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Turing Machines are Hard

q
s B R q

1

1 × = B
B R q

× B R q
= B R q

s2

q
1 1 R q

1 1 R q
× 1 R q

= 1 L q
R

q
× × R q

1 × R q
× × R q

= × L q
R

q
= = R q

1 = R q
× = R q

= = L q
R

q
R 1 L q

R × L q
R = L q

R B R q
s2

q
L

q
=

q
L2

q
×

q
=2

q
st

q
×2

q
s2 Rejectq

s2R1 q
×2R× Reject

Rejectq
×2R1 Rejectq

=2R=
Rejectq

=2R1 Reject q
L2LB

q
L2L1 q

L2L× q
L2L= DRB



  

Outline for Today

● A programming language for Turing 
machines.

● Design a simple programming language 
that “compiles” down to Turing 
machines.

● Keep extending our language to see just 
how powerful the Turing machine is.



  

Our Initial Language: WB

● Programming language WB (“Wang B-machine”) controls a tape head 
over a singly-infinite tape, as in a normal Turing machine.

● Language has six commands:

● Move direction

– Moves the tape head the specified direction (either left or right)

● Write s

– Writes symbol s to the tape.

● Go to N

– Jumps to instruction number N (all instructions are numbered)

● If reading s, go to N

– If the current tape symbol is s, jump to the instruction numbered N.

● Accept and Reject

– Ends the program.

● Statements in WB are executed in the order in which they appear, 
unless control flow changes.



  

A Simple Program in WB

0: If reading B, go to 4.
1: If reading 1, go to 5.
2: Move right.
3: Go to 0.
4: Accept.
5: Reject.



  

A WB Program for Even Palindromes

● Suppose we want to test if a string is an 
even-length palindrome.

● Idea: Cross off the first symbol and 
match it with the symbol on the far side 
of the tape.

● If it matches, great!  Repeat.
● Otherwise, we should reject.



  

A WB Program for Even Palindromes

 2: Accept

 0: If reading 0, go to M0.
 1: If reading 1, go to M1.

// M0
 3: Write B.
 4: Move right.
 5: If reading 0, go to 4.
 6: If reading 1, go to 4.
 7: Move left.
 8: If reading 0, go to Next.
 9: Reject.

// M1
10: Write B.
11: Move right.
12: If reading 0, go to 11.
13: If reading 1, go to 11.
14: Move left.
15: If reading 1, go to Next.

// Next

18: Move left.
19: If reading 0, go to 18
20: If reading 1, go to 18
21: Move right
22: Go to Start.

// Start

17: Write B.

16: Reject.



  

WB and Turing Machines

● Recall: A language L is recursively 
enumerable iff there is a TM for it.

● Theorem: A language L is recursively 
enumerable iff there is a WB program for 
it.

● Need to show the following:
● Any TM can be converted into an equivalent 

WB program.
● Any WB program can be converted into an 

equivalent TM.



  

From Turing Machines to WB

● Basic idea: Construct a small WB 
program for each state that simulates 
that state.

● Combine all programs together to get an 
overall WB program that simulates the 
Turing machine.



  

A State in a Turing Machine

● There are three kinds of states in a 
Turing machine:
● Accepting states,
● Rejecting states, and
● “Working” states.

● We can easily build WB programs for the 
first two:

// q
acc

0: Accept

// q
rej

0: Reject



  

Working States

● At a given working state in a Turing 
machine, we will do exactly the 
following, in this order:
● Read the current symbol.
● Write back a new symbol based on this 

choice of symbol.
● Transition to some destination state.

● Could we build a WB program for this?



  

Working States

q
0 B R q

1 0 L q
0 B R q

acc

0 B1

 2: If reading B, go to Bq
0
.

 0: If reading 0, go to 0q
0
.

 1: If reading 1, go to 1q0.

// 0q
0

 3: Write B.
 4: Move right.
 5: Go to q1

// 1q0

 6: Write 0
 7: Move left.
 8: Go to q

0

// Bq
0

 9: Write B

// q0

10: Move right.
11: Go to qacc



  

A Complete Construction

q
0

0 1 B

q
1

0 R q
1 1 R q

rejR q
rej 1 R q

acc

1 R q
00 R q

rejR q
rej 1 R q

acc

// q
0

 0: If reading 0, go to 3.
 1: If reading 1, go to 6.
 2: If reading B, go to 9.
 3: Write 0.
 4: Move right.
 5: Go to q

1
.

10: Move right.

// qacc

12: Accept.

 9: Write 1.

 6: Write 1.
 7: Move right.

// q
1

13: If reading 0, go to 16.
14: If reading 1, go to 19.
15: If reading B, go to 22.
16: Write 0.
17: Move right.

23: Move right.

// qrej

25: Reject.

22: Write 1.

19: Write 1.
20: Move right.

 8: Go to q
rej
.

11: Go to q
acc
.

18: Go to q
rej
.

21: Go to q
0
.

24: Go to q
acc
.



  

From WB to Turing Machines

● We now need a way to convert a WB program into 
a Turing machine.

● Construction sketch:
● Create a state in the TM for each line of the WB 

program.
● Introduce extra “helper” states to implement some of 

the trickier instructions.
● Connect the states by transitions that simulate the WB 

program.

● We will show how to translate each WB command 
into a collection of states plus transitions.



  

Refresher: Turing Machine Notation
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start q
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q
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q
3

q
4

q
5

B → B, R

0 → B, R

1 → B, R

0 → 0, R
1 → 1, R

B → B, L

0 → 0, R   
1 → 1, R   

B → B, L
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q
acc

                 1 → 1, R

                 0 → 0, R

0 → B, L

1 → B, L
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Refresher: Turing Machine Notation

● The accept and reject states are denoted

● A transition of the form

means “on seeing x, write y and move 
direction D.”

q
acc q

rej
q

rej
q

acc

q
a

q
b

x → y, D



  

Accept and Reject
● The Accept and Reject commands are 

the easiest to translate.
● To translate N: Accept into TM states, 

construct the following:

 
● To translate N: Reject into TM states, 

construct the following:

q
0

q
n

q
acc

Γ → Γ, R
q

acc

q
0

q
n

q
acc

Γ → Γ, R
q

rej



  

Move left and Move right

● We can translate N: Move left and 
N: Move right by having the TM do the 
following:
● Write back the same symbol that was already 

on the tape (ensuring that we don't change 
the tape).

● Move in the indicated direction.
● Transition into the state representing line 
N + 1.

q
n

q
n+1

Γ → Γ, dir



  

Go to L

● The line N: Go to M needs to change 
into the state for line M without moving 
the tape head.

● All TM transitions move the tape head; 
how might we address this?

● Move right and change into a new state 
that then moves back to the left.

q
n

q
temp

Γ → Γ, R
q
L

Γ → Γ, L



  

Write s

● The line N: Write s needs to
● Write the symbol s,
● Leave the tape head where it is, and
● Move to line N + 1.

● We use a similar trick as before:

q
n

q
temp

Γ → s,  R
q

n + 1

Γ → Γ, L



  

If reading s, go to M

● The line N: If reading s, go to M either

● Executes a “go to M” step as before if reading s, or

● Does nothing and transitions to state N + 1.

q
n

q
temp

s → s, R
q

m

Γ → Γ, L

q
temp2

q
n + 1

Γ – s → Γ – s, R                            

Γ → Γ, L



  

A Complete Conversion

0: If reading B, go to 4.
1: If reading 1, go to 5.
2: Move right.
3: Go to 0.
4: Accept.
5: Reject.

0 1 t
12

3

4 5

t
01

t
04

0 → 0, R
1 → 1, R Γ → Γ, L

B → B, R                    

Γ → Γ, L                    

a r

t
15

1 → 1, R                    

Γ → Γ, L                    

0 → 0, R
B → B, R

2
Γ → Γ, L

t
03

Γ → Γ, R

Γ → Γ, L                    Γ → Γ, R                 

Γ → Γ, R                    Γ → Γ, R                    

start

a r



  

The Story So Far

● We have just built a simple programming 
language that is equivalent in power to a 
Turing machine.

● This language, however, makes for some 
very complicated programs.

● Let's add some new features to our 
programming language to make it a bit 
easier to work with.



  

Revisiting Even Palindromes

● Steps 4 – 6 essentially say “move right, then move 
right until you read a blank.”

● Steps 18 – 20 essentially say “move left, then move 
left until you read a blank.”

● Is it really necessary to write this out each time? 

// M0
 3: Write B.
 4: Move right.
 5: If reading 0, go to 4.
 6: If reading 1, go to 4.
 7: Move left.
 8: If reading 0, go to Next.
 9: Reject.

// Next

18: Move left.
19: If reading 0, go to 18
20: If reading 1, go to 18
21: Move right.
22: Go to Start.

17: Write B.



  

Introducing WB2

● The programming language WB2 is the language 
WB with two new commands:
● Move left until {s1, s2, …, sn}.

– Moves the tape head left until we read one of s1, s2, s3, …, sn.

● Move right until {s1, s2, …, sn}.

– Moves the tape head right until we read one of s1, s2, s3, …, sn.

● Both commands are no-ops if we're already 
reading one of the specified symbols.

● We can write programs in WB2 that are much 
easier to read than in WB.



  

A WB Program for Even Palindromes

 2: Accept

 0: If reading 0, go to M0.
 1: If reading 1, go to M1.

// M0
 3: Write B.
 4: Move right.
 5: If reading 0, go to 4.
 6: If reading 1, go to 4.
 7: Move left.
 8: If reading 0, go to Next.
 9: Reject.

// M1
10: Write B.
11: Move right.
12: If reading 0, go to 11.
13: If reading 1, go to 11.
14: Move left.
15: If reading 1, go to Next.

// Next

18: Move left.
19: If reading 0, go to 18
20: If reading 1, go to 18
21: Move right
22: Go to Start.

// Start

17: Write B.

16: Reject.



  

A WB2 Program for Even Palindromes

 2: Accept

 0: If reading 0, go to M0.
 1: If reading 1, go to M1.

// M0
 3: Write B.
 4: Move right.
 5: Move right until {B}.
 6: Move left.
 7: If reading 0, go to Next.
 8: Reject.

// M1
 9: Write B.
10: Move right.
11: Move right until {B}.
12: Move left.
13: If reading 1, go to Next.

// Next

16: Move left.
17: Move left until {B}.
18: Move right.
19: Go to Start.

// Start

15: Write B.

14: Reject.



  

A WB2 Program for BALANCE

● Let Σ = { 0, 1 } and consider the 
language BALANCE:

{ w ∈ Σ* | w has the same
                             number of 0s and 1s. }

● Let's write a WB2 program for 
BALANCE.



  

A WB2 Program for BALANCE

// Start

 0: Move right until {0, 1, B}.

 1: If reading 0, go to Match0.

 2: If reading 1, go to Match1.

 3: Accept.

// Match0

 4: Write B.

 5: Move right.

 6: Move right until {1, B}.

 7: If reading 1, go to Found.

 8: Reject.

// Match1

 9: Write B.

10: Move right.

11: Move right until {0, B}.

12: If reading 0, go to Found.

13: Reject.

// Found

14: Write x.

15: Move left until {B}.

16: Move right.

17: Go to Start.



  

WB2 and Turing Machines

● Theorem: A language is recursively 
enumerable iff there is a WB2 program for it.

● We could directly prove this again by showing 
equivalence with Turing machines.

● Instead, we'll connect it to WB:

Turing
Machines WB WB2

State-to-code

Code-to-States

Direct Conversion

Our Proof



  

From WB2 to WB

● We will show how to turn any WB2 
program into an equivalent WB program.

● All old instructions are still valid.
● We need to show how to implement the 

new Move … until commands using just 
WB.



  

Implementing Move … until

● Replace N: Move dir until {s
1
, …, s

n
} as 

follows:

N+0:     If reading s
1
, go to N+n+2.

N+1:     If reading s
2
, go to N+n+2.

N+2:     If reading s
3
, go to N+n+2.

…

N+(n–1): If reading s
n
, go to N+n+2.

N+n:     Move dir.

N+n+1:   Go to N

● Renumber other lines as appropriate.



  

Why This Matters

● We are starting to move more and more away from the 
Turing machine with from we started.

● The structure of our approach is

● Find some simple programming language that can be 
directly translated into a Turing machine (and vice-
versa).

● Add new features to the language, and show how to 
implement those new features using the old language.

● Add new features to that language, and show how to 
implement those features using the previous language.

● (etc.)

● Conclude that the final language is equivalent to a Turing 
machine.



  

A Repeating Pattern

// Match0

 4: Write B.

 5: Move right.

 6: Move right until {1, B}.

 7: If reading 1, go to Found.

 8: Reject.

// Match1

 9: Write B.

10: Move right.

11: Move right until {0, B}.

12: If reading 0, go to Found.

13: Reject.



  

A Simple Memory

● Right now, our programming language WB2 has no 
variables in it.

● To solve larger classes of problems, let's invent a new 
language WB3 that has support for variables.

● We will severely limit the scope of our variables:
● Only finitely many total variables throughout the program.
● Each variable can only hold a single tape symbol.
● Each variable initially holds the blank symbol.



  

Our New Commands

● We will define WB3 as WB2 with the following extra 
commands:
● Load s into v.

– Sets the variable v equal to tape symbol s.
● Load current into v.

– Sets the variable v equal to the currently-scanned tape symbol.

● If v
1
 = v

2
, go to L.

– If v
1
 and v

2
 have the same value, go to instruction L.

– These may be constants or variables.

● Additionally, any command that referenced a tape 
symbol (for example, write, if reading, move … 
until) can refer to variables in addition to constants.



  

A WB2 Program for Even Palindromes

 2: Accept

 0: If reading 0, go to M0.
 1: If reading 1, go to M1.

// M0
 3: Write B.
 4: Move right.
 5: Move right until {B}.
 6: Move left.
 7: If reading 0, go to Next.
 8: Reject.

// M1
 9: Write B.
10: Move right.
11: Move right until {B}.
12: Move left.
13: If reading 1, go to Next.

// Next

16: Move left.
17: Move left until {B}.
18: Move right.
19: Go to Start.

// Start

15: Write B.

14: Reject.



  

A WB3 Program for Even Palindromes

// Start

 0: Read current into X.

 1: If X = B, go to Acc.

 2: Write B.

 3: Move right.

 6: If reading X, go to Match.

 7: Reject.

// Acc:

13: Accept.

// Match

 8: Write B.

 9: Move left.

10: Move left until B.

11: Move right.

 5: Move left.

 4: Move right until {B}. 12: Go to Start.



  

A WB2 Program for BALANCE

// Start

 0: Move right until {0, 1, B}.

 1: If reading 0, go to Match0.

 2: If reading 1, go to Match1.

 3: Accept.

// Match0

 4: Write B.

 5: Move right.

 6: Move right until {1, B}.

 7: If reading 1, go to Found.

 8: Reject.

// Match1

 9: Write B.

10: Move right.

11: Move right until {0, B}.

12: If reading 0, go to Found.

13: Reject.

// Found

14: Write x.

15: Move left until {B}.

16: Move right.

17: Go to Start.



  

A WB3 Program for BALANCE
// Start

 0: Move right until {0, 1, B}.

 1: If reading B, go to Acc.

 2: If reading 0, go to 5.

 3: Load 0 into Y.

 6: Go to Scan.

// Acc:

17: Accept.

// Scan

10: Move right until {Y, B}

11: If reading Y, go to 13.

 5: Load 1 into Y.

 4: Go to Scan.

14: Move left until B.

15: Move right.

16: Go to Start.

 8: Write B.

 9: Move right.

12: Reject.

13: Write x.



  

Equivalence of WB2 and WB3

● Theorem: A language is recursively enumerable iff 
there is a WB3 program for it.

● Adding in these sorts of variables adds no power to our 
model of computation!

● To prove the theorem, we will show

● Any WB2 program can be converted to a WB3 program, 
and

● Any WB3 program can be converted to a WB2 program.

Turing
Machines WB WB2 WB3



  

The Proof: An Intuition

● Our programs allow only finitely many 
variables holding only one of finitely 
many different values (tape symbols).

● We could just replicate the program for 
each possible assignment to the 
variables, then hardcode in the behavior 
in each of these cases.

● Could make the program staggeringly 
huge, but it will still be finite!



  

The Transformation, Part I

● Let V1, V2, …, Vn be the variables referenced 
in the program.
● We can just look at the source code to 

determine this.

● Make |Γ|n copies of the initial program, one 
for each possible assignment of tape 
symbols to the variables Vi.

● Order the copies arbitrarily, but make the 
version where all variables hold B come 
first.



  

The Transformation, Part II

● We now have a whole bunch of copies of WB3 
programs.

● We need to convert them into legal WB2 programs.
● This works in two steps:

● Removing variables from older WB2 commands like 
Write, If reading …, and Move … while.
– For example: “Write X,” where X is a variable.

● Rewriting all new WB3 commands that reference 
variables to use only WB2 commands.
– For example: “Load current into X.”



  

Eliminating Variables from WB2

● Removing variables from purely WB2 statements is 
easy because we've copied the program so many times.

● For each copy, replace all variables in WB2 statements 
with the value that the variable has in that copy.

 0: Load 0 into Y.

 1: Write Y.

 0: Load 0 into Y.

 1: Write B.

 3: Load 0 into Y.

 4: Write 0.

 6: Load 0 into Y.

 7: Write 1.

 2: Accept

 2: Accept  5: Accept  8: Accept

Y = B Y = 0 Y = 1



  

Eliminating Variables from WB3

● We can eliminate commands that 
manipulate variables by replacing them 
with Go tos.

● There are three commands to eliminate:
● Load s into v.

● Load current into v.

● If v
1
 = v

2
, go to L.



  

If v
1
 = v

2
, go to L

● We can eliminate this statement by just hardcoding 
the jump in place.

● If in the current copy of the program v
1
 and v

2
 have 

the same values, replace with

Go to L 

where L is the corresponding version of L in this copy.
● Otherwise, replace with

Go to N 

where N is the number of the next line in the program.



  

Load s into v

● To simulate the effect of loading s into v, 
we can jump out of the current copy of 
the program into the copy where v has 
value s.  0: Load 0 into Y.

 1: Write Y.

 0: Go to 4.

 1: Write B.

 3: Go to 4.

 4: Write 0.

 6: Go to 4.

 7: Write 1.

 2: Accept

 2: Accept  5: Accept  8: Accept

Y = B Y = 0 Y = 1



  

Load current into v 

● We can simulate this instruction using a similar trick to before.
● Replace this instruction as follows:

If reading s
1
, go to LoadS

1
.

If reading s
2
, go to LoadS

2
.

…

If reading s
n
, go to LoadS

n
.

// LoadS
1
:

Load s
1
 into v.

Go to Done.

…

// LoadS
n

Load s
n
 into v.

Go to Done.

// Done:



  

Souping up our Tape

● Up to this point, we've been improving 
our WB programming language by 
adding in new ways of scanning over the 
tape.

● What if we made changes to the tape 
itself?



  

A Multitrack Tape

1 1 0 0 1 ...

...

// Start

 0: Read track 1 into X.

 1: Move right.

 2: Write X into track 2

 3: If reading B on track 1, go to 5.

 4: Go to 0

 5: /* … */

X



  

Introducing WB4

● Let's define WB4 to be WB3 with the 
introduction of finitely many tracks on the 
tape.

● The tape head still moves as a unit to the 
left or right, but we can now issue read 
and write commands to any cell in the 
current track.

● All previous commands updated to specify 
which track is to be read or written.



  

A Surprising Theorem

● Theorem: A language is recursively 
enumerable iff there is a WB4 program for it.

● This is not obvious... it seems like adding in 
more tracks should increase the power of our 
programming language!

● As with before, will prove that all WB4 
programs are equivalent to WB3 programs.

Turing
Machines WB WB2 WB3 WB4



  

The Intuition

● Treat a single tape as a “fat tape” where 
each tape symbol encodes the contents 
of the cells of all four tracks.

● Each read or write to a specific location 
replaces the entire tape cell with a new 
symbol representing the change.

1 1 0 0 1
1 1 0 0 1

1 1
1 1

0
1

0
0
0
0

1
0



  

A Sketch of the Construction

● Replace each instruction that reads or 
writes a track with a huge cascading “if” 
that checks for every possible tape 
symbol and reacts accordingly.

● Can make the program enormously 
bigger, but it still ends up finite.

● I'm not even going to attempt to fit 
something like that onto these slides.



  

Where We Are Now

● Starting with WB, we have added
● Loops to search for a value. (WB2)
● Variables with finite storage. (WB3)
● Multiple tracks. (WB4)

● Yet we still accept exactly the same set of languages.

● Every WBn program can be converted back to a TM.

Turing
Machines WB WB2 WB3 WB4



  

Making Things Crazier

● What do you get when you combine a 
PDA and a WB4 program?

● A program with an infinite tape, plus 
multiple stacks!

1 1 0 0 1 ...

1 1 0 0 ...

0
0

1
1
1
1



  

Introducing WB5

● The programming language WB5 is the 
programming language WB4 with the 
addition of a finite number of stacks.

● We add three extra commands:
● Push s onto stack v.

– Pushes the symbol s onto the stack named v.
● If stack v is empty, go to L.

– If stack v is empty, go to instruction L.
● Pop stack v into w.

– If stack v is nonempty, pops v and puts the top into w.



  

The Multiplication Language

● Let Σ = { 0, 1, 2 } and consider the language 
01MULT defined as

{ w ∈ Σ* | the number of 2's in w is the product of 
the number of 1's and the number of 0's. }

● For example:
● 00112222 ∈ 01MULT
● 22001122122 ∈ 01MULT

● This language is neither context-free nor regular.
● How could we write a WB5 program for it?



  

WB5 Program for 01MULTI

// Start

 0: If reading 0, go to Load0.

 1: If reading 1, go to Load1.

 2: If reading 2, go to Load2.

 3: Go to Check.

// Load0

 4: Push 0 onto Stack 0.

 6: Go to Start.

// Load1

 5: Move right.

 7: Push 1 onto Stack 1.

 9: Go to Start.

 8: Move right.

// Load2

10: Push 2 onto Stack 2.

12: Go to Start.

11: Move right.



  

WB5 Program for 01MULTI
// Check:

13: If Stack 0 is empty, go to Ver.

14: Pop Stack 0.

15: If Stack 1 is empty, go to Fix.

19: Pop Stack 2.

17: Push 1 onto Stack 1T.

18: If Stack 2 is empty, go to Rej.

16: Pop Stack 1.

20: Go to 15.

// Fix

22: If St 1T is empty, go to Check.

23: Pop Stack 1T.

24: Push 1 onto Stack 1.

27: Reject.

26: If Stack 2 is empty, go to Acc.

25: Go to Fix.

// Fix:

// Ver:

28: Accept.

// Acc:

21: Reject.

// Rej:



  

A Pretty Ridiculous Theorem

● Theorem: A language is recursively 
enumerable iff there is a WB5 program for it.

● So adding in finitely many infinite stacks 
doesn't give us any more expressive power!

● As with before, will prove that all WB5 
programs are equivalent to WB4 programs.

Turing
Machines WB WB2 WB3 WB4 WB5



  

From Stacks to Tracks

● The key idea behind the construction for 
converting WB5 programs into WB4 programs 
is to represent each stack with its own track.

● If there are n stacks in the program, we will add 
n + 1 tracks:
● One track for each of the n stacks, and
● One track for bookkeeping.

● If the WB5 program was using any tracks, we'll 
keep them as well and add these new ones in 
separately.



  

1

1 1 0 0 1 1 0 1 0 0 1 0
> 1 1 <
> 0 1 1 <
> 1 1 <

0 1 1 0 0 0 …

…

…

…

…

1

1

0

0 1 1

0: Push 1 onto Stack 3.

0: Write × on track 5.

1: Move left until {>} on track 4.

2: Move right until {<} on track 4.

3: Write 1 on track 4.

1
4: Move right.

5: Write < on track 4

6: Move left until {>} on track 4.

7: Move right until {×} on track 5.

8: Write B on track 5.



  

1

1 1 0 0 1 1 0 1 0 0 1 0
> 1 1 <
> 0 1 1 <
> 1 1 <

0 1 1 0 0 0 …

…

…

…

…

1

1

0

0 1 1

1: If Stack 1 is empty, go to L

1

0: Write × on track 5.

1: Move left until {>} on track 2.

2: Move right.

3: Load current on track 2 into V

1V=

4: Move left.

5: Move right until {×} on track 5.

6: Write B on track 5.

7: If V = <, go to L.



  

1

1 1 0 0 1 1 0 1 0 0 1 0
> 1 1 <
> 0 1 < <
> 1 1 <

0 1 1 0 0 0 …

…

…

…

…

1

1

0

0 1

2: Pop Stack 2 into X.

1

1X=

 0: Write × on track 5.
 1: Move left until {>} on track 3.
 2: Move right until {<} on track 3.
 3: Move left.
 4: Load current on track 3 into X.
 5: If X = >, go to 7.
 6: Write < on track 3
 7: Move left until {>} on track 3.
 8: Move right until {×} on track 5.
 9: Write B on track 5.



  

Completing the Construction

● We've seen how to convert the new WB5 stack commands into 
WB4 code.

● For this to work, the extra tracks must be set up correctly.
● Add preamble code to the generated WB4 program to do this:

Write > to track 2.

...

Write > to track n.

Move right.

Write < to track 2.

...

Write < to track n.

Move left.



  

But Why Stop There?

● Adding finitely many stacks to WB doesn't increase its 
expressive power.

● What if we added finitely many tapes to WB?

● We now have a programming language controlling

● Multiple tracks per tape,

● Finitely many stacks, and

● Finitely many tapes.

1 1 0 0 1 ...

1 1 0 0 ...

0
0

1
1
1
1

0 0 1 1 0 1 ...

1 1 1 1 0 1 ...



  

Introducing WB6

● The programming language WB6 is 
WB5 with the addition of multiple tapes.

● All tape commands have been updated to 
specify which tape they apply to.

● If tape unspecified, it's assumed that it's 
tape 1.



  

A WB6 Program for SEARCH

● Recall from Problem Sets 5 and 6 that 
the language SEARCH over Σ = {0, 1, ?} 
is the language

{ p?t | p, t ∈ { 0, 1 }* and p
          is a substring of t } 

● How would we write a WB6 program for 
SEARCH?

● (For simplicity, we'll assume that the 
input is properly formatted).



  

A WB6 Program for SEARCH

// Start

 0: Move tape 2 right.

 1: If reading ? on tape 1.1, go to Match.

 2: Load curr on tape 1.1 into X.

 3: Write X to tape 2.

 6: Go to 1.

 5: Move tape 2 right.

 4: Move tape 1 right.



  

A WB6 Program for SEARCH

// Match
 7: Move tape 2 left until {B}

 8: Move tape 2 right.

10: Write $ to tape 1, track 2.

 9: Move tape 1 right.

13: Load tape 1, track 1 into X.

14: Load tape 2 into Y.

11: If B on tape 2, go to Acc.

12: If B on tape 1, go to Rej.

15: If X = Y, go to 17.

16: Go to Mismatch.

17: Move tape 1 right.

18: Move tape 2 right.

19: Go to 11.

// Mismatch
20: Move tape 1.2 left until {$}

21: Go to Match.

// Acc

// Rej
23: Reject.

22: Accept.



  

Oh, Come On Already...

● Theorem: A language is recursively 
enumerable iff there is a WB6 program for it.

● We can really supercharge these languages 
without increasing our power!

● As with before, the construction will convert 
WB6 programs into WB5 programs.

Turing
Machines WB WB2 WB3 WB4 WB5 WB6



  

The Key Idea

● Represent an infinite tape with two 
stacks.
A B C D E F ...G H

A

B

C

D E

F

G

H



  

A Sketch of the Construction

● At the start of the program, copy the 
contents of the initial tape into a pair of 
stacks that will henceforth represent the 
first tape.

● Convert all motion operations into stack 
manipulation operations to push and pop 
values from the appropriate stacks.

● Use variables to hold temporary values 
(for example, when moving the top of one 
stack to another).



  A

B

C

D E

F

G

H

0: Move tape 1 right. 

 0: If stack 1R is empty, go to 2.
 1: Go to 3.
 2: Push B onto stack 1R.
 3: Pop stack 1R into X.
 4: Push X onto stack 1L.

A

B

C



  

What Else Can We Add?
● Function call and return.

● Have a stack to use as the call stack.

● Calling a function pushes the index of the instruction to which it should return.

● Returning pops the stack and jumps back.

● Named variables.

● Have a tape storing a sequence of values of the form name: value.

● Can read and write values from the tape.

● Pointers

● Have variables hold the names of other variables.

● Primitive types and arithmetic.

● Design subroutines for addition, subtraction, etc.

● Apply them to named variables.

● Pretty much any feature of any major programming language.



  

The Conversion Back Down

● From WB6 to WB5:
● Add in two stacks per tape used.
● Replace all tape operations with appropriate 

stack manipulations.

● From WB5 to WB4:
● Add in one track per stack, plus one extra 

track.
● Replace all stack operations with 

appropriate manipulations of those tracks.



  

The Conversion Back Down

● From WB4 to WB3:
● Expand the tape alphabet to include symbols for all 

track combinations.
● Replace all references to track symbols with 

cascading if's for each possible case.

● From WB3 to WB2:
● Replicate the code once for each possible 

assignment to variables.
● Hardcode in statements referencing variables.
● Replace variable manipulation code with code to 

jump to the appropriate copy.



  

The Conversion Back Down

● From WB2 to WB:
● Expand out move … until statements by 

replacing them with cascading if 
statements.

● From WB to Turing machines:
● Replace each statement with the appropriate 

Turing machine gadget.



  

The Conversion Back Down

● The total conversion of a WB6 program 
using variables, multiple tracks, multiple 
stacks, and multiple tapes might produce 
an enormous Turing machine!

● But that said, the result is still a Turing 
machine.

● Turing machines are simple, yet have 
enormous computational power.



  

Just how powerful are Turing machines?



  

Effective Computation

● An effective method of computation is 
a form of computation with the following 
properties:
● The computation consists of a set of steps.
● There are fixed rules governing how one step 

leads to the next.
● Any computation that yields an answer does 

so in finitely many steps.
● Any computation that yields an answer 

always yields the correct answer.



  

The Church-Turing Thesis states that

Every effective method of computation 
is either equivalent to or weaker than a 

Turing machine.

This statement cannot be proven or 
disproven, but is widely considered true.



  

Regular
Languages CFLsDCFLs

All Languages

RE



  

Next Time

● Encodings
● How do we do computations over arbitrary objects?

● The Universal Turing Machine
● A Turing machine for running other Turing machines.

● Nondeterministic Turing Machines
● What happens when we supercharge a TM?  What does 

this even mean?

● R and RE Languages
● A finer gradation within the RE languages.
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