Programming Turing Machines

Turing Machines are Hard

		1						B	
q_{5}	B	R	q_{1}	B		B	$\mathrm{R} \mathrm{q}_{=}$	B	
q_{1}	1	R	q_{1}	1	$R q_{x}$	1	$R \mathrm{q}_{=}$		L q_{B}
q_{x}	\times	R	q_{1}	\times	$R \mathrm{q}_{x}$	\times	$R \mathrm{q}_{=}$		
$\mathrm{q}_{\text {- }}$	$=$	R	q_{1}	$=$	$\mathrm{R} \mathrm{q}_{x}$		$R \mathrm{q}_{=}$		L
q_{R}	1	L	q_{R}	\times	L q_{R}		L q_{R}	B	R $\mathrm{q}^{\text {d }}$
q_{52}	1			\times	$\mathrm{R} \mathrm{q}_{\times 2}$		Leject		Reject
$\mathrm{q}_{\mathrm{x} 2}$	1		$\mathrm{q}_{\times 2}$		Reject		$\mathrm{R} \mathrm{q}_{=2}$		eject
$\mathrm{q}_{\text {- }}$	1		$\mathrm{q}_{=2}$		eject		Reject		L
a_{12}	1		q_{1}					B	

Outline for Today

- A programming language for Turing machines.
- Design a simple programming language that "compiles" down to Turing machines.
- Keep extending our language to see just how powerful the Turing machine is.

Our Initial Language: WB

- Programming language WB ("Wang B-machine") controls a tape head over a singly-infinite tape, as in a normal Turing machine.
- Language has six commands:
- Move direction
- Moves the tape head the specified direction (either left or right)
- Write S
- Writes symbol \boldsymbol{s} to the tape.
- Go to \mathbf{N}
- Jumps to instruction number N (all instructions are numbered)
- If reading \boldsymbol{s}, go to \mathbf{N}
- If the current tape symbol is \boldsymbol{s}, jump to the instruction numbered \boldsymbol{N}.
- Accept and Reject
- Ends the program.
- Statements in WB are executed in the order in which they appear, unless control flow changes.

A Simple Program in WB

0: If reading B, go to 4.
1: If reading 1 , go to 5.
2: Move right.
3: Go to 0.
4: Accept.
5: Reject.

A Simple Program in WB

0000

0: If reading B, go to 4.
1: If reading 1 , go to 5.
2: Move right.
3: Go to 0.
4: Accept.
5: Reject.

A Simple Program in WB

0: If reading B, go to 4.
1: If reading 1 , go to 5.
2: Move right.
3: Go to 0.
4: Accept.
5: Reject.

A Simple Program in WB

0 : If reading B, go to 4.
1: If reading 1 , go to 5.
2: Move right.
3: Go to 0.
4: Accept.
5: Reject.

A Simple Program in WB

0: If reading B, go to 4.
1: If reading 1 , go to 5.
2: Move right.
3: Go to 0.
4: Accept.
5: Reject.

A Simple Program in WB

0 : If reading B, go to 4.
1: If reading 1 , go to 5.
2: Move right.
3: Go to 0.
4: Accept.
5: Reject.

A Simple Program in WB

0: If reading B, go to 4.
1: If reading 1 , go to 5.
2: Move right.
3: Go to 0.
4: Accept.
5: Reject.

A Simple Program in WB

0 : If reading B, go to 4.
1: If reading 1 , go to 5.
2: Move right.
3: Go to 0.
4: Accept.
5: Reject.

A Simple Program in WB

0 : If reading B, go to 4.
1: If reading 1 , go to 5.
2: Move right.
3: Go to 0.
4: Accept.
5: Reject.

A Simple Program in WB

0: If reading B, go to 4.
1: If reading 1 , go to 5.
2: Move right.
3: Go to 0.
4: Accept.
5: Reject.

A Simple Program in WB

0: If reading B, go to 4.
1: If reading 1 , go to 5.
2: Move right.
3: Go to 0.
4: Accept.
5: Reject.

A Simple Program in WB

0: If reading B, go to 4.
1: If reading 1 , go to 5.
2: Move right.
3: Go to 0.
4: Accept.
5: Reject.

A Simple Program in WB

0 : If reading B, go to 4.
1: If reading 1 , go to 5.
2: Move right.
3: Go to 0.
4: Accept.
5: Reject.

A Simple Program in WB

0 : If reading B, go to 4.
1: If reading 1 , go to 5.
2: Move right.
3: Go to 0.
4: Accept.
5: Reject.

A Simple Program in WB

0: If reading B, go to 4.
1: If reading 1 , go to 5.
2: Move right.
3: Go to 0.
4: Accept.
5: Reject.

A Simple Program in WB

0: If reading B, go to 4.
1: If reading 1 , go to 5.
2: Move right.
3: Go to 0.
4: Accept.
5: Reject.

A Simple Program in WB

0 : If reading B, go to 4.
1: If reading 1 , go to 5.
2: Move right.
3: Go to 0.
4: Accept.
5: Reject.

A Simple Program in WB

0 : If reading B, go to 4.
1: If reading 1 , go to 5.
2: Move right.
3: Go to 0.
4: Accept.
5: Reject.

A Simple Program in WB

0 : If reading B, go to 4.
1: If reading 1 , go to 5.
2: Move right.
3: Go to 0.
4: Accept.
5: Reject.

A Simple Program in WB

0: If reading B, go to 4.
1: If reading 1 , go to 5.
2: Move right.
3: Go to 0.
4: Accept.
5: Reject.

A Simple Program in WB

0 : If reading B, go to 4.
1: If reading 1 , go to 5.
2: Move right.
3: Go to 0.
4: Accept.
5: Reject.

A Simple Program in WB

0 : If reading B, go to 4.
1: If reading 1 , go to 5.
2: Move right.
3: Go to 0.
4: Accept.
5: Reject.

A Simple Program in WB

0 : If reading B, go to 4.
1: If reading 1 , go to 5.
2: Move right.
3: Go to 0.
4: Accept.
5: Reject.

A Simple Program in WB

0 : If reading B, go to 4.
1: If reading 1 , go to 5.
2: Move right.
3: Go to 0.
4: Accept.
5: Reject.

A Simple Program in WB

0 : If reading B, go to 4.
1: If reading 1 , go to 5.
2: Move right.
3: Go to 0.
4: Accept.
5: Reject.

A Simple Program in WB

0 : If reading B, go to 4.
1: If reading 1 , go to 5.
2: Move right.
3: Go to 0.
4: Accept.
5: Reject.

A WB Program for Even Palindromes

- Suppose we want to test if a string is an even-length palindrome.
- Idea: Cross off the first symbol and match it with the symbol on the far side of the tape.
- If it matches, great! Repeat.
- Otherwise, we should reject.

A WB Program for Even Palindromes

A WB Program for Even Palindromes

// Start // M1
0 : If reading 0, go to MO. 10: Write B.
1: If reading 1, go to M1. 11: Move right.
2: Accept
// мо
3: Write B.
4: Move right.
5: If reading 0, go to 4.
6: If reading 1 , go to 4.
7: Move left.
// Next
17: Write B.
8: If reading 0, go to Next.
9: Reject.
12: If reading 0 , go to 11.
13: If reading 1 , go to 11.
14: Move left.
15: If reading 1, go to Next.
16: Reject.
18: Move left.
19: If reading 0 , go to 18
20: If reading 1 , go to 18
21: Move right
22: Go to Start.

A WB Program for Even Palindromes

A WB Program for Even Palindromes

A WB Program for Even Palindromes

10010

A WB Program for Even Palindromes

A WB Program for Even Palindromes

// Start
0: If reading 0, go to M0.
1: If reading 1, go to M1.
2: Accept
// m0
3: Write B.
4: Move right.
5: If reading 0, go to 4 .
6: If reading 1, go to 4 .
7: Move left.
8: If reading 0 , go to Next.
9: Reject.

0 : If reading 0 , go to MO. 10: Write B.
1: If reading 1, go to M1. 11: Move right.
2: Accept
// мо
3: Write B.
4: Move right.
5: If reading 0, go to 4.
6: If reading 1 , go to 4.
7: Move left.
8: If reading 0, go to Next. 9: Reject.
// Next
17: Write B.
18: Move left.
// M1

12: If reading 0 , go to 11.
13: If reading 1 , go to 11.
14: Move left.
15: If reading 1, go to Next. 16: Reject.

19: If reading 0 , go to 18
20: If reading 1 , go to 18
21: Move right
22: Go to Start.

A WB Program for Even Palindromes

A WB Program for Even Palindromes

// Start // M1
0 : If reading 0, go to MO. 10: Write B.
1: If reading 1, go to M1. 11: Move right.
2: Accept
// мо
3: Write B.
4: Move right.
5: If reading 0, go to 4.
6: If reading 1 , go to 4.
// Next
7: Move left.
17: Write B.
8: If reading 0, go to Next.
9: Reject.
18: Move left.
19: If reading 0 , go to 18
20: If reading 1 , go to 18
21: Move right
22: Go to Start.

A WB Program for Even Palindromes

// Start
0: If reading 0, go to M0.
1: If reading 1, go to M1.
2: Accept
// m0
3: Write B.
4: Move right.
5: If reading 0, go to 4 .
6: If reading 1, go to 4 .
7: Move left.
8: If reading 0 , go to Next.
9: Reject.
// M1
10: Write B.
11: Move right.
12: If reading 0 , go to 11.
13: If reading 1 , go to 11.
14: Move left.
15: If reading 1, go to Next. 16: Reject.
// Next
17: Write B.
18: Move left.
19: If reading 0 , go to 18
20: If reading 1 , go to 18
21: Move right
22: Go to Start.

A WB Program for Even Palindromes

A WB Program for Even Palindromes

// Start
0: If reading 0, go to M0.
1: If reading 1, go to M1.
2: Accept
// m0
3: Write B.
4: Move right.
5: If reading 0, go to 4.
6: If reading 1, go to 4 .
7: Move left.
8: If reading 0 , go to Next.
9: Reject.

0 : If reading 0, go to MO. 10: Write B.
1: If reading 1, go to M1. 11: Move right.
2: Accept
// мо
3: Write B.
4: Move right.
5: If reading 0, go to 4.
6: If reading 1 , go to 4.
7: Move left.
8: If reading 0, go to Next. 9: Reject.
// M1

12: If reading 0, go to 11.
13: If reading 1 , go to 11.
14: Move left.
15: If reading 1, go to Next. 16: Reject.
// Next
17: Write B.
18: Move left.
19: If reading 0 , go to 18
20: If reading 1 , go to 18
21: Move right
22: Go to Start.

A WB Program for Even Palindromes

A WB Program for Even Palindromes

// M1

12: If reading 0 , go to 11.
13: If reading 1 , go to 11.
14: Move left.
15: If reading 1, go to Next. 16: Reject.
// Next
17: Write B.
18: Move left.
19: If reading 0 , go to 18
20: If reading 1 , go to 18
21: Move right
22: Go to Start.

A WB Program for Even Palindromes

// M1

12: If reading 0 , go to 11.
13: If reading 1 , go to 11.
14: Move left.
15: If reading 1, go to Next. 16: Reject.
// Next
17: Write B.
18: Move left.
19: If reading 0, go to 18
20: If reading 1 , go to 18
21: Move right
22: Go to Start.

A WB Program for Even Palindromes

A WB Program for Even Palindromes

// M1

12: If reading 0 , go to 11.
13: If reading 1 , go to 11.
14: Move left.
15: If reading 1, go to Next. 16: Reject.
// Next
17: Write B.
18: Move left.
19: If reading 0 , go to 18
20: If reading 1 , go to 18
21: Move right
22: Go to Start.

A WB Program for Even Palindromes

// M1

12: If reading 0 , go to 11.
13: If reading 1 , go to 11.
14: Move left.
15: If reading 1, go to Next. 16: Reject.
// Next
17: Write B.
18: Move left.
19: If reading 0, go to 18
20: If reading 1 , go to 18
21: Move right
22: Go to Start.

A WB Program for Even Palindromes

A WB Program for Even Palindromes

A WB Program for Even Palindromes

WB and Turing Machines

- Recall: A language L is recursively enumerable iff there is a TM for it.
- Theorem: A language L is recursively enumerable iff there is a WB program for it.
- Need to show the following:
- Any TM can be converted into an equivalent WB program.
- Any WB program can be converted into an equivalent TM.

From Turing Machines to WB

- Basic idea: Construct a small WB program for each state that simulates that state.
- Combine all programs together to get an overall WB program that simulates the Turing machine.

A State in a Turing Machine

- There are three kinds of states in a Turing machine:
- Accepting states,
- Rejecting states, and
- "Working" states.
- We can easily build WB programs for the first two:
$/ / q_{\mathrm{acc}}$
$0:$ Accept
// $\mathrm{q}_{\mathrm{rej}}$
0: Reject

Working States

- At a given working state in a Turing machine, we will do exactly the following, in this order:
- Read the current symbol.
- Write back a new symbol based on this choice of symbol.
- Transition to some destination state.
- Could we build a WB program for this?

Working States


```
// \(q_{0}\)
    \(0:\) If reading 0 , go to \(0 q_{0}\).
    1: If reading 1 , go to \(1 q_{0}\).
    2: If reading B , go to \(\mathrm{Bq}_{0}\).
// \(0 \mathrm{q}_{0}\)
    3: Write B.
    4: Move right.
    5: Go to \(\mathrm{q}_{1}\)
// \(1 q_{0}\)
    6: Write 0
    7: Move left.
    8: Go to \(\mathrm{q}_{0}\)
```

// $0 \mathrm{q}_{0}$
3: Write B.
4: Move right.
5: Go to q_{1}
// $1 q_{0}$
6: Write 0
7: Move left.
8: Go to q_{0}
// Bq ${ }_{0}$
9: Write B
10: Move right.
11: Go to $\mathrm{q}_{\text {acc }}$

A Complete Construction

// q_{0}
0 : If reading 0 , go to 3 .
1: If reading 1 , go to 6.
2: If reading B, go to 9.
3: Write 0.
4: Move right.
5: Go to q_{1}.
6: Write 1.
7: Move right.
8: Go to $\mathrm{q}_{\text {re }}$.
9: Write 1.
10: Move right.
11: Go to $\mathrm{q}_{\mathrm{acc}}$.
// $\mathrm{q}_{\mathrm{acc}}$
12: Accept.

13: If reading 0 , go to 16.
14: If reading 1 , go to 19.
15: If reading B, go to 22.
16: Write 0.
17: Move right.
18: Go to $\mathrm{q}_{\mathrm{rej}}$.
19: Write 1.
20: Move right.
21: Go to q_{0}.
22: Write 1.
23: Move right.
24: Go to $q_{\text {acc }}$.
// $\mathrm{q}_{\mathrm{rej}}$
25: Reject.

From WB to Turing Machines

- We now need a way to convert a WB program into a Turing machine.
- Construction sketch:
- Create a state in the TM for each line of the WB program.
- Introduce extra "helper" states to implement some of the trickier instructions.
- Connect the states by transitions that simulate the WB program.
- We will show how to translate each WB command into a collection of states plus transitions.

Refresher: Turing Machine Notation

$$
B \rightarrow B, R
$$

start

Refresher: Turing Machine Notation

- The accept and reject states are denoted

- A transition of the form

means "on seeing x, write y and move direction $D . "$

Accept and Reject

- The Accept and Reject commands are the easiest to translate.
- To translate N : Accept into TM states, construct the following:

- To translate N : Reject into TM states, construct the following:

Move left and Move right

- We can translate N : Move left and N : Move right by having the TM do the following:
- Write back the same symbol that was already on the tape (ensuring that we don't change the tape).
- Move in the indicated direction.
- Transition into the state representing line $\mathrm{N}+1$.

Go to L

- The line N : Go to m needs to change into the state for line m without moving the tape head.
- All TM transitions move the tape head; how might we address this?
- Move right and change into a new state that then moves back to the left.

Write S

- The line \mathbf{N} : Write \boldsymbol{s} needs to
- Write the symbol \boldsymbol{s},
- Leave the tape head where it is, and
- Move to line $\mathbf{N}+1$.
- We use a similar trick as before:

If reading s, go to M

- The line $\mathrm{N}: ~ I f ~ r e a d i n g ~ s, ~ g o ~ t o ~ m e i t h e r ~$
- Executes a "go to m" step as before if reading \mathbf{s}, or
- Does nothing and transitions to state $\mathbf{N}+1$.

A Complete Conversion

The Story So Far

- We have just built a simple programming language that is equivalent in power to a Turing machine.
- This language, however, makes for some very complicated programs.
- Let's add some new features to our programming language to make it a bit easier to work with.

Revisiting Even Palindromes

// m0
3: Write B.
4: Move right.
5: If reading 0 , go to 4.
6: If reading 1 , go to 4.
7: Move left.
8: If reading 0 , go to Next.
9: Reject.
// Next
17: Write B.
18: Move left.
19: If reading 0 , go to 18
20: If reading 1 , go to 18
21: Move right.
22: Go to Start.

- Steps 4-6 essentially say "move right, then move right until you read a blank."
- Steps 18 - 20 essentially say "move left, then move left until you read a blank."
- Is it really necessary to write this out each time?

Introducing WB2

- The programming language WB2 is the language WB with two new commands:
- Move left until $\left\{\boldsymbol{S}_{1}, \boldsymbol{S}_{2}, \ldots, \boldsymbol{S}_{n}\right\}$.
- Moves the tape head left until we read one of $\boldsymbol{s}_{1}, \boldsymbol{s}_{2}, \boldsymbol{s}_{3}, \ldots, \boldsymbol{s}_{\boldsymbol{n}}$.
- Move right until $\left\{\boldsymbol{S}_{1}, \boldsymbol{S}_{2}, \ldots, \boldsymbol{S}_{\boldsymbol{n}}\right\}$.
- Moves the tape head right until we read one of $\boldsymbol{s}_{1}, \boldsymbol{s}_{2}, \boldsymbol{s}_{3}, \ldots, \boldsymbol{s}_{\boldsymbol{n}}$.
- Both commands are no-ops if we're already reading one of the specified symbols.
- We can write programs in WB2 that are much easier to read than in WB.

A WB Program for Even Palindromes

A WB2 Program for Even Palindromes

// Start	// M1
0: If reading 0, go to M0.	9: Write B.
1: If reading 1, go to M1.	10: Move right.
2: Accept	11: Move right until \{B\}
	12: Move left.
// M0	13: If reading 1, go to Next.
3: Write B.	14: Reject.
4: Move right.	
5: Move right until \{B\}.	// Next
6: Move left.	15: Write B.
7: If reading 0, go to Next.	16: Move left.
8: Reject.	17: Move left until \{B\}.
	18: Move right.

A WB2 Program for BALANCE

- Let $\Sigma=\{0,1\}$ and consider the language BALANCE:

$\left\{w \in \Sigma^{*} \mid w\right.$ has the same number of 0s and 1s. \}

- Let's write a WB2 program for BALANCE.

A WB2 Program for BALANCE

// Start 0 : Move right until $\{0,1, B\}$.

1: If reading 0 , go to Match0.
2: If reading 1 , go to Match1.
3: Accept.
// Match1
9: Write B.
10: Move right.
11: Move right until $\{0, B\}$.
12: If reading 0 , go to Found.
13: Reject.
// Match0
4: Write B.
5: Move right.
6: Move right until $\{1, \mathrm{~B}\}$.
7: If reading 1, go to Found.
8: Reject.
// Found
14: Write x.
15: Move left until \{B\}.
16: Move right.
17: Go to Start.

WB2 and Turing Machines

- Theorem: A language is recursively enumerable iff there is a WB2 program for it.
- We could directly prove this again by showing equivalence with Turing machines.
- Instead, we'll connect it to WB:

From WB2 to WB

- We will show how to turn any WB2 program into an equivalent WB program.
- All old instructions are still valid.
- We need to show how to implement the new Move ... until commands using just WB.

Implementing Move ... until

- Replace N: Move dir until $\left\{\boldsymbol{s}_{1}, \ldots, \boldsymbol{s}_{n}\right\}$ as follows:

$\mathrm{N}+0:$	If reading s_{1}, go to $\mathrm{N}+\mathrm{n}+2$.
$\mathrm{N}+1:$	If reading s_{2},
$\mathrm{N}+2:$	If reading s_{3}, go to $\mathrm{N}+\mathrm{n}+2$.

$\mathrm{N}+(\mathrm{n}-1)$: If reading s_{n}, go to $\mathrm{N}+\mathrm{n}+2$.
$\mathrm{N}+\mathrm{n}$: Move dir.
$\mathrm{N}+\mathrm{n}+1$: Go to N

- Renumber other lines as appropriate.

Why This Matters

- We are starting to move more and more away from the Turing machine with from we started.
- The structure of our approach is
- Find some simple programming language that can be directly translated into a Turing machine (and viceversa).
- Add new features to the language, and show how to implement those new features using the old language.
- Add new features to that language, and show how to implement those features using the previous language.
- (etc.)
- Conclude that the final language is equivalent to a Turing machine.

A Repeating Pattern

// Match0
4: Write B.
5: Move right.
6: Move right until $\{1, B\}$.
7: If reading 1, go to Found.
8: Reject.
// Match1
9: Write B.
10: Move right.
11: Move right until $\{0, B\}$.
12: If reading 0 , go to Found.
13: Reject.

A Simple Memory

- Right now, our programming language WB2 has no variables in it.
- To solve larger classes of problems, let's invent a new language WB3 that has support for variables.
- We will severely limit the scope of our variables:
- Only finitely many total variables throughout the program.
- Each variable can only hold a single tape symbol.
- Each variable initially holds the blank symbol.

Our New Commands

- We will define WB3 as WB2 with the following extra commands:
- Load s into v.
- Sets the variable \boldsymbol{v} equal to tape symbol \boldsymbol{s}.
- Load current into v.
- Sets the variable \boldsymbol{v} equal to the currently-scanned tape symbol.
- If $v_{1}=v_{2}$, go to L.
- If v_{1} and v_{2} have the same value, go to instruction \boldsymbol{L}.
- These may be constants or variables.
- Additionally, any command that referenced a tape symbol (for example, write, if reading, move ... until) can refer to variables in addition to constants.

A WB2 Program for Even Palindromes

// Start	// M1
0: If reading 0, go to M0.	9: Write B.
1: If reading 1, go to M1.	10: Move right.
2: Accept	11: Move right until \{B\}
	12: Move left.
// M0	13: If reading 1, go to Next.
3: Write B.	14: Reject.
4: Move right.	
5: Move right until \{B\}.	// Next
6: Move left.	15: Write B.
7: If reading 0, go to Next.	16: Move left.
8: Reject.	17: Move left until \{B\}.
	18: Move right.

A WB3 Program for Even Palindromes

// Start
0 : Read current into X .
1: If $\mathrm{X}=\mathrm{B}$, go to Acc.
2: Write B.
3: Move right.
4: Move right until $\{B\}$.
5: Move left.
6: If reading X , go to Match.
7: Reject.
// Match 8: Write B.

9: Move left.
10: Move left until B.
11: Move right.
12: Go to Start.
// Acc:
13: Accept.

A WB2 Program for BALANCE

// Start 0 : Move right until $\{0,1, B\}$.

1: If reading 0 , go to Match0.
2: If reading 1 , go to Match1.
3: Accept.
// Match1
9: Write B.
10: Move right.
11: Move right until $\{0, B\}$.
12: If reading 0 , go to Found.
13: Reject.
// Match0
4: Write B.
5: Move right.
6: Move right until $\{1, \mathrm{~B}\}$.
7: If reading 1, go to Found.
8: Reject.
// Found
14: Write x.
15: Move left until \{B\}.
16: Move right.
17: Go to Start.

A WB3 Program for BALANCE

// Start
0: Move right until $\{0,1, B\}$. 8: Write B.
1: If reading B, go to Acc.
2: If reading 0 , go to 5.
3: Load O into Y.
4: Go to Scan.
5: Load 1 into Y.
6: Go to Scan.
// Scan

9: Move right.
10: Move right until \{Y, B\}
11: If reading Y, go to 13.
12: Reject.
13: Write x.
14: Move left until B.
15: Move right.
16: Go to Start.
// Acc:
17: Accept.

Equivalence of WB2 and WB3

- Theorem: A language is recursively enumerable iff there is a WB3 program for it.
- Adding in these sorts of variables adds no power to our model of computation!
- To prove the theorem, we will show
- Any WB2 program can be converted to a WB3 program, and
- Any WB3 program can be converted to a WB2 program.

The Proof: An Intuition

- Our programs allow only finitely many variables holding only one of finitely many different values (tape symbols).
- We could just replicate the program for each possible assignment to the variables, then hardcode in the behavior in each of these cases.
- Could make the program staggeringly huge, but it will still be finite!

The Transformation, Part I

- Let $\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{\mathrm{n}}$ be the variables referenced in the program.
- We can just look at the source code to determine this.
- Make $\mid \Gamma{ }^{\mid n}$ copies of the initial program, one for each possible assignment of tape symbols to the variables V_{i}.
- Order the copies arbitrarily, but make the version where all variables hold B come first.

The Transformation, Part II

- We now have a whole bunch of copies of WB3 programs.
- We need to convert them into legal WB2 programs.
- This works in two steps:
- Removing variables from older WB2 commands like Write, If reading ..., and Move ... while.
- For example: "Write \boldsymbol{x}," where \boldsymbol{x} is a variable.
- Rewriting all new WB3 commands that reference variables to use only WB2 commands.
- For example: "Load current into x."

Eliminating Variables from WB2

- Removing variables from purely WB2 statements is easy because we've copied the program so many times.
- For each copy, replace all variables in WB2 statements with the value that the variable has in that copy.

$$
\begin{aligned}
& 0: \text { Load } 0 \text { into } Y . \\
& 1: \text { Write } Y . \\
& 2: \text { Accept }
\end{aligned}
$$

```
0: Load O into Y.
1: Write Y.
2: Accept
```

$$
Y=B
$$

$\mathrm{Y}=0$

Eliminating Variables from WB2

- Removing variables from purely WB2 statements is easy because we've copied the program so many times.
- For each copy, replace all variables in WB2 statements with the value that the variable has in that copy.

$$
\begin{aligned}
& 0: \text { Load } 0 \text { into } Y . \\
& 1: \text { Write } Y . \\
& 2: \text { Accept }
\end{aligned}
$$

```
0 : Load 0 into \(Y\).
1: Write B.
2: Accept
```

$$
Y=B
$$

$\mathrm{Y}=0$

Eliminating Variables from WB3

- We can eliminate commands that manipulate variables by replacing them with Go mos.
- There are three commands to eliminate:
- Load s into V.
- Load current into V.
- If $\boldsymbol{v}_{1}=\boldsymbol{v}_{2}$, go to L.

If $v_{1}=v_{2}$, go to L

- We can eliminate this statement by just hardcoding the jump in place.
- If in the current copy of the program \boldsymbol{v}_{1} and \boldsymbol{v}_{2} have the same values, replace with

Go to L
where L is the corresponding version of L in this copy.

- Otherwise, replace with

Go to N
where \boldsymbol{N} is the number of the next line in the program.

Load s into v

- To simulate the effect of loading \boldsymbol{s} into \boldsymbol{v}, we can jump out of the current copy of the program into the copy where v has value s.
0: Load 0 into Y.
1: Write Y.
2: Accept
$0:$ Load 0 into Y.
1: Write Y.
2: Accept

$\mathrm{Y}=0$

$$
\mathrm{Y}=0
$$

6: Load 0 into Y.
7: Write Y.
8: Accept

$$
Y=B
$$

$$
\mathrm{Y}=1
$$

Load s into v

- To simulate the effect of loading \boldsymbol{s} into \boldsymbol{v}, we can jump out of the current copy of the program into the copy where v has value s.
0: Load 0 into Y.
1: Write Y.
2: Accept
$0:$ Load 0 into Y.
1: Write B.
2: Accept

$\mathrm{Y}=0$

$$
\mathrm{Y}=0
$$

6: Load 0 into Y.
7: Write 1.
8: Accept

$$
Y=B
$$

$$
Y=1
$$

Load s into v

- To simulate the effect of loading \boldsymbol{s} into \boldsymbol{v}, we can jump out of the current copy of the program into the copy where v has value s.

```
O: Load O into Y.
1: Write Y.
2: Accept
```

```
0: Go to 4.
1: Write B.
2: Accept
```

3: Go to 4.
4: Write 0.
5 : Accept

$$
\begin{aligned}
& 6: \text { Go to } 4 . \\
& 7: \text { Write } 1 . \\
& 8: \text { Accept }
\end{aligned}
$$

$\mathrm{Y}=0$

$$
Y=1
$$

Load current into V

- We can simulate this instruction using a similar trick to before.
- Replace this instruction as follows:

```
If reading s}\mp@subsup{s}{1}{}\mathrm{ , go to LoadS 
If reading }\mp@subsup{s}{2}{},\mathrm{ go to LoadS 
If reading }\mp@subsup{s}{n}{}\mathrm{ , go to LoadS 
// LoadS 
Load s}\mp@subsup{s}{1}{}\mathrm{ into v.
Go to Done.
// LoadS
Load }\mp@subsup{s}{n}{}\mathrm{ into v.
Go to Done.
// Done:
```


Souping up our Tape

- Up to this point, we've been improving our WB programming language by adding in new ways of scanning over the tape.
- What if we made changes to the tape itself?

A Multitrack Tape

// Start
0 : Read track 1 into X .
1: Move right.
2: Write X into track 2
3: If reading B on track 1 , go to 5 .
4: Go to 0
5: /* ... */

A Multitrack Tape

// Start
0 : Read track 1 into X .
1: Move right.
2: Write X into track 2
3: If reading B on track 1 , go to 5 .
4: Go to 0
5: /* ... */

A Multitrack Tape

1
X
// Start
0: Read track 1 into X .
1: Move right.
2: Write X into track 2
3: If reading B on track 1 , go to 5.
4: Go to 0
5: /* ... */

A Multitrack Tape

1
X
// Start
0: Read track 1 into X .
1: Move right.
2: Write X into track 2
3: If reading B on track 1 , go to 5.
4: Go to 0
5: /* ... */

A Multitrack Tape

1
X
// Start
0: Read track 1 into X .
1: Move right.
2: Write X into track 2
3: If reading B on track 1 , go to 5 .
4: Go to 0
5: /* ... */

A Multitrack Tape

1
X
// Start
0: Read track 1 into X .
1: Move right.
2: Write X into track 2
3: If reading B on track 1 , go to 5.
4: Go to 0
5: /* ... */

A Multitrack Tape

// Start
0 : Read track 1 into x .
1: Move right.
2: Write X into track 2
3: If reading B on track 1 , go to 5.
4: Go to 0
5: /* ... */

A Multitrack Tape

1
X
// Start
0: Read track 1 into X .
1: Move right.
2: Write X into track 2
3: If reading B on track 1 , go to 5.
4: Go to 0
5: /* ... */

A Multitrack Tape

// Start
0 : Read track 1 into X .
1: Move right.
2: Write X into track 2
3: If reading B on track 1 , go to 5.
4: Go to 0
5: /* ... */

A Multitrack Tape

// Start
0 : Read track 1 into X .
1: Move right.
2: Write X into track 2
3: If reading B on track 1 , go to 5.
4: Go to 0
5: /* ... */

A Multitrack Tape

// Start
0 : Read track 1 into X .
1: Move right.
2: Write X into track 2
3: If reading B on track 1 , go to 5.
4: Go to 0
5: /* ... */

A Multitrack Tape

// Start
0 : Read track 1 into x .
1: Move right.
2: Write X into track 2
3: If reading B on track 1 , go to 5.
4: Go to 0
5: /* ... */

A Multitrack Tape

\mathbf{O}
\mathbf{X}
// Start
0: Read track 1 into X .
1: Move right.
2: Write X into track 2
3: If reading B on track 1 , go to 5.
4: Go to 0
5: /* ... */

A Multitrack Tape

// Start
0: Read track 1 into X .
1: Move right.
2: Write X into track 2
3: If reading B on track 1 , go to 5.
4: Go to 0
5: /* ... */

A Multitrack Tape

// Start
0: Read track 1 into X .
1: Move right.
2: Write X into track 2
3: If reading B on track 1 , go to 5.
4: Go to 0
5: /* ... */

A Multitrack Tape

$\mathbf{0}$
X
// Start
0: Read track 1 into X .
1: Move right.
2: Write X into track 2
3: If reading B on track 1 , go to 5.
4: Go to 0
5: /* ... */

A Multitrack Tape

0
\mathbf{X}
// Start
0 : Read track 1 into x .
1: Move right.
2: Write X into track 2
3: If reading B on track 1 , go to 5.
4: Go to 0
5: /* ... */

A Multitrack Tape

$\mathbf{0}$
\mathbf{x}
// Start
0: Read track 1 into X .
1: Move right.
2: Write X into track 2
3: If reading B on track 1 , go to 5.
4: Go to 0
5: /* ... */

A Multitrack Tape

// Start
0: Read track 1 into X .
1: Move right.
2: Write X into track 2
3: If reading B on track 1 , go to 5.
4: Go to 0
5: /* ... */

A Multitrack Tape

// Start
0: Read track 1 into X .
1: Move right.
2: Write X into track 2
3: If reading B on track 1 , go to 5 .
4: Go to 0
5: /* ... */

A Multitrack Tape

$\mathbf{0}$
X
// Start
0: Read track 1 into X .
1: Move right.
2: Write X into track 2
3: If reading B on track 1 , go to 5.
4: Go to 0
5: /* ... */

A Multitrack Tape

$\mathbf{0}$
X
// Start
0: Read track 1 into X .
1: Move right.
2: Write X into track 2
3: If reading B on track 1 , go to 5.
4: Go to 0
5: /* ... */

A Multitrack Tape

1
X
// Start
0: Read track 1 into X .
1: Move right.
2: Write X into track 2
3: If reading B on track 1 , go to 5.
4: Go to 0
5: /* ... */

A Multitrack Tape

// Start
0: Read track 1 into X.
1: Move right.
2: Write X into track 2
3: If reading B on track 1 , go to 5.
4: Go to 0
5: /* ... */

A Multitrack Tape

// Start
0 : Read track 1 into X .
1: Move right.
2: Write X into track 2
3: If reading B on track 1 , go to 5 .
4: Go to 0
5: /* ... */

A Multitrack Tape

// Start
0 : Read track 1 into X .
1: Move right.
2: Write X into track 2
3: If reading B on track 1 , go to 5.
4: Go to 0
5: /* ... */

Introducing WB4

- Let's define WB4 to be WB3 with the introduction of finitely many tracks on the tape.
- The tape head still moves as a unit to the left or right, but we can now issue read and write commands to any cell in the current track.
- All previous commands updated to specify which track is to be read or written.

A Surprising Theorem

- Theorem: A language is recursively enumerable iff there is a WB4 program for it.
- This is not obvious... it seems like adding in more tracks should increase the power of our programming language!
- As with before, will prove that all WB4 programs are equivalent to WB3 programs.

The Intuition

- Treat a single tape as a "fat tape" where each tape symbol encodes the contents of the cells of all four tracks.
- Each read or write to a specific location replaces the entire tape cell with a new symbol representing the change.

A Sketch of the Construction

- Replace each instruction that reads or writes a track with a huge cascading "if" that checks for every possible tape symbol and reacts accordingly.
- Can make the program enormously bigger, but it still ends up finite.
- I'm not even going to attempt to fit something like that onto these slides.

Where We Are Now

- Starting with WB, we have added
- Loops to search for a value. (WB2)
- Variables with finite storage. (WB3)
- Multiple tracks. (WB4)
- Yet we still accept exactly the same set of languages.
- Every WBn program can be converted back to a TM.

Making Things Crazier

- What do you get when you combine a PDA and a WB4 program?
- A program with an infinite tape, plus multiple stacks!

Introducing WB5

- The programming language WB5 is the programming language WB4 with the addition of a finite number of stacks.
- We add three extra commands:
- Push s onto stack \boldsymbol{V}.
- Pushes the symbol \boldsymbol{s} onto the stack named \boldsymbol{v}.
- If stack V is empty, go to L.
- If stack v is empty, go to instruction L.
- Pop stack v into w.
- If stack \boldsymbol{v} is nonempty, pops \boldsymbol{v} and puts the top into \boldsymbol{w}.

The Multiplication Language

- Let $\Sigma=\{0,1,2\}$ and consider the language 01MULT defined as
$\left\{w \in \Sigma^{*} \mid\right.$ the number of $2^{\prime} \mathrm{s}$ in w is the product of the number of 1 's and the number of 0's. \}
- For example:
- 00112222 E 01MULT
- 22001122122 G 01MULT
- This language is neither context-free nor regular.
- How could we write a WB5 program for it?

One Approach

One Approach

0

One Approach

One Approach

One Approach

One Approach

One Approach

One Approach

One Approach

0

One Approach

One Approach

One Approach

One Approach

One Approach

One Approach

One Approach

One Approach

WB5 Program for 01MULTI

// Start	// Load1
0: If reading 0, go to Load0.	$7:$ Push 1 onto Stack 1.
1: If reading 1, go to Load1.	8: Move right.
2: If reading 2, go to Load2.	9: Go to Start.
3: Go to Check.	
	// Load2
// Load0	$10:$ Push 2 onto Stack 2.
4: Push 0 onto Stack 0.	$11:$ Move right.
5: Move right.	$12:$ Go to Start.
6: Go to Start.	

WB5 Program for 01MULTI

// Check:

13: If Stack 0 is empty, go to Ver.
14: Pop Stack 0.
15: If Stack 1 is empty, go to Fix. 24: Push 1 onto Stack 1.
16: Pop Stack 1.
17: Push 1 onto Stack 1T.
18: If Stack 2 is empty, go to Rej. // Ver:
19: Pop Stack 2.
20: Go to 15.
// Rej:
21: Reject.
// Fix:
22: If $S t 1 T$ is empty, go to Check.
23: Pop Stack 1T.

25: Go to Fix.

26: If Stack 2 is empty, go to Acc. 27: Reject.
// Acc:
28: Accept.

A Pretty Ridiculous Theorem

- Theorem: A language is recursively enumerable iff there is a WB5 program for it.
- So adding in finitely many infinite stacks doesn't give us any more expressive power!
- As with before, will prove that all WB5 programs are equivalent to WB4 programs.

From Stacks to Tracks

- The key idea behind the construction for converting WB5 programs into WB4 programs is to represent each stack with its own track.
- If there are n stacks in the program, we will add $n+1$ tracks:
- One track for each of the n stacks, and
- One track for bookkeeping.
- If the WB5 program was using any tracks, we'll keep them as well and add these new ones in separately.

1	1	0	0	1	1	0	1	0	0	1	0	0	1	1	0	0	0	\ldots
																		\ldots
																		\ldots
																		\ldots

| 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | \ldots |
| :--- |
| | | | | | | | | | | | | | | | | | \ldots | |
| | | | | | | | | | | | | | | \ldots | | | | |

1	1	0	0	1	1	0	1	0	0	1	0	0	1	1	0	0	0	\ldots
																		\ldots
																	\ldots	
																		\ldots

1	1	0	0	1	1	0	1	0	0	1	0	0	1	1	0	0	0	\ldots
$>$	$\mathbf{1}$	$\mathbf{1}$	$<$															\ldots
\gg	0	1	1	$<$														\ldots
$>$	1	$<$																\ldots
																	\ldots	

1	1	0	0	1	1	0	1	0	0	1	0	0	1	1	0	0	0	...
>	1	1	<															...
	0	1	1	<														...
	1	<																

1	1	0	0	1	1	0	1	0	0	1	0	0	1	1	0	0	0	\ldots
$\boldsymbol{>}$	1	1	$<$															\ldots
$>$	0	1	1	$<$														\ldots
$>$	1	$<$																\ldots

1	1	0	0	1	1	0	1	0	0	1	0	0	1	1	0	0	0	\ldots
\gg	1	1	$<$															\ldots
$\boldsymbol{>}$	0	1	1	$<$														\ldots
$>$	1	$<$																\ldots

0 : Write \times on track 5.

1	1	0	0	1	1	0	1	0	0	1	0	0	1	1	0	0	0	\ldots
$\boldsymbol{>}$	1	1	$<$															\ldots
$\boldsymbol{>}$	0	1	1	$<$														\ldots
$>$	1	$<$																\ldots

0 : Write \times on track 5.
1: Move left until $\{>\}$ on track 4.

1	1	0	0	1	1	0	1	0	0	1	0	0	1	1	0	0	0	\ldots
$>$	1	1	$<$															\ldots
$>$	0	1	1	$<$														\ldots
$>$	1	$<$																\ldots
																		\ldots

0: Push 1 onto Stack 3.
0: Write \times on track 5.
1: Move left until $\{>\}$ on track 4.

1	1	0	0	1	1	0	1	0	0	1	0	0	1	1	0	0	0	\ldots
$>$	1	1	$<$															\ldots
$>$	0	1	1	$<$														\ldots
\gg	1	$<$																\ldots
																		\ldots

0: Push 1 onto Stack 3.
0 : Write \times on track 5.
1: Move left until $\{>\}$ on track 4.
2: Move right until $\{<\}$ on track 4.

1	1	0	0	1	1	0	1	0	0	1	0	0	1	1	0	0	0	\ldots
$>$	1	1	$<$															\ldots
$>$	0	1	1	$<$														\ldots
$>$	1	$<$																\ldots
																		\ldots

0: Push 1 onto Stack 3.
0: Write \times on track 5.
1: Move left until $\{>\}$ on track 4.
2: Move right until $\{<\}$ on track 4.

1	1	0	0	1	1	0	1	0	0	1	0	0	1	1	0	0	0	\ldots
$>$	1	1	$<$															\ldots
$>$	0	1	1	$<$														\ldots
$>$	1	$<$																\ldots
																		\ldots

0: Push 1 onto Stack 3.
0: Write \times on track 5.
1: Move left until $\{>\}$ on track 4.
2: Move right until $\{<\}$ on track 4.
3: Write 1 on track 4.

1	1	0	0	1	1	0	1	0	0	1	0	0	1	1	0	0	0	\ldots
$>$	1	1	$<$															\ldots
$>$	0	1	1	$<$														\ldots
$>$	1	1																\ldots
																		\ldots

0: Push 1 onto Stack 3.
0: Write \times on track 5.
1: Move left until $\{>\}$ on track 4.
2: Move right until $\{<\}$ on track 4.
3: Write 1 on track 4.

1	1	0	0	1	1	0	1	0	0	1	0	0	1	1	0	0	0	\ldots
$>$	1	1	$<$															\ldots
$>$	0	1	1	$<$														\ldots
$>$	1	1																\ldots
																		\ldots

0: Push 1 onto Stack 3.
0: Write \times on track 5.
1: Move left until $\{>\}$ on track 4.
2: Move right until $\{<\}$ on track 4.
3: Write 1 on track 4.
4: Move right.

1	1	0	0	1	1	0	1	0	0	1	0	0	1	1	0	0	0	\ldots
$>$	1	1	$<$															\ldots
$>$	0	1	1	$<$														\ldots
$>$	1	1																\ldots
																		\ldots

0: Push 1 onto Stack 3.
0: Write \times on track 5.
1: Move left until $\{>\}$ on track 4.
2: Move right until $\{<\}$ on track 4.
3: Write 1 on track 4.
4: Move right.

1	1	0	0	1	1	0	1	0	0	1	0	0	1	1	0	0	0	\ldots
$>$	1	1	$<$															\ldots
$>$	0	1	1	$<$														\ldots
$>$	1	1																\ldots
																		\ldots

0: Push 1 onto Stack 3.
0: Write \times on track 5.
1: Move left until $\{>\}$ on track 4.
2: Move right until $\{<\}$ on track 4.
3: Write 1 on track 4.
4: Move right.
5: Write < on track 4

1	1	0	0	1	1	0	1	0	0	1	0	0	1	1	0	0	0	\ldots
$>$	1	1	$<$															\ldots
$>$	0	1	1	$<$														\ldots
$>$	1	1	$<$															\ldots
																		\ldots

0: Push 1 onto Stack 3.
0: Write \times on track 5.
1: Move left until $\{>\}$ on track 4.
2: Move right until $\{<\}$ on track 4.
3: Write 1 on track 4.
4: Move right.
5: Write < on track 4

1	1	0	0	1	1	0	1	0	0	1	0	0	1	1	0	0	0	\ldots
$>$	1	1	$<$															\ldots
$>$	0	1	1	$<$														\ldots
$>$	1	1	$<$															\ldots
																		\ldots

0: Push 1 onto Stack 3.
0: Write \times on track 5.
1: Move left until $\{>\}$ on track 4.
2: Move right until $\{<\}$ on track 4.
3: Write 1 on track 4.
4: Move right.
5: Write < on track 4
6: Move left until $\{>\}$ on track 4.

1	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	\ldots
$\mathbf{>}$	$\mathbf{1}$	$\mathbf{1}$	$<$															
\gg	0	$\mathbf{1}$	$\mathbf{1}$	$<$														\ldots
$>$	1	1	$<$															\ldots
																		\ldots

0: Push 1 onto Stack 3.
0: Write \times on track 5.
1: Move left until $\{>\}$ on track 4.
2: Move right until $\{<\}$ on track 4.
3: Write 1 on track 4.
4: Move right.
5: Write < on track 4
6: Move left until $\{>\}$ on track 4.

1	1	0	0		1	1	0	1	0	0	0	1	0	0	1	1	0	0	0	...
$>$	1	1	<																	...
$>$	0	1	1		<															...
$>$	1	1	<																	
													\times							...

0: Push 1 onto Stack 3.
0: Write \times on track 5.
1: Move left until $\{>\}$ on track 4.
2: Move right until $\{<\}$ on track 4.
3: Write 1 on track 4.
4: Move right.
5: Write < on track 4
6: Move left until $\{>\}$ on track 4.
7: Move right until $\{x\}$ on track 5.

1	1	0	0	1	1	0	1	0		0	1	0	0	1	1	0	0	0		
$>$	1	1	<																	
$>$	0	1	1	<																
$>$	1	1	<																	
												\times								
										Pu	ush	1	on	to	S	ac	3			
11							0				le	on	unt	il	$\begin{aligned} & k \\ & \{> \end{aligned}$		n	ra		4.
01	1								i	ve ite	$\begin{array}{r} \text { ri } \\ 1 \end{array}$	ght on	$\begin{aligned} & \mathrm{ur} \\ & \mathrm{tr} \end{aligned}$	$\begin{aligned} & \text { ti } \\ & \text { cac } \end{aligned}$		$<\}$	on	tr		$\text { k } 4$
11										ite	<	on	t	ac	k					
										ve	1	ft	un	il	\{>	\}	n	ra		
										ve	ri	ght	un	ti						

1	1	0	0	1		0	1	0	0	1	0	0	1	1	0	0	0	
	1	1	<															...
	0	1	1	<														...
$>$	1	1	<															
											\times							

1	1	
0	1	1
1	1	

0 : Write x on track 5.
1: Move left until $\{>\}$ on track 4.
2: Move right until $\{<\}$ on track 4.
3: Write 1 on track 4.
4: Move right.
5: Write < on track 4
6: Move left until $\{>\}$ on track 4.
7: Move right until $\{x\}$ on track 5.
8: Write B on track 5.

1	1	0	0	1	1	0	1	0	0	1	0	0	1	1	0	0	0	
	1	1	<															...
	0	1	1	<														...
$>$	1	1	<															

1	1	
0	1	1
1	1	

0 : Write x on track 5.
1: Move left until $\{>\}$ on track 4.
2: Move right until $\{<\}$ on track 4.
3: Write 1 on track 4.
4: Move right.
5: Write < on track 4
6: Move left until $\{>\}$ on track 4.
7: Move right until $\{x\}$ on track 5.
8: Write B on track 5.

1	1	0		0	1	1	0	1	0	0		1	0	0	1	1	0	0	0	...
>	1	1		<																...
$>$	0	1		1	<															...
>	1	1		<																
																				...

1: If Stack 1 is empty, go to L

1	1	0	0	1	1	0	1	0	0	1	0	0	1	1	0	0	0	\ldots
$>$	1	1	$<$															\ldots
$>$	0	1	1	$<$														\ldots
$>$	1	1	$<$															\ldots
																		\ldots

1: If Stack 1 is empty, go to L 0 : Write \times on track 5.

1	1	0	0	1	1	0	1	0	0	1	0	0	1	1	0	0	0	\ldots
$>$	1	1	$<$															\ldots
$>$	0	1	1	$<$														\ldots
\gg	1	1	$<$															\ldots
																		\ldots

1: If Stack 1 is empty, go to L 0 : Write \times on track 5.

1	1	0	0	1	1	0	1	0	0	1	0	0	1	1	0	0	0	\ldots
$>$	1	$\mathbf{1}$	$<$															\ldots
\gg	0	1	1	$<$														
\gg	1	1	$<$															\ldots
																		\ldots

1: If Stack 1 is empty, go to L
0 : Write \times on track 5.
1: Move left until $\{>\}$ on track 2.
011

1	1	0	0	1	1	0	1	0	0	1	0	0	1	1	0	0	0	...
>	1	1	<															
$>$	0	1	1	<														...
$>$	1	1	<															...
											\times							...

1: If Stack 1 is empty, go to L
0 : Write \times on track 5.
1: Move left until $\{>\}$ on track 2.
011

1	1	0	0	1	1	0	1	0	0	1	0	0	1	1	0	0	0	...
>	1	1	<															...
$>$	0	1	1	<														...
$>$	1	1	<															...
											\times							...

1: If Stack 1 is empty, go to L
0: Write \times on track 5.
1: Move left until $\{>\}$ on track 2.
2: Move right.

1	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	\ldots
$\mathbf{>}$	$\mathbf{1}$	$\mathbf{1}$	$<$															
$\boldsymbol{>}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$<$														
$>$	1	1	$<$															\ldots
																	\ldots	

1: If Stack 1 is empty, go to L
0 : Write \times on track 5.
1: Move left until $\{>\}$ on track 2.
2: Move right.

1	1	0	0	1	1	0	1	0	0	1	0	0	1	1	0	0	0	\ldots
$>$	1	$\mathbf{1}$	$<$															\ldots
$>$	0	$\mathbf{1}$	$\mathbf{1}$	$<$														\ldots
\gg	1	1	$<$															\ldots
																	\ldots	

1: If Stack 1 is empty, go to L
0: Write \times on track 5.
1: Move left until $\{>\}$ on track 2.
2: Move right.
3: Load current on track 2 into V

1: If Stack 1 is empty, go to L
0: Write \times on track 5.
1: Move left until $\{>\}$ on track 2.
2: Move right.
3: Load current on track 2 into V
$V=1$

1: If Stack 1 is empty, go to L
0: Write \times on track 5.
1: Move left until $\{>\}$ on track 2.
2: Move right.
3: Load current on track 2 into V
4: Move left.
$v=1$

1	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	\ldots
$\mathbf{>}$	$\mathbf{1}$	$\mathbf{1}$	$<$															
$>$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$<$														\ldots
$>$	1	1	$<$														\ldots	

1: If Stack 1 is empty, go to L
0: Write \times on track 5.
1: Move left until $\{>\}$ on track 2.
2: Move right.
3: Load current on track 2 into V
4: Move left.

$V=1$

1	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	\ldots
$\mathbf{>}$	$\mathbf{1}$	$\mathbf{1}$	$<$															
$>$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$<$														\ldots
$>$	$\mathbf{1}$	1	$<$															\ldots
																		\ldots

1: If Stack 1 is empty, go to L
0: Write \times on track 5.
1: Move left until $\{>\}$ on track 2.
2: Move right.
3: Load current on track 2 into V
4: Move left.
5: Move right until $\{x\}$ on track 5.

1	1	0	0	1	1	0	1	0	0	1	0	0	1	1	0	0	0	...
>	1	1	<															...
$>$	0	1	1	<														...
>	1	1	<															
											*							...

1: If Stack 1 is empty, go to L
0 : Write \times on track 5.
1: Move left until $\{>\}$ on track 2.
2: Move right.
3: Load current on track 2 into V
4: Move left.
5: Move right until $\{x\}$ on track 5.
$V=1$

1: If Stack 1 is empty, go to L
0 : Write \times on track 5.
1: Move left until $\{>\}$ on track 2.
2: Move right.
3: Load current on track 2 into V
4: Move left.
5: Move right until $\{x\}$ on track 5.
6: Write B on track 5.
$v=1$

1	1	0	0	1	1	0	1	0	0	1	0	0	1	1	0	0	0	...
$>$	1	1	<															...
$>$	0	1	1	<														...
>	1	1	<															
																		...

1: If Stack 1 is empty, go to L
0 : Write \times on track 5.
1: Move left until $\{>\}$ on track 2.
2: Move right.
3: Load current on track 2 into V
4: Move left.
5: Move right until $\{x\}$ on track 5.
6: Write B on track 5.
$v=1$

1	1	0	0	1	1	0	1	0	0	1	0	0	1	1	0	0	0	\ldots
\gg	1	1	$<$															\ldots
$>$	0	1	1	$<$														\ldots
$>$	1	1	$<$															\ldots
																		\ldots

1: If Stack 1 is empty, go to L
0: Write \times on track 5.
1: Move left until $\{>\}$ on track 2.
2: Move right.
3: Load current on track 2 into V
4: Move left.
5: Move right until $\{x\}$ on track 5.
6: Write B on track 5.
7: If V = <, go to L.

1	1	0		0	1	1	0	1	0	0	1	0	0	1	1	0	0	0	...
>	1	1		<															...
>	0	1		1	<														...
>	1			<															
																			...

1	1	0	0		1	1	0	1	0	0	1	0	0	1	1	0	0	0	...
>	1	1	<																...
$>$	0	1	1		<														...
$>$	1	1																	
																			...

0: Write x on track 5 .

1	1	0	0	1	1	0	1	0	0	1	0	0	1	1	0	0	0	...
>	1	1	<															...
$>$	0	1	1	<														...
>	1	1	<															...
											*							...

0 : Write \times on track 5.

1	1	0	0			1	0	1	0	0	1	0	0	1	1	0	0	0	...
>	1	1	<																...
$>$	0	1	1		<														\ldots
$>$	1	1	<																
												\times							...

0 : Write x on track 5.
1: Move left until $\{>\}$ on track 3.

1	1	0	0	1	1	0	1	0	0	1	0	0	1	1	0	0	0	\ldots
$>$	1	1	$<$															\ldots
$>$	0	1	1	$<$														\ldots
$>$	1	1	$<$															\ldots
																		\ldots

2: Pop Stack 2 into X.
0: Write \times on track 5.
1: Move left until $\{>\}$ on track 3.

1	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	\ldots
$\mathbf{>}$	$\mathbf{1}$	$\mathbf{1}$	$<$															
$\boldsymbol{>}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$<$														\ldots
$>$	1	1	$<$														\ldots	

2: Pop Stack 2 into X.
0: Write \times on track 5.
1: Move left until \{>\} on track 3.
2: Move right until $\{<\}$ on track 3.

	1	1	0	0	1	1	0	1	0	0	1	0	0	1	1	0	0	0
	$>$	1	1	<														
	$>$	0	1	1	<													
	>	1	1	<														
												\times						
								: P	Pop	St	tac	k	2 i	nt	- x			
								Wri	ite	\times	on	tr	rack					
1	1							Mov			t	unt)	t	ack	
								Mov	ve	rig	ht	un	til	1	(<)		tra	
0	1	1						Mov	ve									

1	1	0	0	1	1	0	1	0	0	1	0	0	1	1	0	0	0	\ldots
$>$	1	$\mathbf{1}$	$<$															\ldots
$>$	0	1	1	$<$														\ldots
$>$	1	1	$<$															\ldots
																		\ldots

2: Pop Stack 2 into X.
0: Write \times on track 5.
1: Move left until $\{>\}$ on track 3.
2: Move right until $\{<\}$ on track 3.
3: Move left.

2: Pop Stack 2 into X .
0 : Write \times on track 5.
1: Move left until $\{>\}$ on track 3.
2: Move right until $\{<\}$ on track 3.
3: Move left.
4: Load current on track 3 into X .
$X=1$

1	1	0	0	1	1	0	1	0	0	1	0	0	1	1	0	0	0	\ldots
$>$	1	1	$<$															\ldots
$>$	0	1	1	$<$														\ldots
$>$	1	1	$<$															\ldots
																		\ldots

2: Pop Stack 2 into X.
0: Write x on track 5.
1: Move left until $\{>\}$ on track 3.
2: Move right until $\{<\}$ on track 3.
3: Move left.
4: Load current on track 3 into X .
5: If $\mathrm{X}=>$, go to 7 .
$X=1$

1	1	0	0	1	1	0	1	0	0	1	0	0	1	1	0	0	0	\ldots
$>$	1	1	$<$															\ldots
$>$	0	1	1	$<$														\ldots
$>$	1	1	$<$															\ldots
																		\ldots

2: Pop Stack 2 into X.
0: Write x on track 5.
1: Move left until $\{>\}$ on track 3.
2: Move right until $\{<\}$ on track 3.
3: Move left.
4: Load current on track 3 into X .
5: If X = >, go to 7.
6: Write < on track 3
$X=1$

1	1	0	0	1	1	0	1	0	0	1	0	0	1	1	0	0	0	\ldots
$>$	1	$\mathbf{1}$	$<$															\ldots
$>$	0	1	$<$	$<$														\ldots
$>$	1	1	$<$															\ldots
																		\ldots

2: Pop Stack 2 into X .
0: Write x on track 5.
1: Move left until $\{>\}$ on track 3.
2: Move right until $\{<\}$ on track 3.
3: Move left.
4: Load current on track 3 into X .
5: If $\mathrm{X}=>$, go to 7.
6: Write < on track 3
$X=1$

1	1	0	0	1	1	0	1	0	0	1	0	0	1	1	0	0	0	\ldots
$>$	1	$\mathbf{1}$	$<$															\ldots
$>$	0	$\mathbf{1}$	$<$	$<$														\ldots
$>$	1	1	$<$															\ldots
																	\ldots	

2: Pop Stack 2 into X .
0: Write x on track 5.
1: Move left until $\{>\}$ on track 3.
2: Move right until $\{<\}$ on track 3.
3: Move left.
4: Load current on track 3 into X .
5: If $\mathrm{X}=>$, go to 7.
6: Write < on track 3
7: Move left until $\{>\}$ on track 3.
$x=1$

1	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	\ldots
$\mathbf{>}$	$\mathbf{1}$	$\mathbf{1}$	$<$															
$>$	$\mathbf{0}$	$\mathbf{1}$	$<$	$<$														\ldots
$>$	1	1	$<$															\ldots
																		\ldots

2: Pop Stack 2 into X.
0 : Write \times on track 5.
1: Move left until $\{>\}$ on track 3.
2: Move right until \{<\} on track 3.
3: Move left.
4: Load current on track 3 into X .
5: If X = >, go to 7.
6: Write < on track 3
7: Move left until $\{>\}$ on track 3.

2: Pop Stack 2 into X.
0 : Write \times on track 5.
1: Move left until $\{>\}$ on track 3.
2: Move right until $\{<\}$ on track 3.
3: Move left.
4: Load current on track 3 into X .
5: If $\mathrm{X}=>$, go to 7.
6: Write < on track 3
7: Move left until $\{>\}$ on track 3.
8: Move right until $\{x\}$ on track 5.

2: Pop Stack 2 into X .

0 : Write x on track 5.
1: Move left until $\{>\}$ on track 3.
2: Move right until $\{<\}$ on track 3.
3: Move left.
4: Load current on track 3 into X.
5: If $\mathrm{X}=>$, go to 7 .
6: Write < on track 3
7: Move left until $\{>\}$ on track 3.
8: Move right until $\{x\}$ on track 5.

Completing the Construction

- We've seen how to convert the new WB5 stack commands into WB4 code.
- For this to work, the extra tracks must be set up correctly.
- Add preamble code to the generated WB4 program to do this:

```
Write > to track 2.
Write > to track n.
Move right.
Write < to track 2.
Write < to track n.
Move left.
```


But Why Stop There?

- Adding finitely many stacks to WB doesn't increase its expressive power.
- What if we added finitely many tapes to WB?
- We now have a programming language controlling
- Multiple tracks per tape,
- Finitely many stacks, and
- Finitely many tapes.

Introducing WB6

- The programming language WB6 is WB5 with the addition of multiple tapes.
- All tape commands have been updated to specify which tape they apply to.
- If tape unspecified, it's assumed that it's tape 1.

A WB6 Program for SEARCH

- Recall from Problem Sets 5 and 6 that the language $S E A R C H$ over $\Sigma=\{0,1$, ? $\}$ is the language

$$
\begin{gathered}
\left\{p ? t \mid p, t \in\{0,1\}^{*} \text { and } p\right. \\
\text { is a substring of } t\}
\end{gathered}
$$

- How would we write a WB6 program for SEARCH?
- (For simplicity, we'll assume that the input is properly formatted).

A WB6 Program for Search

...

A WB6 Program for Search

-.

A WB6 Program for Search

- -

A WB6 Program for Search

...

A WB6 Program for Search

...

A WB6 Program for Search

-.

A WB6 Program for Search

- -

A WB6 Program for Search

- \cdot

A WB6 Program for $S E A R C H$

// Start
0: Move tape 2 right.
1: If reading ? on tape 1.1 , go to Match.
2: Load curr on tape 1.1 into X .
3: Write X to tape 2.
4: Move tape 1 right.
5: Move tape 2 right.
6: Go to 1.

A WB6 Program for SEARCH

// Match
7: Move tape 2 left until \{B\}
8: Move tape 2 right.
9: Move tape 1 right.
10: Write \$ to tape 1, track 2. // Acc
11: If B on tape 2, go to Acc. 22: Accept.
12: If B on tape 1, go to Rej.
13: Load tape 1, track 1 into $\mathrm{x} . / / \mathrm{Rej}$
14: Load tape 2 into Y.
15: If $\mathrm{X}=\mathrm{Y}, \mathrm{go}$ to 17.
16: Go to Mismatch.
17: Move tape 1 right.
18: Move tape 2 right.
19: Go to 11.
// Mismatch
20: Move tape 1.2 left until \{\$\}
21: Go to Match.

23: Reject.

Oh, Come On Already...

- Theorem: A language is recursively enumerable iff there is a WB6 program for it.
- We can really supercharge these languages without increasing our power!
- As with before, the construction will convert WB6 programs into WB5 programs.

The Key Idea

- Represent an infinite tape with two stacks.

The Key Idea

- Represent an infinite tape with two stacks.

The Key Idea

- Represent an infinite tape with two stacks.

\mathbf{E}
\mathbf{F}
\mathbf{G}
\mathbf{H}

The Key Idea

- Represent an infinite tape with two stacks.

The Key Idea

- Represent an infinite tape with two stacks.

The Key Idea

- Represent an infinite tape with two stacks.

A Sketch of the Construction

- At the start of the program, copy the contents of the initial tape into a pair of stacks that will henceforth represent the first tape.
- Convert all motion operations into stack manipulation operations to push and pop values from the appropriate stacks.
- Use variables to hold temporary values (for example, when moving the top of one stack to another).

0: Move tape 1 right.

0: If stack 1 R is empty, go to 2.
1: Go to 3.
2: Push B onto stack 1R.
3: Pop stack 1R into X .
4: Push X onto stack 1L.

0: Move tape 1 right.

0: If stack 1R is empty, go to 2.
1: Go to 3.
2: Push B onto stack 1R.
3: Pop stack 1R into X .
4: Push X onto stack 1L.
E

0: Move tape 1 right.

0: If stack 1 R is empty, go to 2.
1: Go to 3.
2: Push B onto stack 1R.
3: Pop stack 1R into X .
4: Push X onto stack 1L.

0: Move tape 1 right.

0: If stack 1 R is empty, go to 2.
1: Go to 3.
2: Push B onto stack 1R.
3: Pop stack 1R into X .
4: Push X onto stack 1L.

0: Move tape 1 right.

0: If stack 1 R is empty, go to 2.
1: Go to 3.
2: Push B onto stack 1R.
3: Pop stack 1R into X .
4: Push X onto stack 1L.

0: Move tape 1 right.

0: If stack 1 R is empty, go to 2.
1: Go to 3.
2: Push B onto stack 1R.
3: Pop stack 1R into X .
4: Push X onto stack 1L.

What Else Can We Add?

- Function call and return.
- Have a stack to use as the call stack.
- Calling a function pushes the index of the instruction to which it should return.
- Returning pops the stack and jumps back.
- Named variables.
- Have a tape storing a sequence of values of the form name: value.
- Can read and write values from the tape.
- Pointers
- Have variables hold the names of other variables.
- Primitive types and arithmetic.
- Design subroutines for addition, subtraction, etc.
- Apply them to named variables.
- Pretty much any feature of any major programming language.

The Conversion Back Down

- From WB6 to WB5:
- Add in two stacks per tape used.
- Replace all tape operations with appropriate stack manipulations.
- From WB5 to WB4:
- Add in one track per stack, plus one extra track.
- Replace all stack operations with appropriate manipulations of those tracks.

The Conversion Back Down

- From WB4 to WB3:
- Expand the tape alphabet to include symbols for all track combinations.
- Replace all references to track symbols with cascading if's for each possible case.
- From WB3 to WB2:
- Replicate the code once for each possible assignment to variables.
- Hardcode in statements referencing variables.
- Replace variable manipulation code with code to jump to the appropriate copy.

The Conversion Back Down

- From WB2 to WB:
- Expand out move ... until statements by replacing them with cascading if statements.
- From WB to Turing machines:
- Replace each statement with the appropriate Turing machine gadget.

The Conversion Back Down

- The total conversion of a WB6 program using variables, multiple tracks, multiple stacks, and multiple tapes might produce an enormous Turing machine!
- But that said, the result is still a Turing machine.
- Turing machines are simple, yet have enormous computational power.

Just how powerful are Turing machines?

Effective Computation

- An effective method of computation is a form of computation with the following properties:
- The computation consists of a set of steps.
- There are fixed rules governing how one step leads to the next.
- Any computation that yields an answer does so in finitely many steps.
- Any computation that yields an answer always yields the correct answer.

The Church-Turing Thesis states that

Every effective method of computation is either equivalent to or weaker than a Turing machine.

This statement cannot be proven or disproven, but is widely considered true.

Problems

Solvable by Any Feasible Computing Machine

All Languages

Next Time

- Encodings
- How do we do computations over arbitrary objects?
- The Universal Turing Machine
- A Turing machine for running other Turing machines.
- Nondeterministic Turing Machines
- What happens when we supercharge a TM? What does this even mean?
- R and RE Languages
- A finer gradation within the RE languages.

