

              If x is a palindrome, accept.

              Otherwise, reject.”



  

High-Level Descriptions

● A high-level description of a Turing machine is a 
description of the form

                 M = “On input x:
                              Do something with x.”

● Example:

M = “On input x:

              Check that x has the form 0n1m2p.

              If not, reject.

              If nm = p, accept.

              Otherwise, reject.”



  

High-Level Descriptions

● A high-level description of a Turing machine is a 
description of the form

                 M = “On input x:
                              Do something with x.”

● Example:

M = “On input x:

              Check that x has the form p?t,
                  where p, t ∈ {0, 1}*.

              If not, reject.

              If so, if p is a substring of t, accept.

              Otherwise, reject.”



  

Formatted Input

● Many languages require the input to be in some 
particular format.
● (Think about ADD or SEARCH from the problem 

sets).
● We can encode this directly into our TMs:

M = “On input p?t, where p, t ∈ {0, 1}*

              If p is a substring of t, accept.

              Otherwise, reject.”
● Machines of this form implicitly reject any inputs that 

don't have the right format.



  

Formatted Input

● Many languages require the input to be in some 
particular format.
● (Think about ADD or SEARCH from the problem 

sets).
● We can encode this directly into our TMs:

M = “On input 0m1n2p:

              If mn = p, accept.

              Otherwise, reject.”
● Machines of this form implicitly reject any inputs that 

don't have the right format.



  

What's Allowed?

● General rule of thumb:

You can include anything in
a high-level description,

as long as you could write
a computer program for it.

● A few exceptions: no user input, no 
randomness, etc.

● This is a consequence of the Church-Turing 
thesis.



  

R and RE Languages



  

Some Important Terminology

● A TM accepts a string w if it enters an accept state.

● A TM rejects a string w if it enters a reject state.

● A TM loops infinitely (or just loops) on a string w if 
neither of these happens.

● A TM does not accept a string w if it either rejects w or 
loops infinitely on w.

● A TM does not reject a string w if it either accepts w or 
loops infinitely on w.

● A TM halts if it accepts or rejects.

Accept

Loop

Reject
does not accept                                     

does not reject                               

halts



  

Recall: Language of a TM

● The language of a Turing machine M, denoted 
(ℒ M), is the set of all strings that M accepts:

ℒ(M) = { w ∈ Σ* | M accepts w }

● For any w ∈ (ℒ M), M accepts w.

● For any w ∉ (ℒ M), M does not accept w.
● It might loop forever, or it might explicitly reject.

● A language is called recognizable or recursively 
enumerable if it is the language of some TM.

● Notation: RE is the set of all recognizable 
languages.

L ∈ RE  iff   L is recognizable    



  

Why “Recognizable?”

● Given TM M with language ℒ(M), running M on a 
string w will not necessarily tell you whether w ∈  (ℒ M).

● If the machine is running, you can't tell whether

● It is eventually going to halt, but just needs more time, 
and

● It is never going to halt.

● However, if you know for a fact that w ∈ (ℒ M), then the 
machine can confirm this (it eventually accepts).

● The machine can't decide whether or not w ∈ (ℒ M), but 
it can recognize strings that are in the language.

● We sometimes call a TM for a language L a recognizer 
for L.



  

Deciders

● Some Turing machines always halt; they 
never go into an infinite loop.

● Turing machines of this sort are called 
deciders.

● For deciders, accepting is the same as 
not rejecting and rejecting is the same as 
not accepting.

Accept

Reject
                          halts (always)

does not accept                                   

does not reject                                   



  

Decidable Languages

● A language L is called decidable iff there is a 
decider M such that (ℒ M) = L.

● These languages are also sometimes called 
recursive.

● Given a decider M, you can learn whether or not a 
string w ∈ (ℒ M).

● Run M on w.
● Although it make take a staggeringly long time, M 

will eventually accept or reject w.

● The set R is the set of all decidable languages.

w ∈ R   iff   w is decidable



  

Why R Matters

● If a language is in R, there is an algorithm that can 
decide membership in that language.

● Run the decider and see what it says.

● If there is an algorithm that can decide membership in 
a language, that language is in R.

● By the Church-Turing thesis, any effective model of 
computation is equivalent in power to a Turing machine.

● Thus if there is any algorithm for deciding membership in 
the language, there must be a decider for it.

● Thus the language is in R.

● A language is in R iff there is an algorithm for 
deciding membership in that language.



  

R  ≟ RE

● Every decider is a Turing machine, but not 
every Turing machine is a decider.

● Thus R ⊆ RE.

● Hugely important theoretical question:

Is R = RE?  
● That is, if we can verify that a string is in a 

language, can we decide whether that string is 
in the language?

● We will need to build up some more formalisms 
to answer this question.



  

Encodings



  

An Interesting Observation

● WB programs give us a way to check whether 
a string is contained within a given RE 
language.

● WB programs themselves are strings.
● This means that we can run WB programs, 

taking other WB programs as input!
● Major questions:

● Is this specific to WB programs?
● What can we do with this knowledge?



  

There is a subtle flaw in this reasoning:

“Because WB programs are strings,
WB programs can be run on the

source code of other WB programs.”

What is it?



  

The Alphabet Problem

● WB programs are described using multiple 
characters: letters, digits, colons, newlines, etc., 
plus potentially all tape symbols being used.

● Not all WB programs are written for languages 
over this alphabet; in fact, most do not.

● We cannot directly write the source of a WB 
program onto the input tape of another WB 
program.

● Can we fix this?



  

A Better Encoding

● We will restrict ourselves to talking about languages 
over alphabets containing at least two symbols.

● It's always possible to encode a string in any alphabet 
using just two symbols.

● This is how real computers work.

01000100 01001001 01001011 01000100 01001001 01001011

D DI IK K



  

Notation for Encodings

● If P is a WB program, we will denote its 
binary encoding as ⟨P⟩.

● Don't worry too much about the details 
about how exactly you would compute 
⟨P⟩; the important part is that there's at 
least one way to do it.



  

Encoding Other Automata

● Using similar techniques, we can encode 
all the other automata we've seen so far 
as binary strings.

● For example, if M is a Turing machine, 
⟨M⟩ refers to a binary encoding of it.

● More generally, if we have any object O 
we want to encode as a binary string, we 
can write it out as ⟨O⟩.



  

Encoding Multiple Objects

● Suppose that we want to provide an encoding 
of multiple objects.
● Several Turing machines.
● A Turing machine and a string.
● A graph and a path in the graph.
● A rock and a hard place.
● Guns and Roses.
● Repeal and Replace.
● “I just met you” and “this is crazy.”

● There are many ways that we can do this.



  

One Encoding Scheme

0 10 01

0 0 1 1 0 00 0 1 1 0

⟨X1⟩ ⟨X2⟩

⟨X1, X2⟩



  

Encoding Multiple Objects

● Given several different objects O1, O2, …, 
On, we can represent the encoding of those 
n objects as ⟨O1, O2, …, On⟩.

● Example:
● If M is a Turing machine and w is a string, 

then ⟨M, w⟩ is an encoding of that program and 
that string.

● If G is a context-free grammar and P is a PDA, 
then ⟨G, P⟩ is an encoding of that grammar and 
that PDA.



  

We can now encode TMs as strings.

TMs can accept strings as input.

What can we do with this knowledge?



  

Universal Machines



  

Universal Machines and Programs

● Theorem: There is a Turing machine UTM called the 
universal Turing machine that, when run on ⟨M, w⟩, 
where M is a Turing machine and w is a string, simulates 
M running on w.

● As a high-level description:

UTM = “On input ⟨M, w⟩, where M is a TM and w ∈ Σ*

              Run M on w.

              If M accepts w, accept.

              If M rejects w, reject.”

If M loops on w, then UTM loops 
as well.  This is usually omitted 

from the description.

If M loops on w, then UTM loops 
as well.  This is usually omitted 

from the description.



  

Sketch of the Universal WB Program

● It is a bit easier to understand the 
universal WB program than the universal 
TM.

● We will write the universal WB program 
in WB6 (finite variables, multiple tracks, 
multiple tapes, multiple stacks) for 
simplicity, and can then “compile” it 
down into normal WB.



  

Sketch of the Universal WB Program

● To run a WB program, at each point in time we 
need to track three pieces of information:
● The contents of the tape.
● The location of the read head.
● The index of the current instruction.

● Our program will enter a loop and repeatedly do 
the following:
● Find the next instruction to execute.
● Simulate that execution on the simulated tape.



  

0 :  M o v ...

...

e  l e f t . 1 : G

0 1 x 0 0 A 0 <

o>

...

Simulated tape of the program being executed.

Program tape holding the program being executed.

Scratch tape for intermediate computation.

Variables for intermediate storage.

Instr

Sketch of the Universal WB 
Program

>

Letter



  

The Language of UTM

● From a formal language perspective, what is the 
language of a the universal TM UTM?

● The universal Turing machine accepts all strings 
of the form ⟨M, w⟩, where M is a Turing machine 
that accepts string w.

● This language is called ATM:

ATM = { ⟨M, w⟩ | M is a TM that accepts w. }

● Since (Uℒ TM) = ATM, we know ATM is recursively 
enumerable.



  

Why This Matters (Philosophically)

● As a historically significant achievement.
● The universal Turing machine might be the very 

first “complicated” program ever designed for a 
computer.

● Motivation for the “stored-program” model of 
computers.

● As a justification for the Church-Turing thesis.
● All sufficiently powerful models of computation can 

simulate one another.



  

Why This Matters (Practically)

● Turing machines can run other Turing machines.

● A TM can use the universal TM as a subroutine to 
simulate the execution of other TMs.

● This lets TMs base their behaviors on the behavior of 
other TMs.

● As a stepping stone to building elaborate models of 
computation.

● More on that later today.

● As a stepping stone to finding unsolvable problems.

● More on that on Monday.



  



  

RE is Closed Under Intersection

Recognizer
for L1

   w            
Recognizer

for L2

  w

M' = “On input w:
Run M1 on w.
If M1 accepts:

Run M2 on w.
If M2 accepts w, accept.
If M2 rejects w, reject.

If M1 rejects w, reject.”

M1

M2

If M1 loops on w, we will 
never get past this line.  
When running a TM as a 
subroutine, make sure you 
remember to account for 

this!

If M1 loops on w, we will 
never get past this line.  
When running a TM as a 
subroutine, make sure you 
remember to account for 

this!

Same 
here.

Same 
here.



  

Theorem: RE is closed under intersection.
Proof: Consider any L1, L2 ∈ RE.  We will prove that L1 ∩ L2 ∈ RE

by constructing a TM M such that (ℒ M) = L1 ∩ L2.
 

Let M1 and M2 be recognizers for L1 and L2, respectively.  Then
construct the machine M as follows:

 

M = “On input w:
Run M1 on w.
If M1 accepts w:

Run M2 on w.
If M2 accepts w, accept.
If M2 rejects w, reject.

If M1 rejects w, reject.”
 

We show that (ℒ M) = L1 ∩ L2 by proving that M accepts w iff
w ∈ L1 ∩ L2.  To see this, note that M accepts w iff both M1

accepts w and M2 accepts w.  M1 accepts w iff w ∈ L1 and M2

accepts w iff w ∈ L2.  Thus M accepts w iff w ∈ L1 and w ∈ L2,
so M accepts w iff w ∈ L1 ∩ L2.  Thus (ℒ M) = L1 ∩ L2.  Since
ℒ(M) = L1 ∩ L2, we have that L1 ∩ L2 ∈ RE, as required. ■



  

R is Closed Under Complement

If L ∈ R, then L ∈ R as well.

Decider
for L

w            

M

M' = “On input w:
  Run M on w.
  If M accepts w, reject.
  If M rejects w, accept.”

Will this work if M is 
a recognizer, rather 

than a decider?

Will this work if M is 
a recognizer, rather 

than a decider?



  

Theorem: R is closed under complementation.
Proof: Consider any L ∈ R.  We will prove that L ∈ R by constructing a

decider M' such that (ℒ M') = L.
 

Let M be a decider for L.  Then construct the machine M' as follows:
 

M' = “On input w ∈ Σ*:
Run M on w.
If M accepts w, reject.
If M rejects w, accept.”

 

We need to show that M' is a decider and that (ℒ M') = L.
 

To show that M' is a decider, we will prove that it always halts.  
Consider what happens if we run M' on any input w.  First, M' runs
M on w.  Since M is a decider, M either accepts w or rejects w.  If
M accepts w, M' rejects w.  If M rejects w, M' accepts w.  Thus M'
always accepts or rejects, so M' is a decider.

 

To show that (ℒ M') = L, we will prove that M' accepts w iff w ∈ L. 
Note that M' accepts w iff w ∈ Σ* and M rejects w.  Since M is a
decider, M rejects w iff M does not accept w.  M does not accept w iff
w ∉ (ℒ M).  Thus M' accepts w iff w ∈ Σ* and w ∉ (ℒ M), so M' accepts
w iff w ∈ L.  Therefore, (ℒ M') = L.

 

Since M' is a decider with (ℒ M') = L, we have L ∈ R, as required. ■



  

A

An Important Result

● Suppose that L ∈ RE and L ∈ RE. 
● Let M and M be recognizers for L and L, 

respectively.

0

Simulate M Simulate M

1 2 x B x 1

M' = “On input w,
Run M and M on w in parallel.
If M accepts w, accept.
If M accepts w, reject.”

M' is a 
decider!
M' is a 
decider!



  

Theorem: If L ∈ RE and L ∈ RE, then L ∈ R.
Proof: Let M be a recognizer for L and M be a recognizer for L. 

Consider the TM M' defined as follows:
 

M' = “On input w:
Run M and M on w in parallel.
If M accepts w, accept.
If M accepts w, reject.”

 

We prove that (ℒ M') = L and that M' is a decider.  To see that M'
is a decider, consider any string w ∈ Σ*.  Either w ∈ L or w ∉ L,
but not both.  If w ∉ L, then w ∈ L.  Thus either w ∈ L or w ∈ L,
but not both.  If w ∈ L, then M will eventually accept w and M'
halts.  If w ∈ L, then M will eventually accept w and M' halts. 
Thus M' halts on all inputs.

 

To see that (ℒ M') = L, note that M' accepts w iff M accepts w
and M does not accept w.  Since M accepts w iff w ∈ L and M
accepts w iff w ∉ L, if M accepts w, M does not accept w.  Thus
M' accepts w iff M accepts w iff w ∈ L.  Thus (ℒ M') = L.

 

Since (ℒ M') = L and M' is a decider, we have L ∈ R, as
required. ■



  

Nondeterministic Turing Machines



  

Nondeterministic Turing Machines

● A nondeterministic Turing machine 
(abbreviated NTM) is a Turing machine 
in which there may be multiple 
transitions defined for a particular 
state/input combination.

● If any possible set of choices causes the 
machine to accept, it accepts.



  

Nondeterminisic TMs

● An NTM accepts a string w if it enters an 
accept state on some path.

● An NTM rejects a string w if it enters a reject 
state on every path.

● An NTM loops on a string w if neither of these 
happen (it doesn't accept on any path and 
doesn't reject on every path).

Accept

Loop

Reject



  

Nondeterministic Algorithms

● A natural number greater than 1 is composite if it is not prime.

● Let Σ = { 1 } and consider the language

COMPOSITE = { 1n | n ∈ Σ* is composite }

● We can build a multitape, nondeterministic TM for 
COMPOSITE as follows:

● M = “On input 1n:

● Nondeterministically write out q 1s on a second tape (2 ≤ q < n)

● Nondeterministically write out r 1s on a third tape (2 ≤ r < n)

● Deterministically check if qr = n.

● If so, accept.

● Otherwise, reject”



  

Applications of NTMs

● Consider the following question:

Given a TM M, does M
accept any strings?

● Equivalently:

Given a TM M, is ℒ(M) ≠ Ø?   
● As a language question:

LNE = {⟨M⟩ | M is a TM and ℒ(M) ≠ Ø} 

● Question: Is LNE ∈ RE?



  

Nondeterminism to the Rescue!

● Consider the following NTM:

N = “On input ⟨M⟩, where M is a Turing machine:

               Nondeterministically guess a string x ∈ Σ*.

               Deterministically run M on x.

               If M accepts x, accept.

               If M rejects x, reject.”

● Is this a legal nondeterministic Turing machine?

● If so, how would we prove (ℒ M) = LNE?

● Does this say whether LNE ∈ RE?



  

Guessing an Arbitrary String

Γ → 0, R
Γ → 1, R

Γ → Γ, Rstart



  

Guessing an Arbitrary String

Γ → 0, R
Γ → 1, R

Γ → Γ, Rstart



  

Guessing an Arbitrary String

0

Γ → 0, R
Γ → 1, R

Γ → Γ, Rstart



  

Guessing an Arbitrary String

10

Γ → 0, R
Γ → 1, R

Γ → Γ, Rstart



  

Guessing an Arbitrary String

1 10

Γ → 0, R
Γ → 1, R

Γ → Γ, Rstart



  

Guessing an Arbitrary String

1 10

Γ → 0, R
Γ → 1, R

Γ → Γ, Rstart



  

Proofs on NTMs

● Given a nondeterministic TM M and a 
language L, how do we prove that (ℒ M) = L?

● Prove the following:

For any w ∈ Σ*, w ∈ L iff there
is a series of choices M can make

such that M accepts w.
● Note the biconditional and the existential.



  

N = “On input ⟨M⟩, where M is a Turing machine:
               Nondeterministically guess a string x ∈ Σ*.
               Deterministically run M on x.
               If M accepts x, accept.
               If M rejects x, reject.”

LNE = { ⟨M⟩ | M is a TM and (ℒ M) ≠ Ø } 

Theorem: (ℒ N) = LNE.
 

Proof: We will prove that N accepts w iff w ∈ LNE.  To do this,
note that by construction, N accepts w iff w = ⟨M⟩ for
some TM M and there is some choice of x such M accepts x. 
Also note that M accepts x iff x ∈ (ℒ M), so N accepts w iff
w = ⟨M⟩ for some TM M and there is some choice of x such
that x ∈ (ℒ M).  Finally, note that there is some choice of x
such that x ∈ (ℒ M) iff (ℒ M) ≠ Ø.  This means that N accepts
w iff w = ⟨M⟩ for some TM M and (ℒ M) ≠ Ø.  Thus by
definition of LNE, we have that N accepts w iff w ∈ LNE. ■



  

The Power of Nondeterminism

Turing-Recognizable
Languages

Nondeterministic Turing-
Recognizable Languages

● In the case of finite automata, we saw that the 
DFA and NFA had equivalent power.

● In the case of pushdown automata, we saw that 
the DPDA was strictly weaker than the NPDA.

● What is the relative power of TMs and NTMs?



  

A Rather Remarkable Theorem

● Theorem: A language is recursively 
enumerable iff it is accepted by a 
nondeterministic Turing machine.

● How is this possible?



  

Instantaneous Descriptions

● An instantaneous description (or ID) of the execution 
of a program (TM, WB program, etc.) is a string 
encoding of a snapshot of that program at one instant in 
time.

● For Turing machines, it contains
● The contents of the tape,
● Where the tape head is, and
● What state the machine is in.

● For WB programs, it contains
● The contents of the tape,
● Where the tape head is, and
● What line of code is next to be executed.



  

IDs and Universal Machines

● There is a close connection between an 
ID and universal machines.

● The universal machine UTM works by 
repeatedly reading the ID of the machine 
being simulated, then executing one step 
of that machine.



  

An ID for WB Programs

0 :  M o v ...

...

e  l e f t . 1 : G

0 1 1 0 0 0 0 <

o>

Simulated tape of the program being executed.

Program tape holding the program being executed.

>

0 1 1 0 0 0 0 <> × 1

This means “the tape head 
is under the next symbol.”

This means “the tape head 
is under the next symbol.”

We write the line 
number at the end 

of the ID.

We write the line 
number at the end 

of the ID.



  

Manipulating IDs

● Because IDs are strings (just like 
machine or program encodings), we can 
perform all sorts of operations on them:
● Copy them to other tapes for later use.
● Inspect them to see the state of the machine 

at any instant in time.
● Transform them to represent making 

changes to the program as it is running.



  

The Key Idea

● Store IDs of all of 
branches of 
computation and 
execute them in a 
breadth-first search.

● Uses the “tree 
computation” 
interpretation of 
nondeterminism.

● If there is an accepting 
computation, we will 
eventually find it.

… … …



  

Simulating an NTM

● Given an NTM M, we can simulate it with a 
deterministic TM as follows:

● “On input w:
● Put the initial ID of M running on w into a 

separate tape.
● While that tape contains IDs:

– Move the first ID to a work tape.
– If this ID is in an accepting state, accept.
– If the ID is not in a rejecting state:

● For all possible next steps, use the universal TM to simulate 
the NTM making that choice, then append the resulting ID to 
the other tape.

● Reject.”



  

0 :  M o v ...

...

e  l e f t . 1 : G

0 1 0 0 0 1 0 <

o>

...

Simulated tape of the program being executed.

Program tape holding the program being executed.

Scratch tape for intermediate computation.

Variables for intermediate storage.

Instr

>

Letter

...> 0 1 × < 1 3 # > × 1 1 < 2 4 #
Stored IDs



  

Why This Matters

● NTMs make it easier to solve a variety of 
problems.

Theorem: LNE ∈ RE. 

● This is incredibly difficult to prove 
without nondeterminism.

● You will see more applications of 
nondeterminism in the problem set.



  

Next Time

● Unsolvable Problems
● What languages are not in R or RE?
● What problems are provably impossible to 

solve?
● Does R = RE?
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