

Beyond Context-Free Languages

Are some problems inherently
harder than others?

Regular
Languages CFLsDCFLs

All Languages

What sorts of
languages are out

here?

The Pumping Lemma for Regular Languages

● Let L be a regular language, so there is a
DFA D for L.

● A sufficiently long string w ∈ L must visit
some state in D twice.

● This means w went through a loop in the D.
● By replicating the characters that went

through the loop in the D, we can “pump” a
portion of w to produce new strings in the
language.

The Pumping Lemma Intuition

● The model of computation used has a
finite description.

● For sufficiently long strings, the model of
computation must repeat some step of
the computation to recognize the string.

● Under the right circumstances, we can
iterate this repeated step zero or more
times to produce more and more strings.

Recall: Parse Trees

R → a | b | c | …

R → “ε”

R → Ø

R → RR

R → R “|” R

R → R*

R → (R)

R

R R

|

R R

a a

R

*b

Parse Trees Revisited

S → [P]

P → RR | a

R → (P) | b

P

R R

()

P

a b

S

[]

The nonterminal
P appears
twice.

Parse Trees Revisited

S → [P]

P → RR | a

R → (P) | b

P

R R

()

P

a b

S

[]

P

R R

() b

Parse Trees Revisited

S → [P]

P → RR | a

R → (P) | b

P

a

S

[]

S

R

u v y zx

R

uvxyz ∈ L

S

R

u v y z

xv y

R

R

uv2xy2z ∈ L

S

R

u v y z

x

R

R

v

v

y

y

R

uv3xy3z ∈ L

S

u z

x

R

uv0xy0z ∈ L

For any context-free language L,

 There exists a positive natural number n such that

 For any w ∈ L with |w| ≥ n,

 There exists strings u, v, x, y, z such that

 For any natural number i,

 w = uvxyz,

 |vxy| ≤ n,

 |vy| > 0

 uvixyiz ∈ L

The Pumping Lemma for CFLs

Note that we pump
both v and y at the
same time, not just
one or the other.

Note that we pump
both v and y at the
same time, not just
one or the other.

where the 2nd and 4th pieces can
be replicated 0 or more times

where the 2nd and 4th pieces aren't
both empty, and

w can be broken into five pieces,

where the middle three pieces
aren't too long,

For any context-free language L,

 There exists a positive natural number n such that

 For any w ∈ L with |w| ≥ n,

 There exists strings u, v, x, y, z such that

 For any natural number i,

 w = uvxyz,

 |vxy| ≤ n,

 |vy| > 0

 uvixyiz ∈ L

The Pumping Lemma for CFLs

The two strings to
pump, collectively,
cannot be too long.

The two strings to
pump, collectively,
cannot be too long.

They also must
be close to one

another.

They also must
be close to one

another.

where the 2nd and 4th pieces can
be replicated 0 or more times

where the 2nd and 4th pieces aren't
both empty, and

w can be broken into five pieces,

where the middle three pieces
aren't too long,

For any context-free language L,

 There exists a positive natural number n such that

 For any w ∈ L with |w| ≥ n,

 There exists strings u, v, x, y, z such that

 For any natural number i,

 w = uvxyz,

 |vxy| ≤ n,

 |vy| > 0

 uvixyiz ∈ L

The Pumping Lemma for CFLs

where the 2nd and 4th pieces can
be replicated 0 or more times

where the 2nd and 4th pieces aren't
both empty, and

w can be broken into five pieces,

where the middle three pieces
aren't too long,

The pumping length
is not simple; see
Sipser for details.

The pumping length
is not simple; see
Sipser for details.

The Pumping Lemma Game

ADVERSARY YOU

Maliciously choose
pumping length n.

Maliciously split
w = uvxyz, with |vy| > 0

and |vxy| ≤ n

Cleverly choose a string
w ∈ L, |w| ≥ n

Cleverly choose k
 such that uvkxykz ∉ L

Grrr! Aaaargh!

0n1n2n

L = {w ∈ {0,1,2}* | w has the same number of 0s, 1s, 2s}

Theorem: L = {w ∈ {0,1,2}* | w has the same # of 0s, 1s, 2s} is not a CFL.

Proof: By contradiction; assume L is a CFL. Let n be the pumping length
 guaranteed by the pumping lemma. Let w = 0n1n2n. Thus w ∈ L and
 |w| = 3n ≥ n. Therefore we can write w = uvxyz such that |vxy| ≤ n,
 |vy| > 0, and for any i ∈ ℕ, uvixyiz ∈ L. We consider two cases for vxy:

 Case 1: vxy is completely contained in 0n, 1n, or 2n. In that case, the string
uv2xy2z ∉ L, because this string has more copies of 0 or 1 or 2 than
the other two symbols.

 Case 2: vxy either consists of 0s and 1s or of 1s and 2s (it cannot consist
of all three symbols, because |vxy| ≤ n). Then if vxy has no 2s in it,
uv2xy2z ∉ L since it contains more 0s or 1s than 2s. Similarly, if vxy
has no 0s in it uv2xy2z ∉ L because it contains more 1s or 2s than 0s.

 In either case, we contradict the pumping lemma. Thus our assumption
 must have been wrong, so L is not a CFL. ■

For any context-free language L,
 There exists a positive natural number n such that
 For any w ∈ L with |w| ≥ n,
 There exists strings u, v, x, y, z such that
 For any natural number i,
 w = uvxyz,
 |vxy| ≤ n,
 |vy| > 0
 uvixyiz ∈ L

Using the Pumping Lemma

● Keep the following in mind when using the
context-free pumping lemma when w = uvxyz:
● Both v and y must be pumped at the same time.
● v and y need not be contiguous in the string.
● One of v and y may be empty.
● vxy may be anywhere in the string.

● I strongly suggest reading through Sipser to
get a better sense for how these proofs work.

Non-CFLs

● Regular languages cannot count once:

{ 0n1n | n ∈ ℕ } is not regular.

● CFLs cannot count twice:
● { 0n1n2n | n ∈ ℕ } is not context-free.

● A finite number of states cannot count
arbitrarily high.

● With a single stack and finite states,
cannot track two arbitrary quantities.

(Non) Closure Properties of CFLs

(Non) Closure Properties of CFLs

● Now that we have a single non-context-free language,
we can prove that CFLs are not closed under certain
operations.

● Let L1 = { 0n1n2m | n, m ∈ ℕ }

● Let L2 = {0m1n2n | n, m ∈ ℕ }

● Both of these languages are context-free.
● Can either find an explicit CFG, or note that these

languages are the concatenation of two CFLs.

● But L1 ∩ L2 = { 0n1n2n | n ∈ ℕ }, which is not a CFL.

● Context-free languages are not closed under
intersection.

(Non) Closure under Complement

● Recall that if L is regular, L is regular as well.

● However, if L is context-free, L may not be a
context-free language.

● Intuition: Using union and complement, we can
construct the intersection.

L
1
 ∪ L

2

(Non) Closure under Subtraction

● Theorem: If L1 and L2 are regular, L1 – L2
is regular as well.

● However, if L1 and L2 are context-free,
L1 – L2 may not be context-free.

● Intuition: We can construct the
complement from the difference.
● Σ* is context-free because it is regular.
● But Σ* - L = L, which may not be context-free.

Summary of CFLs

● CFLs are strictly more powerful than the
regular languages.

● CFLs can be described by CFGs
(generation) or PDAs (recognition).

● CFGs encompass two classes of
languages – deterministic and
nondeterministic CFLs.

● Context-free languages have a pumping
lemma just as regular languages do.

Problem Session

● Weekly problem session meets tonight at
7PM in 380-380X.
● Covers CFLs and their limits.

● Optional, but highly recommended!

Midterm and Problem Set 4 Graded

Will be distributed at end of lecture.
After that, pick up at my office (Gates 178).

Beyond CFLs

Computability Theory

● Finite automata represent computers
with bounded memory.
● They accept precisely the regular languages.

● Pushdown automata represent
computers with a weak infinite memory.
● They accept precisely the context-free

languages.

● Regular and context-free languages are
comparatively weak.

Regular
Languages CFLsDCFLs

All Languages

Languages
recognizable by

any feasible
computing
machine

 All Languages

That same drawing, to scale.

Defining Computability

● In order to talk about what languages we
could ever hope to recognize with a
computer, we need to formalize our
model of computation with an
automaton.

● The standard automaton for this job is
the Turing machine, named after Alan
Turing, the “Father of Computer
Science.”

A Better Memory Device

● The pushdown automaton used a
(potentially infinite) stack as its memory
device.

● This severely limits how the memory can
be used:
● Accessing old data only possible after

discarding old data.
● Can't keep track of multiple unbounded

quantities.

A Better Memory Device

● A Turing machine is a finite automaton equipped
with an infinite tape as its memory.

● The tape begins with the input to the machine written
on it, followed by infinitely many blank cells.

● The machine has a tape head that can read and write
a single memory cell at a time.

0 0 1

The Turing Machine

● A Turing machine consists of three parts:

● A finite-state control used to determine which actions
to take,

● an infinite tape serving as both input and scratch space,
and

● a tape head that can read and write the tape and move
left or right.

● At each step, the Turing machine

● Replaces the contents of the current cell with a new
symbol (which could optionally be the same symbol as
before),

● Changes state, and

● Moves the tape head to the left or to the right.

A Simple Turing Machine

q
0

q
acc

q
rej

q
1

start

1 → B, R

1 → B, R

B → B, R

 B → B, R

q
acc

q
rej

Each transition of the form

x → y, D

means “upon reading x, replace it with
symbol y and move the tape head in
direction D (which is either L or R).
 The letter B represents the blank

symbol.

Each transition of the form

x → y, D

means “upon reading x, replace it with
symbol y and move the tape head in
direction D (which is either L or R).
 The letter B represents the blank

symbol.

This special accept
state causes the

machine to
immediately accept.

This special accept
state causes the

machine to
immediately accept.

This special reject
state causes the

machine to
immediately reject.

This special reject
state causes the

machine to
immediately reject.

Acceptance

● Unlike the automata that we've seen
before, the Turing machine can revisit
characters from the input.

● The machine decides when it terminates,
rather than stopping when no input is left.

● The Turing machine accepts if it enters a
special accept state. It rejects if it enters
a special reject state.

● Turing machines can loop forever.
● More on that later...

A More Powerful Turing Machine

● Let Σ = {0, 1} and let

PALINDROME = { w ∈ Σ* | w is a palindrome}

● We can build a TM for PALINDROME as follows:
● Look at the leftmost character of the string.
● Scan across the tape until we find the end of the

string.
● If the last character doesn't match, reject the input.
● Sweep back to the left of the tape and repeat.
● If every character becomes matched, accept.

q
0

q
0

q
1

q
2

q
3

q
4

q
5

q
acc q

rej

q
1

start q
rej

q
2

q
3

q
4

q
5

B → B, R

0 → B, R

1 → B, R

0 → 0, R
1 → 1, R

B → B, L

0 → 0, R
1 → 1, R

B → B, L

B → B, R

B → B, R

q
acc

 1 → 1, R

 0 → 0, R

0 → B, L

1 → B, L

0 → 0, L
1 → 1, L

B → B, R

0 1 B
q

0

q
1

q
2

q
3

q
4

q
5

A More Sane Representation

0 1 B
q

0

q
1

q
2

q
3

q
4

q
5

B R q
1 B R q

2 B R q
acc

0 R q
1 1 R q

1 B L q
3

0 R q
2 1 R q

2 B L q
4

B L q
5 1 R q

rej B R q
acc

0 R q
rej B R q

accB L q
5

0 L q
5 1 L q

5 B R q
0

Turing Machines, Formally

● A Turing machine is an 8-tuple (Q, Σ, Γ, δ, q0,
qacc, qrej, B), where

● Q is a finite set of states,
● Σ is a finite input alphabet,
● Γ is a finite tape alphabet, with Σ ⊆ Γ,
● δ : Q × Γ → Q × Γ × {R, L} is the transition function,

● q0 ∈ Q is the start state,

● qacc ∈ Q is the accept state,

● qrej ∈ Q, qrej ≠ qacc, is the reject state, and

● B ∈ Γ – Σ is the blank symbol.

The Language of a Turing Machine

● The language of a TM M is the set

ℒ(M) = { w ∈ Σ* | M enters qacc when run on w }

● If there is a TM M such that ℒ(M) = L, we say that
L is Turing-recognizable.

● “Recognizable” for short.
● These languages are sometimes called recursively

enumerable.

● Any regular language is recognizable (why?)

● Harder fact: Any context-free language is
recognizable.

Programming Turing Machines

Programming Turing Machines

● Let's begin with a simple language over
Σ = {0, 1}:

● BALANCE = { w ∈ Σ* | w contains the
same number of 0s and 1s }

● How might we build a TM for BALANCE?

The Intuition

● Match the first symbol on the tape with
the next available symbol that matches it.

● Match the first symbol on the tape with
the next available symbol that matches it.

● Repeat until no symbols are left.
● If everything matches, we're done.
● If there is a mismatch, report failure.

TM for BALANCE

0 1 B
q

st Acceptq
m0RB q

m1RB

q
m0 0 R q

m0 Rejectx L q
ret

q
m1 x L q

ret Reject1 R q
m1

q
ret B R q

st0 L q
ret 1 L q

ret

x
q

stRx

q
m0Rx

q
m1Rx

q
retLx

The Key Insight

● Our construction worked because we
could make the finite-state control hold
extra information (which symbol we had
matched).

● General TM design trick: Treat the
finite state control as a combination
control/finite memory.

● Can hold any finite amount of information
by just replicating important states the
appropriate number of times.

A More Elaborate Language

● Consider Σ = { 1, ×, = } and the language

MULTIPLY = { 1n × 1m = 1mn | m, n ∈ ℕ }

● This language is neither regular nor
context-free, but it is recursively
enumerable.

● How would we build a TM for it?

A Turing Machine Subroutine

● A subroutine in a TM is state that, when
entered:
● Performs some specific task on the tape, then
● Terminates in a well-specified state.

● Complex Turing machines can be broken down
into smaller subroutines as follows:
● The start state fires off the first subroutine.
● After the first subroutine terminates, the next

begins.
● (etc.)
● The machine may accept or reject at any point.

Key Idea: Subroutines

● Checking whether a string is in
MULTIPLY requires several different
steps:
● Check that the string is formatted correctly.
● Compute m × n.
● Confirm that m × n matches what's given.

● Let's design a subroutine for each of
these.

Validating the Input
● High-level idea:

● Shift the input over by one step.

● Check the structure of the input.

● End up in a new state looking at the first
character of the input if successful.

1 × 1 = 1 1 × 1 = 1

1 × 1 = 1

1 × 1 = 1

Step One: Shift the Input

q
s B R q

1

1 × = B
B R q

× B R q
= B R D

q
1 1 R q

1 1 R q
× 1 R q

= 1 L q
R

q
× × R q

1 × R q
× × R q

= × L q
R

q
= = R q

1 = R q
× = R q

= = L q
R

q
R 1 L q

R × L q
R = L q

R B R D

Step Two: Verify the Input

1 × =
q

st

B
q

stR1 Reject Rejectq
×R×

q
× q

×R1 Reject RejectR= q
=

q
= q

=R1 Reject Reject q
LLB

q
L q

LL1 q
LL× q

LL= DRB

Putting it Together: Shift/Verify

q
s B R q

1

1 × = B
B R q

× B R q
= B R q

s2

q
1 1 R q

1 1 R q
× 1 R q

= 1 L q
R

q
× × R q

1 × R q
× × R q

= × L q
R

q
= = R q

1 = R q
× = R q

= = L q
R

q
R 1 L q

R × L q
R = L q

R B R q
s2

q
L

q
=

q
L2

q
×

q
=2

q
st

q
×2

q
s2 Rejectq

s2R1 q
×2R× Reject

Rejectq
×2R1 Rejectq

=2R=
Rejectq

=2R1 Reject q
L2LB

q
L2L1 q

L2L× q
L2L= DRB

Step Three: Doing the Multiply

1 1 × 1 =1 11

 1 × 1 =1 1 1 1 11

 × 1 =1 1 1 1 1 11 1 1

Step Four: Checking the Multiply

 × 1 =1 1 1 1 1 11 1

 × 1 =1 1 1 1 11

 × 1 =1 1 11

 × 1 =1 1

Why This Matters

● TMs can solve a large class of problems, but
they can be enormously complicated.

● We now have two tricks for designing TMs:
● Constant storage
● Subroutines

● We can use these tricks to show that if we
can get each individual piece working, we
can solve a large problem with a TM.

Next Time

● Programming Turing Machines
● A cleaner way to think about TMs.

● The Power of Turing Machines
● Just how much expressive power do TMs

have?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

