
  

Beyond Context-Free Languages



  

Are some problems inherently
harder than others?



  

Regular
Languages CFLsDCFLs

All Languages

What sorts of 
languages are out 

here?



  

The Pumping Lemma for Regular Languages

● Let L be a regular language, so there is a 
DFA D for L.

● A sufficiently long string w ∈ L must visit 
some state in D twice.

● This means w went through a loop in the D.
● By replicating the characters that went 

through the loop in the D, we can “pump” a 
portion of w to produce new strings in the 
language.



  

The Pumping Lemma Intuition

● The model of computation used has a 
finite description.

● For sufficiently long strings, the model of 
computation must repeat some step of 
the computation to recognize the string.

● Under the right circumstances, we can 
iterate this repeated step zero or more 
times to produce more and more strings.



  

Recall: Parse Trees

R → a | b | c | … 

R → “ε”

R → Ø

R → RR

R → R “|” R

R → R*

R → (R)

R

R R

|

R R

a a

R

*b



  

Parse Trees Revisited

S → [P]

P → RR | a

R → (P) | b

P

R R

( )

P

a b

S

[ ]

The nonterminal 
P appears 
twice.



  

Parse Trees Revisited

S → [P]

P → RR | a

R → (P) | b

P

R R

( )

P

a b

S

[ ]

P

R R

( ) b



  

Parse Trees Revisited

S → [P]

P → RR | a

R → (P) | b

P

a

S

[ ]



  

S

R

u v y zx

R

uvxyz ∈ L



  

S

R

u v y z

xv y

R

R

uv2xy2z ∈ L



  

S

R

u v y z

x

R

R

v

v

y

y

R

uv3xy3z ∈ L



  

S

u z

x

R

uv0xy0z ∈ L



  

For any context-free language L,

     There exists a positive natural number n such that

          For any w ∈ L with |w| ≥ n,

               There exists strings u, v, x, y, z such that

                    For any natural number i,

                         w = uvxyz,
 

                         |vxy| ≤ n,
 

                         |vy| > 0
 

                         uvixyiz ∈ L

The Pumping Lemma for CFLs

Note that we pump 
both v and y at the 
same time, not just 
one or the other.

Note that we pump 
both v and y at the 
same time, not just 
one or the other.

where the 2nd and 4th pieces can 
be replicated 0 or more times

where the 2nd and 4th pieces aren't 
both empty, and

w can be broken into five pieces,

where the middle three pieces 
aren't too long,
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another.

where the 2nd and 4th pieces can 
be replicated 0 or more times

where the 2nd and 4th pieces aren't 
both empty, and

w can be broken into five pieces,

where the middle three pieces 
aren't too long,



  

For any context-free language L,
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where the 2nd and 4th pieces can 
be replicated 0 or more times

where the 2nd and 4th pieces aren't 
both empty, and

w can be broken into five pieces,

where the middle three pieces 
aren't too long,

The pumping length 
is not simple; see 
Sipser for details.

The pumping length 
is not simple; see 
Sipser for details.



  

The Pumping Lemma Game

ADVERSARY YOU

Maliciously choose 
pumping length n.

Maliciously split 
w = uvxyz, with |vy| > 0 

and |vxy| ≤ n

Cleverly choose a string 
w  ∈ L, |w| ≥ n

Cleverly choose k
 such that uvkxykz  ∉ L

Grrr!  Aaaargh!

0n1n2n

L = {w ∈ {0,1,2}* | w has the same number of 0s, 1s, 2s}



  

Theorem: L = {w ∈ {0,1,2}* | w has the same # of 0s, 1s, 2s} is not a CFL.
 

Proof: By contradiction; assume L is a CFL.  Let n be the pumping length
   guaranteed by the pumping lemma.  Let w = 0n1n2n.  Thus w ∈ L and
   |w| = 3n ≥ n.  Therefore we can write w = uvxyz such that |vxy| ≤ n,
   |vy| > 0, and for any i ∈ ℕ, uvixyiz ∈ L.  We consider two cases for vxy:
 

   Case 1: vxy is completely contained in 0n, 1n, or 2n. In that case, the string
uv2xy2z ∉ L, because this string has more copies of 0 or 1 or 2 than
the other two symbols.

 

   Case 2: vxy either consists of 0s and 1s or of 1s and 2s (it cannot consist
of all three symbols, because |vxy| ≤ n).  Then if vxy has no 2s in it,
uv2xy2z ∉ L since it contains more 0s or 1s than 2s.  Similarly, if vxy
has no 0s in it uv2xy2z ∉ L because it contains more 1s or 2s than 0s.

 

   In either case, we contradict the pumping lemma.  Thus our assumption
   must have been wrong, so L is not a CFL. ■

For any context-free language L,
     There exists a positive natural number n such that
          For any w ∈ L with |w| ≥ n,
               There exists strings u, v, x, y, z such that
                    For any natural number i,
                         w = uvxyz,
                         |vxy| ≤ n,
                         |vy| > 0
                         uvixyiz ∈ L



  

Using the Pumping Lemma

● Keep the following in mind when using the 
context-free pumping lemma when w = uvxyz:
● Both v and y must be pumped at the same time.
● v and y need not be contiguous in the string.
● One of v and y may be empty.
● vxy may be anywhere in the string.

● I strongly suggest reading through Sipser to 
get a better sense for how these proofs work.



  

Non-CFLs

● Regular languages cannot count once:

{ 0n1n | n ∈ ℕ } is not regular. 

● CFLs cannot count twice:
●  { 0n1n2n | n ∈ ℕ } is not context-free.

● A finite number of states cannot count 
arbitrarily high.

● With a single stack and finite states, 
cannot track two arbitrary quantities.



  

(Non) Closure Properties of CFLs



  

(Non) Closure Properties of CFLs

● Now that we have a single non-context-free language, 
we can prove that CFLs are not closed under certain 
operations.

● Let L1 = { 0n1n2m | n, m ∈ ℕ }

● Let L2 = {0m1n2n | n, m ∈ ℕ }

● Both of these languages are context-free.
● Can either find an explicit CFG, or note that these 

languages are the concatenation of two CFLs.

● But L1 ∩ L2 = { 0n1n2n | n ∈ ℕ }, which is not a CFL.

● Context-free languages are not closed under 
intersection.



  

(Non) Closure under Complement

● Recall that if L is regular, L is regular as well.

● However, if L is context-free, L may not be a 
context-free language.

● Intuition: Using union and complement, we can 
construct the intersection.

L
1
  ∪ L

2



  

(Non) Closure under Subtraction

● Theorem: If L1 and L2 are regular, L1 – L2 
is regular as well.

● However, if L1 and L2 are context-free, 
L1 – L2 may not be context-free.

● Intuition: We can construct the 
complement from the difference.
● Σ* is context-free because it is regular.
● But Σ* - L = L, which may not be context-free.



  

Summary of CFLs

● CFLs are strictly more powerful than the 
regular languages.

● CFLs can be described by CFGs 
(generation) or PDAs (recognition).

● CFGs encompass two classes of 
languages – deterministic and 
nondeterministic CFLs.

● Context-free languages have a pumping 
lemma just as regular languages do.



  

Problem Session

● Weekly problem session meets tonight at 
7PM in 380-380X.
● Covers CFLs and their limits.

● Optional, but highly recommended!



  

Midterm and Problem Set 4 Graded

Will be distributed at end of lecture.
After that, pick up at my office (Gates 178).



  

Beyond CFLs



  

Computability Theory

● Finite automata represent computers 
with bounded memory.
● They accept precisely the regular languages.

● Pushdown automata represent 
computers with a weak infinite memory.
● They accept precisely the context-free 

languages.

● Regular and context-free languages are 
comparatively weak.



  

Regular
Languages CFLsDCFLs

All Languages

Languages 
recognizable by 

any feasible 
computing 
machine



  All Languages

That same drawing, to scale.



  

Defining Computability

● In order to talk about what languages we 
could ever hope to recognize with a 
computer, we need to formalize our 
model of computation with an 
automaton.

● The standard automaton for this job is 
the Turing machine, named after Alan 
Turing, the “Father of Computer 
Science.”



  

A Better Memory Device

● The pushdown automaton used a 
(potentially infinite) stack as its memory 
device.

● This severely limits how the memory can 
be used:
● Accessing old data only possible after 

discarding old data.
● Can't keep track of multiple unbounded 

quantities.



  

A Better Memory Device

● A Turing machine is a finite automaton equipped 
with an infinite tape as its memory.

● The tape begins with the input to the machine written 
on it, followed by infinitely many blank cells.

● The machine has a tape head that can read and write 
a single memory cell at a time.

 

 

 

 

0 0 1



  

The Turing Machine

● A Turing machine consists of three parts:

● A finite-state control used to determine which actions 
to take,

● an infinite tape serving as both input and scratch space, 
and

● a tape head that can read and write the tape and move 
left or right.

● At each step, the Turing machine

● Replaces the contents of the current cell with a new 
symbol (which could optionally be the same symbol as 
before),

● Changes state, and

● Moves the tape head to the left or to the right.



  

A Simple Turing Machine

q
0

q
acc

q
rej

q
1

start

1 → B, R

1 → B, R

B → B, R                  

                  B → B, R

q
acc

q
rej

Each transition of the form
 

x → y, D
 

means “upon reading x, replace it with 
symbol y and move the tape head in 
direction D (which is either L or R). 
 The letter B represents the blank 

symbol.

Each transition of the form
 

x → y, D
 

means “upon reading x, replace it with 
symbol y and move the tape head in 
direction D (which is either L or R). 
 The letter B represents the blank 

symbol.

This special accept 
state causes the 

machine to 
immediately accept.

This special accept 
state causes the 

machine to 
immediately accept.

This special reject 
state causes the 

machine to 
immediately reject.

This special reject 
state causes the 

machine to 
immediately reject.



  

Acceptance

● Unlike the automata that we've seen 
before, the Turing machine can revisit 
characters from the input.

● The machine decides when it terminates, 
rather than stopping when no input is left.

● The Turing machine accepts if it enters a 
special accept state.  It rejects if it enters 
a special reject state.

● Turing machines can loop forever.
● More on that later...



  

A More Powerful Turing Machine

● Let Σ = {0, 1} and let

PALINDROME = { w ∈ Σ* | w is a palindrome}

● We can build a TM for PALINDROME as follows:
● Look at the leftmost character of the string.
● Scan across the tape until we find the end of the 

string.
● If the last character doesn't match, reject the input.
● Sweep back to the left of the tape and repeat.
● If every character becomes matched, accept.



  

q
0

q
0

q
1

q
2

q
3

q
4

q
5

q
acc q

rej

q
1

start q
rej

q
2

q
3

q
4

q
5

B → B, R

0 → B, R

1 → B, R

0 → 0, R
1 → 1, R

B → B, L

0 → 0, R   
1 → 1, R   

B → B, L

B → B, R                    

B → B, R                    

q
acc

                 1 → 1, R

                 0 → 0, R

0 → B, L

1 → B, L

0 → 0, L  
1 → 1, L  

B → B, R



  

0 1 B
q

0

q
1

q
2

q
3

q
4

q
5

A More Sane Representation

0 1 B
q

0

q
1

q
2

q
3

q
4

q
5

B R q
1 B R q

2 B R q
acc

0 R q
1 1 R q

1 B L q
3

0 R q
2 1 R q

2 B L q
4

B L q
5 1 R q

rej B R q
acc

0 R q
rej B R q

accB L q
5

0 L q
5 1 L q

5 B R q
0



  

Turing Machines, Formally

● A Turing machine is an 8-tuple (Q, Σ, Γ, δ, q0, 
qacc, qrej, B), where

● Q is a finite set of states,
● Σ is a finite input alphabet,
● Γ is a finite tape alphabet, with Σ ⊆ Γ,
● δ : Q × Γ → Q × Γ × {R, L} is the transition function,

● q0 ∈ Q is the start state,

● qacc ∈ Q is the accept state,

● qrej ∈ Q, qrej ≠ qacc, is the reject state, and

● B ∈ Γ – Σ is the blank symbol.



  

The Language of a Turing Machine

● The language of a TM M is the set

ℒ(M) = { w ∈ Σ* | M enters qacc when run on w }

● If there is a TM M such that ℒ(M) = L, we say that 
L is Turing-recognizable.

● “Recognizable” for short.
● These languages are sometimes called recursively 

enumerable.

● Any regular language is recognizable (why?)

● Harder fact: Any context-free language is 
recognizable.



  

Programming Turing Machines



  

Programming Turing Machines

● Let's begin with a simple language over
Σ = {0, 1}:

● BALANCE = { w ∈ Σ* | w contains the 
same number of 0s and 1s }

● How might we build a TM for BALANCE?



  

The Intuition

● Match the first symbol on the tape with 
the next available symbol that matches it.

● Match the first symbol on the tape with 
the next available symbol that matches it.

● Repeat until no symbols are left.
● If everything matches, we're done.
● If there is a mismatch, report failure.



  

TM for BALANCE

0 1 B
q

st Acceptq
m0RB q

m1RB

q
m0 0 R q

m0 Rejectx L q
ret

q
m1 x L q

ret Reject1 R q
m1

q
ret B R q

st0 L q
ret 1 L q

ret

x
q

stRx

q
m0Rx

q
m1Rx

q
retLx



  

The Key Insight

● Our construction worked because we 
could make the finite-state control hold 
extra information (which symbol we had 
matched).

● General TM design trick: Treat the 
finite state control as a combination 
control/finite memory.

● Can hold any finite amount of information 
by just replicating important states the 
appropriate number of times.



  

A More Elaborate Language

● Consider Σ = { 1, ×, = } and the language

MULTIPLY = { 1n × 1m = 1mn | m, n ∈ ℕ }

● This language is neither regular nor 
context-free, but it is recursively 
enumerable.

● How would we build a TM for it?



  

A Turing Machine Subroutine

● A subroutine in a TM is state that, when 
entered:
● Performs some specific task on the tape, then
● Terminates in a well-specified state.

● Complex Turing machines can be broken down 
into smaller subroutines as follows:
● The start state fires off the first subroutine.
● After the first subroutine terminates, the next 

begins.
● (etc.)
● The machine may accept or reject at any point.



  

Key Idea: Subroutines

● Checking whether a string is in 
MULTIPLY requires several different 
steps:
● Check that the string is formatted correctly.
● Compute m × n.
● Confirm that m × n matches what's given.

● Let's design a subroutine for each of 
these.



  

Validating the Input
● High-level idea:

● Shift the input over by one step.

 
● Check the structure of the input.

● End up in a new state looking at the first 
character of the input if successful.

1 × 1 = 1 1 × 1 = 1

1 × 1 = 1

1 × 1 = 1



  

Step One: Shift the Input

q
s B R q

1

1 × = B
B R q

× B R q
= B R D

q
1 1 R q

1 1 R q
× 1 R q

= 1 L q
R

q
× × R q

1 × R q
× × R q

= × L q
R

q
= = R q

1 = R q
× = R q

= = L q
R

q
R 1 L q

R × L q
R = L q

R B R D



  

Step Two: Verify the Input

1 × =
q

st

B
q

stR1 Reject Rejectq
×R×

q
× q

×R1 Reject RejectR= q
=

q
= q

=R1 Reject Reject q
LLB

q
L q

LL1 q
LL× q

LL= DRB



  

Putting it Together: Shift/Verify

q
s B R q

1

1 × = B
B R q

× B R q
= B R q

s2

q
1 1 R q

1 1 R q
× 1 R q

= 1 L q
R

q
× × R q

1 × R q
× × R q

= × L q
R

q
= = R q

1 = R q
× = R q

= = L q
R

q
R 1 L q

R × L q
R = L q

R B R q
s2

q
L

q
=

q
L2

q
×

q
=2

q
st

q
×2

q
s2 Rejectq

s2R1 q
×2R× Reject

Rejectq
×2R1 Rejectq

=2R=
Rejectq

=2R1 Reject q
L2LB

q
L2L1 q

L2L× q
L2L= DRB



  

Step Three: Doing the Multiply

1 1 × 1 =1 11

 1 × 1 =1 1 1 1 11

 × 1 =1 1 1 1 1 11 1 1



  

Step Four: Checking the Multiply

 × 1 =1 1 1 1  1 11 1

 × 1 =1 1 1  1 11

 × 1 =1 1  11

 × 1 =1  1



  

Why This Matters

● TMs can solve a large class of problems, but 
they can be enormously complicated.

● We now have two tricks for designing TMs:
● Constant storage
● Subroutines

● We can use these tricks to show that if we 
can get each individual piece working, we 
can solve a large problem with a TM.



  

Next Time

● Programming Turing Machines
● A cleaner way to think about TMs.

● The Power of Turing Machines
● Just how much expressive power do TMs 

have?
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