

Programming Turing
Machines

Turing Machines are Hard

q
s B R q

1

1 × = B
B R q

× B R q
= B R q

s2

q
1 1 R q

1 1 R q
× 1 R q

= 1 L q
R

q
× × R q

1 × R q
× × R q

= × L q
R

q
= = R q

1 = R q
× = R q

= = L q
R

q
R 1 L q

R × L q
R = L q

R B R q
s2

q
L

q
=

q
L2

q
×

q
=2

q
st

q
×2

q
s2 Rejectq

s2R1 q
×2R× Reject

Rejectq
×2R1 Rejectq

=2R=
Rejectq

=2R1 Reject q
L2LB

q
L2L1 q

L2L× q
L2L= DRB

Outline for Today

● A programming language for Turing
machines.

● Design a simple programming language
that “compiles” down to Turing
machines.

● Keep extending our language to see just
how powerful the Turing machine is.

Our Initial Language: WB

● Programming language WB (“Wang B-machine”) controls a tape head
over a singly-infinite tape, as in a normal Turing machine.

● Language has six commands:

● Move direction

– Moves the tape head the specified direction (either left or right)

● Write s

– Writes symbol s to the tape.

● Go to N

– Jumps to instruction number N (all instructions are numbered)

● If reading s, go to N

– If the current tape symbol is s, jump to the instruction numbered N.

● Accept and Reject

– Ends the program.

● Statements in WB are executed in the order in which they appear,
unless control flow changes.

A Simple Program in WB

0: If reading B, go to 4.
1: If reading 1, go to 5.
2: Move right.
3: Go to 0.
4: Accept.
5: Reject.

A WB Program for Even Palindromes

● Suppose we want to test if a string is an
even-length palindrome.

● Idea: Cross off the first symbol and
match it with the symbol on the far side
of the tape.

● If it matches, great! Repeat.
● Otherwise, we should reject.

A WB Program for Even Palindromes

 2: Accept

 0: If reading 0, go to M0.
 1: If reading 1, go to M1.

// M0
 3: Write B.
 4: Move right.
 5: If reading 0, go to 4.
 6: If reading 1, go to 4.
 7: Move left.
 8: If reading 0, go to Next.
 9: Reject.

// M1
10: Write B.
11: Move right.
12: If reading 0, go to 11.
13: If reading 1, go to 11.
14: Move left.
15: If reading 1, go to Next.

// Next

18: Move left.
19: If reading 0, go to 18
20: If reading 1, go to 18
21: Move right
22: Go to Start.

// Start

17: Write B.

16: Reject.

WB and Turing Machines

● Recall: A language L is recursively
enumerable iff there is a TM for it.

● Theorem: A language L is recursively
enumerable iff there is a WB program for
it.

● Need to show the following:
● Any TM can be converted into an equivalent

WB program.
● Any WB program can be converted into an

equivalent TM.

From Turing Machines to WB

● Basic idea: Construct a small WB
program for each state that simulates
that state.

● Combine all programs together to get an
overall WB program that simulates the
Turing machine.

A State in a Turing Machine

● There are three kinds of states in a
Turing machine:
● Accepting states,
● Rejecting states, and
● “Working” states.

● We can easily build WB programs for the
first two:

// q
acc

0: Accept

// q
rej

0: Reject

Working States

● At a given working state in a Turing
machine, we will do exactly the
following, in this order:
● Read the current symbol.
● Write back a new symbol based on this

choice of symbol.
● Transition to some destination state.

● Could we build a WB program for this?

Working States

q
0 B R q

1 0 L q
0 B R q

acc

0 B1

 2: If reading B, go to Bq
0
.

 0: If reading 0, go to 0q
0
.

 1: If reading 1, go to 1q0.

// 0q
0

 3: Write B.
 4: Move right.
 5: Go to q1

// 1q0

 6: Write 0
 7: Move left.
 8: Go to q

0

// Bq
0

 9: Write B

// q0

10: Move right.
11: Go to qacc

A Complete Construction

q
0

0 1 B

q
1

0 R q
1 1 R q

rejR q
rej 1 R q

acc

1 R q
00 R q

rejR q
rej 1 R q

acc

// q
0

 0: If reading 0, go to 3.
 1: If reading 1, go to 6.
 2: If reading B, go to 9.
 3: Write 0.
 4: Move right.
 5: Go to q

1
.

10: Move right.

// qacc

12: Accept.

 9: Write 1.

 6: Write 1.
 7: Move right.

// q
1

13: If reading 0, go to 16.
14: If reading 1, go to 19.
15: If reading B, go to 22.
16: Write 0.
17: Move right.

23: Move right.

// qrej

25: Reject.

22: Write 1.

19: Write 1.
20: Move right.

 8: Go to q
rej
.

11: Go to q
acc
.

18: Go to q
rej
.

21: Go to q
0
.

24: Go to q
acc
.

From WB to Turing Machines

● We now need a way to convert a WB program into
a Turing machine.

● Construction sketch:
● Create a state in the TM for each line of the WB

program.
● Introduce extra “helper” states to implement some of

the trickier instructions.
● Connect the states by transitions that simulate the WB

program.

● We will show how to translate each WB command
into a collection of states plus transitions.

Refresher: Turing Machine Notation

q
0

q
0

q
1

q
2

q
3

q
4

q
5

q
acc q

rej

q
1

start q
rej

q
2

q
3

q
4

q
5

B → B, R

0 → B, R

1 → B, R

0 → 0, R
1 → 1, R

B → B, L

0 → 0, R
1 → 1, R

B → B, L

B → B, R

B → B, R

q
acc

 1 → 1, R

 0 → 0, R

0 → B, L

1 → B, L

0 → 0, L
1 → 1, L

B → B, R

Refresher: Turing Machine Notation

● The accept and reject states are denoted

● A transition of the form

means “on seeing x, write y and move
direction D.”

q
acc q

rej
q

rej
q

acc

q
a

q
b

x → y, D

Accept and Reject
● The Accept and Reject commands are

the easiest to translate.
● To translate N: Accept into TM states,

construct the following:

● To translate N: Reject into TM states,

construct the following:

q
0

q
n

q
acc

Γ → Γ, R
q

acc

q
0

q
n

q
acc

Γ → Γ, R
q

rej

Move left and Move right

● We can translate N: Move left and
N: Move right by having the TM do the
following:
● Write back the same symbol that was already

on the tape (ensuring that we don't change
the tape).

● Move in the indicated direction.
● Transition into the state representing line
N + 1.

q
n

q
n+1

Γ → Γ, dir

Go to L

● The line N: Go to M needs to change
into the state for line M without moving
the tape head.

● All TM transitions move the tape head;
how might we address this?

● Move right and change into a new state
that then moves back to the left.

q
n

q
temp

Γ → Γ, R
q
L

Γ → Γ, L

Write s

● The line N: Write s needs to
● Write the symbol s,
● Leave the tape head where it is, and
● Move to line N + 1.

● We use a similar trick as before:

q
n

q
temp

Γ → s, R
q

n + 1

Γ → Γ, L

If reading s, go to M

● The line N: If reading s, go to M either

● Executes a “go to M” step as before if reading s, or

● Does nothing and transitions to state N + 1.

q
n

q
temp

s → s, R
q

m

Γ → Γ, L

q
temp2

q
n + 1

Γ – s → Γ – s, R

Γ → Γ, L

A Complete Conversion

0: If reading B, go to 4.
1: If reading 1, go to 5.
2: Move right.
3: Go to 0.
4: Accept.
5: Reject.

0 1 t
12

3

4 5

t
01

t
04

0 → 0, R
1 → 1, R Γ → Γ, L

B → B, R

Γ → Γ, L

a r

t
15

1 → 1, R

Γ → Γ, L

0 → 0, R
B → B, R

2
Γ → Γ, L

t
03

Γ → Γ, R

Γ → Γ, L Γ → Γ, R

Γ → Γ, R Γ → Γ, R

start

a r

The Story So Far

● We have just built a simple programming
language that is equivalent in power to a
Turing machine.

● This language, however, makes for some
very complicated programs.

● Let's add some new features to our
programming language to make it a bit
easier to work with.

Revisiting Even Palindromes

● Steps 4 – 6 essentially say “move right, then move
right until you read a blank.”

● Steps 18 – 20 essentially say “move left, then move
left until you read a blank.”

● Is it really necessary to write this out each time?

// M0
 3: Write B.
 4: Move right.
 5: If reading 0, go to 4.
 6: If reading 1, go to 4.
 7: Move left.
 8: If reading 0, go to Next.
 9: Reject.

// Next

18: Move left.
19: If reading 0, go to 18
20: If reading 1, go to 18
21: Move right.
22: Go to Start.

17: Write B.

Introducing WB2

● The programming language WB2 is the language
WB with two new commands:
● Move left until {s1, s2, …, sn}.

– Moves the tape head left until we read one of s1, s2, s3, …, sn.

● Move right until {s1, s2, …, sn}.

– Moves the tape head right until we read one of s1, s2, s3, …, sn.

● Both commands are no-ops if we're already
reading one of the specified symbols.

● We can write programs in WB2 that are much
easier to read than in WB.

A WB Program for Even Palindromes

 2: Accept

 0: If reading 0, go to M0.
 1: If reading 1, go to M1.

// M0
 3: Write B.
 4: Move right.
 5: If reading 0, go to 4.
 6: If reading 1, go to 4.
 7: Move left.
 8: If reading 0, go to Next.
 9: Reject.

// M1
10: Write B.
11: Move right.
12: If reading 0, go to 11.
13: If reading 1, go to 11.
14: Move left.
15: If reading 1, go to Next.

// Next

18: Move left.
19: If reading 0, go to 18
20: If reading 1, go to 18
21: Move right
22: Go to Start.

// Start

17: Write B.

16: Reject.

A WB2 Program for Even Palindromes

 2: Accept

 0: If reading 0, go to M0.
 1: If reading 1, go to M1.

// M0
 3: Write B.
 4: Move right.
 5: Move right until {B}.
 6: Move left.
 7: If reading 0, go to Next.
 8: Reject.

// M1
 9: Write B.
10: Move right.
11: Move right until {B}.
12: Move left.
13: If reading 1, go to Next.

// Next

16: Move left.
17: Move left until {B}.
18: Move right.
19: Go to Start.

// Start

15: Write B.

14: Reject.

A WB2 Program for BALANCE

● Let Σ = { 0, 1 } and consider the
language BALANCE:

{ w ∈ Σ* | w has the same
 number of 0s and 1s. }

● Let's write a WB2 program for
BALANCE.

A WB2 Program for BALANCE

// Start

 0: Move right until {0, 1, B}.

 1: If reading 0, go to Match0.

 2: If reading 1, go to Match1.

 3: Accept.

// Match0

 4: Write B.

 5: Move right.

 6: Move right until {1, B}.

 7: If reading 1, go to Found.

 8: Reject.

// Match1

 9: Write B.

10: Move right.

11: Move right until {0, B}.

12: If reading 0, go to Found.

13: Reject.

// Found

14: Write x.

15: Move left until {B}.

16: Move right.

17: Go to Start.

WB2 and Turing Machines

● Theorem: A language is recursively
enumerable iff there is a WB2 program for it.

● We could directly prove this again by showing
equivalence with Turing machines.

● Instead, we'll connect it to WB:

Turing
Machines WB WB2

State-to-code

Code-to-States

Direct Conversion

Our Proof

From WB2 to WB

● We will show how to turn any WB2
program into an equivalent WB program.

● All old instructions are still valid.
● We need to show how to implement the

new Move … until commands using just
WB.

Implementing Move … until

● Replace N: Move dir until {s
1
, …, s

n
} as

follows:

N+0: If reading s
1
, go to N+n+2.

N+1: If reading s
2
, go to N+n+2.

N+2: If reading s
3
, go to N+n+2.

…

N+(n–1): If reading s
n
, go to N+n+2.

N+n: Move dir.

N+n+1: Go to N

● Renumber other lines as appropriate.

Why This Matters

● We are starting to move more and more away from the
Turing machine with from we started.

● The structure of our approach is

● Find some simple programming language that can be
directly translated into a Turing machine (and vice-
versa).

● Add new features to the language, and show how to
implement those new features using the old language.

● Add new features to that language, and show how to
implement those features using the previous language.

● (etc.)

● Conclude that the final language is equivalent to a Turing
machine.

A Repeating Pattern

// Match0

 4: Write B.

 5: Move right.

 6: Move right until {1, B}.

 7: If reading 1, go to Found.

 8: Reject.

// Match1

 9: Write B.

10: Move right.

11: Move right until {0, B}.

12: If reading 0, go to Found.

13: Reject.

A Simple Memory

● Right now, our programming language WB2 has no
variables in it.

● To solve larger classes of problems, let's invent a new
language WB3 that has support for variables.

● We will severely limit the scope of our variables:
● Only finitely many total variables throughout the program.
● Each variable can only hold a single tape symbol.
● Each variable initially holds the blank symbol.

Our New Commands

● We will define WB3 as WB2 with the following extra
commands:
● Load s into v.

– Sets the variable v equal to tape symbol s.
● Load current into v.

– Sets the variable v equal to the currently-scanned tape symbol.

● If v
1
 = v

2
, go to L.

– If v
1
 and v

2
 have the same value, go to instruction L.

– These may be constants or variables.

● Additionally, any command that referenced a tape
symbol (for example, write, if reading, move …
until) can refer to variables in addition to constants.

A WB2 Program for Even Palindromes

 2: Accept

 0: If reading 0, go to M0.
 1: If reading 1, go to M1.

// M0
 3: Write B.
 4: Move right.
 5: Move right until {B}.
 6: Move left.
 7: If reading 0, go to Next.
 8: Reject.

// M1
 9: Write B.
10: Move right.
11: Move right until {B}.
12: Move left.
13: If reading 1, go to Next.

// Next

16: Move left.
17: Move left until {B}.
18: Move right.
19: Go to Start.

// Start

15: Write B.

14: Reject.

A WB3 Program for Even Palindromes

// Start

 0: Read current into X.

 1: If X = B, go to Acc.

 2: Write B.

 3: Move right.

 6: If reading X, go to Match.

 7: Reject.

// Acc:

13: Accept.

// Match

 8: Write B.

 9: Move left.

10: Move left until B.

11: Move right.

 5: Move left.

 4: Move right until {B}. 12: Go to Start.

A WB2 Program for BALANCE

// Start

 0: Move right until {0, 1, B}.

 1: If reading 0, go to Match0.

 2: If reading 1, go to Match1.

 3: Accept.

// Match0

 4: Write B.

 5: Move right.

 6: Move right until {1, B}.

 7: If reading 1, go to Found.

 8: Reject.

// Match1

 9: Write B.

10: Move right.

11: Move right until {0, B}.

12: If reading 0, go to Found.

13: Reject.

// Found

14: Write x.

15: Move left until {B}.

16: Move right.

17: Go to Start.

A WB3 Program for BALANCE
// Start

 0: Move right until {0, 1, B}.

 1: If reading B, go to Acc.

 2: If reading 0, go to 5.

 3: Load 0 into Y.

 6: Go to Scan.

// Acc:

17: Accept.

// Scan

10: Move right until {Y, B}

11: If reading Y, go to 13.

 5: Load 1 into Y.

 4: Go to Scan.

14: Move left until B.

15: Move right.

16: Go to Start.

 8: Write B.

 9: Move right.

12: Reject.

13: Write x.

Equivalence of WB2 and WB3

● Theorem: A language is recursively enumerable iff
there is a WB3 program for it.

● Adding in these sorts of variables adds no power to our
model of computation!

● To prove the theorem, we will show

● Any WB2 program can be converted to a WB3 program,
and

● Any WB3 program can be converted to a WB2 program.

Turing
Machines WB WB2 WB3

The Proof: An Intuition

● Our programs allow only finitely many
variables holding only one of finitely
many different values (tape symbols).

● We could just replicate the program for
each possible assignment to the
variables, then hardcode in the behavior
in each of these cases.

● Could make the program staggeringly
huge, but it will still be finite!

The Transformation, Part I

● Let V1, V2, …, Vn be the variables referenced
in the program.
● We can just look at the source code to

determine this.

● Make |Γ|n copies of the initial program, one
for each possible assignment of tape
symbols to the variables Vi.

● Order the copies arbitrarily, but make the
version where all variables hold B come
first.

The Transformation, Part II

● We now have a whole bunch of copies of WB3
programs.

● We need to convert them into legal WB2 programs.
● This works in two steps:

● Removing variables from older WB2 commands like
Write, If reading …, and Move … while.
– For example: “Write X,” where X is a variable.

● Rewriting all new WB3 commands that reference
variables to use only WB2 commands.
– For example: “Load current into X.”

Eliminating Variables from WB2

● Removing variables from purely WB2 statements is
easy because we've copied the program so many times.

● For each copy, replace all variables in WB2 statements
with the value that the variable has in that copy.

 0: Load 0 into Y.

 1: Write Y.

 0: Load 0 into Y.

 1: Write B.

 3: Load 0 into Y.

 4: Write 0.

 6: Load 0 into Y.

 7: Write 1.

 2: Accept

 2: Accept 5: Accept 8: Accept

Y = B Y = 0 Y = 1

Eliminating Variables from WB3

● We can eliminate commands that
manipulate variables by replacing them
with Go tos.

● There are three commands to eliminate:
● Load s into v.

● Load current into v.

● If v
1
 = v

2
, go to L.

If v
1
 = v

2
, go to L

● We can eliminate this statement by just hardcoding
the jump in place.

● If in the current copy of the program v
1
 and v

2
 have

the same values, replace with

Go to L

where L is the corresponding version of L in this copy.
● Otherwise, replace with

Go to N

where N is the number of the next line in the program.

Load s into v

● To simulate the effect of loading s into v,
we can jump out of the current copy of
the program into the copy where v has
value s. 0: Load 0 into Y.

 1: Write Y.

 0: Go to 4.

 1: Write B.

 3: Go to 4.

 4: Write 0.

 6: Go to 4.

 7: Write 1.

 2: Accept

 2: Accept 5: Accept 8: Accept

Y = B Y = 0 Y = 1

Load current into v

● We can simulate this instruction using a similar trick to before.
● Replace this instruction as follows:

If reading s
1
, go to LoadS

1
.

If reading s
2
, go to LoadS

2
.

…

If reading s
n
, go to LoadS

n
.

// LoadS
1
:

Load s
1
 into v.

Go to Done.

…

// LoadS
n

Load s
n
 into v.

Go to Done.

// Done:

Souping up our Tape

● Up to this point, we've been improving
our WB programming language by
adding in new ways of scanning over the
tape.

● What if we made changes to the tape
itself?

A Multitrack Tape

1 1 0 0 1 ...

...

// Start

 0: Read track 1 into X.

 1: Move right.

 2: Write X into track 2

 3: If reading B on track 1, go to 5.

 4: Go to 0

 5: /* … */

X

Introducing WB4

● Let's define WB4 to be WB3 with the
introduction of finitely many tracks on the
tape.

● The tape head still moves as a unit to the
left or right, but we can now issue read
and write commands to any cell in the
current track.

● All previous commands updated to specify
which track is to be read or written.

A Surprising Theorem

● Theorem: A language is recursively
enumerable iff there is a WB4 program for it.

● This is not obvious... it seems like adding in
more tracks should increase the power of our
programming language!

● As with before, will prove that all WB4
programs are equivalent to WB3 programs.

Turing
Machines WB WB2 WB3 WB4

The Intuition

● Treat a single tape as a “fat tape” where
each tape symbol encodes the contents
of the cells of all four tracks.

● Each read or write to a specific location
replaces the entire tape cell with a new
symbol representing the change.

1 1 0 0 1
1 1 0 0 1

1 1
1 1

0
1

0
0
0
0

1
0

A Sketch of the Construction

● Replace each instruction that reads or
writes a track with a huge cascading “if”
that checks for every possible tape
symbol and reacts accordingly.

● Can make the program enormously
bigger, but it still ends up finite.

● I'm not even going to attempt to fit
something like that onto these slides.

Where We Are Now

● Starting with WB, we have added
● Loops to search for a value. (WB2)
● Variables with finite storage. (WB3)
● Multiple tracks. (WB4)

● Yet we still accept exactly the same set of languages.

● Every WBn program can be converted back to a TM.

Turing
Machines WB WB2 WB3 WB4

Making Things Crazier

● What do you get when you combine a
PDA and a WB4 program?

● A program with an infinite tape, plus
multiple stacks!

1 1 0 0 1 ...

1 1 0 0 ...

0
0

1
1
1
1

Introducing WB5

● The programming language WB5 is the
programming language WB4 with the
addition of a finite number of stacks.

● We add three extra commands:
● Push s onto stack v.

– Pushes the symbol s onto the stack named v.
● If stack v is empty, go to L.

– If stack v is empty, go to instruction L.
● Pop stack v into w.

– If stack v is nonempty, pops v and puts the top into w.

The Multiplication Language

● Let Σ = { 0, 1, 2 } and consider the language
01MULT defined as

{ w ∈ Σ* | the number of 2's in w is the product of
the number of 1's and the number of 0's. }

● For example:
● 00112222 ∈ 01MULT
● 22001122122 ∈ 01MULT

● This language is neither context-free nor regular.
● How could we write a WB5 program for it?

WB5 Program for 01MULTI

// Start

 0: If reading 0, go to Load0.

 1: If reading 1, go to Load1.

 2: If reading 2, go to Load2.

 3: Go to Check.

// Load0

 4: Push 0 onto Stack 0.

 6: Go to Start.

// Load1

 5: Move right.

 7: Push 1 onto Stack 1.

 9: Go to Start.

 8: Move right.

// Load2

10: Push 2 onto Stack 2.

12: Go to Start.

11: Move right.

WB5 Program for 01MULTI
// Check:

13: If Stack 0 is empty, go to Ver.

14: Pop Stack 0.

15: If Stack 1 is empty, go to Fix.

19: Pop Stack 2.

17: Push 1 onto Stack 1T.

18: If Stack 2 is empty, go to Rej.

16: Pop Stack 1.

20: Go to 15.

// Fix

22: If St 1T is empty, go to Check.

23: Pop Stack 1T.

24: Push 1 onto Stack 1.

27: Reject.

26: If Stack 2 is empty, go to Acc.

25: Go to Fix.

// Fix:

// Ver:

28: Accept.

// Acc:

21: Reject.

// Rej:

A Pretty Ridiculous Theorem

● Theorem: A language is recursively
enumerable iff there is a WB5 program for it.

● So adding in finitely many infinite stacks
doesn't give us any more expressive power!

● As with before, will prove that all WB5
programs are equivalent to WB4 programs.

Turing
Machines WB WB2 WB3 WB4 WB5

From Stacks to Tracks

● The key idea behind the construction for
converting WB5 programs into WB4 programs
is to represent each stack with its own track.

● If there are n stacks in the program, we will add
n + 1 tracks:
● One track for each of the n stacks, and
● One track for bookkeeping.

● If the WB5 program was using any tracks, we'll
keep them as well and add these new ones in
separately.

1

1 1 0 0 1 1 0 1 0 0 1 0
> 1 1 <
> 0 1 1 <
> 1 1 <

0 1 1 0 0 0 …

…

…

…

…

1

1

0

0 1 1

0: Push 1 onto Stack 3.

0: Write × on track 5.

1: Move left until {>} on track 4.

2: Move right until {<} on track 4.

3: Write 1 on track 4.

1
4: Move right.

5: Write < on track 4

6: Move left until {>} on track 4.

7: Move right until {×} on track 5.

8: Write B on track 5.

1

1 1 0 0 1 1 0 1 0 0 1 0
> 1 1 <
> 0 1 1 <
> 1 1 <

0 1 1 0 0 0 …

…

…

…

…

1

1

0

0 1 1

1: If Stack 1 is empty, go to L

1

0: Write × on track 5.

1: Move left until {>} on track 2.

2: Move right.

3: Load current on track 2 into V

1V=

4: Move left.

5: Move right until {×} on track 5.

6: Write B on track 5.

7: If V = <, go to L.

1

1 1 0 0 1 1 0 1 0 0 1 0
> 1 1 <
> 0 1 < <
> 1 1 <

0 1 1 0 0 0 …

…

…

…

…

1

1

0

0 1

2: Pop Stack 2 into X.

1

1X=

 0: Write × on track 5.
 1: Move left until {>} on track 3.
 2: Move right until {<} on track 3.
 3: Move left.
 4: Load current on track 3 into X.
 5: If X = >, go to 7.
 6: Write < on track 3
 7: Move left until {>} on track 3.
 8: Move right until {×} on track 5.
 9: Write B on track 5.

Completing the Construction

● We've seen how to convert the new WB5 stack commands into
WB4 code.

● For this to work, the extra tracks must be set up correctly.
● Add preamble code to the generated WB4 program to do this:

Write > to track 2.

...

Write > to track n.

Move right.

Write < to track 2.

...

Write < to track n.

Move left.

But Why Stop There?

● Adding finitely many stacks to WB doesn't increase its
expressive power.

● What if we added finitely many tapes to WB?

● We now have a programming language controlling

● Multiple tracks per tape,

● Finitely many stacks, and

● Finitely many tapes.

1 1 0 0 1 ...

1 1 0 0 ...

0
0

1
1
1
1

0 0 1 1 0 1 ...

1 1 1 1 0 1 ...

Introducing WB6

● The programming language WB6 is
WB5 with the addition of multiple tapes.

● All tape commands have been updated to
specify which tape they apply to.

● If tape unspecified, it's assumed that it's
tape 1.

A WB6 Program for SEARCH

● Recall from Problem Sets 5 and 6 that
the language SEARCH over Σ = {0, 1, ?}
is the language

{ p?t | p, t ∈ { 0, 1 }* and p
 is a substring of t }

● How would we write a WB6 program for
SEARCH?

● (For simplicity, we'll assume that the
input is properly formatted).

A WB6 Program for SEARCH

// Start

 0: Move tape 2 right.

 1: If reading ? on tape 1.1, go to Match.

 2: Load curr on tape 1.1 into X.

 3: Write X to tape 2.

 6: Go to 1.

 5: Move tape 2 right.

 4: Move tape 1 right.

A WB6 Program for SEARCH

// Match
 7: Move tape 2 left until {B}

 8: Move tape 2 right.

10: Write $ to tape 1, track 2.

 9: Move tape 1 right.

13: Load tape 1, track 1 into X.

14: Load tape 2 into Y.

11: If B on tape 2, go to Acc.

12: If B on tape 1, go to Rej.

15: If X = Y, go to 17.

16: Go to Mismatch.

17: Move tape 1 right.

18: Move tape 2 right.

19: Go to 11.

// Mismatch
20: Move tape 1.2 left until {$}

21: Go to Match.

// Acc

// Rej
23: Reject.

22: Accept.

Oh, Come On Already...

● Theorem: A language is recursively
enumerable iff there is a WB6 program for it.

● We can really supercharge these languages
without increasing our power!

● As with before, the construction will convert
WB6 programs into WB5 programs.

Turing
Machines WB WB2 WB3 WB4 WB5 WB6

The Key Idea

● Represent an infinite tape with two
stacks.
A B C D E F ...G H

A

B

C

D E

F

G

H

A Sketch of the Construction

● At the start of the program, copy the
contents of the initial tape into a pair of
stacks that will henceforth represent the
first tape.

● Convert all motion operations into stack
manipulation operations to push and pop
values from the appropriate stacks.

● Use variables to hold temporary values
(for example, when moving the top of one
stack to another).

 A

B

C

D E

F

G

H

0: Move tape 1 right.

 0: If stack 1R is empty, go to 2.
 1: Go to 3.
 2: Push B onto stack 1R.
 3: Pop stack 1R into X.
 4: Push X onto stack 1L.

A

B

C

What Else Can We Add?
● Function call and return.

● Have a stack to use as the call stack.

● Calling a function pushes the index of the instruction to which it should return.

● Returning pops the stack and jumps back.

● Named variables.

● Have a tape storing a sequence of values of the form name: value.

● Can read and write values from the tape.

● Pointers

● Have variables hold the names of other variables.

● Primitive types and arithmetic.

● Design subroutines for addition, subtraction, etc.

● Apply them to named variables.

● Pretty much any feature of any major programming language.

The Conversion Back Down

● From WB6 to WB5:
● Add in two stacks per tape used.
● Replace all tape operations with appropriate

stack manipulations.

● From WB5 to WB4:
● Add in one track per stack, plus one extra

track.
● Replace all stack operations with

appropriate manipulations of those tracks.

The Conversion Back Down

● From WB4 to WB3:
● Expand the tape alphabet to include symbols for all

track combinations.
● Replace all references to track symbols with

cascading if's for each possible case.

● From WB3 to WB2:
● Replicate the code once for each possible

assignment to variables.
● Hardcode in statements referencing variables.
● Replace variable manipulation code with code to

jump to the appropriate copy.

The Conversion Back Down

● From WB2 to WB:
● Expand out move … until statements by

replacing them with cascading if
statements.

● From WB to Turing machines:
● Replace each statement with the appropriate

Turing machine gadget.

The Conversion Back Down

● The total conversion of a WB6 program
using variables, multiple tracks, multiple
stacks, and multiple tapes might produce
an enormous Turing machine!

● But that said, the result is still a Turing
machine.

● Turing machines are simple, yet have
enormous computational power.

Just how powerful are Turing machines?

Effective Computation

● An effective method of computation is
a form of computation with the following
properties:
● The computation consists of a set of steps.
● There are fixed rules governing how one step

leads to the next.
● Any computation that yields an answer does

so in finitely many steps.
● Any computation that yields an answer

always yields the correct answer.

The Church-Turing Thesis states that

Every effective method of computation
is either equivalent to or weaker than a

Turing machine.

This statement cannot be proven or
disproven, but is widely considered true.

Regular
Languages CFLsDCFLs

All Languages

RE

Next Time

● Encodings
● How do we do computations over arbitrary objects?

● The Universal Turing Machine
● A Turing machine for running other Turing machines.

● Nondeterministic Turing Machines
● What happens when we supercharge a TM? What does

this even mean?

● R and RE Languages
● A finer gradation within the RE languages.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86

