Beyond Context-Free Languages

Are some problems inherently harder than others?

The Pumping Lemma for Regular Languages

- Let L be a regular language, so there is a DFA D for L.
- A sufficiently long string $w \in L$ must visit some state in D twice.
- This means w went through a loop in the D.
- By replicating the characters that went through the loop in the D, we can "pump" a portion of w to produce new strings in the language.

The Pumping Lemma Intuition

- The model of computation used has a finite description.
- For sufficiently long strings, the model of computation must repeat some step of the computation to recognize the string.
- Under the right circumstances, we can iterate this repeated step zero or more times to produce more and more strings.

Recall: Parse Trees

$$
\begin{aligned}
& \mathbf{R} \rightarrow \mathbf{a}|\mathrm{b}| \mathrm{c} \mid \ldots \\
& \mathbf{R} \rightarrow \text { " }{ }^{\prime \prime} \\
& \mathbf{R} \rightarrow \varnothing \\
& \mathbf{R} \rightarrow \mathbf{R} \mathbf{R} \\
& \mathbf{R} \rightarrow \mathbf{R} \text { " } \mid " \mathbf{R} \\
& \mathbf{R} \rightarrow \mathbf{R} \text { * } \\
& \mathbf{R} \rightarrow(\mathbf{R})
\end{aligned}
$$

Parse Trees Revisited

$$
\begin{aligned}
& \mathbf{S} \rightarrow[\mathbf{P}] \\
& \mathbf{P} \rightarrow \mathbf{R} \mathbf{R} \mid \mathrm{a} \\
& \mathbf{R} \rightarrow \mathbf{(P)} \mid \mathrm{b}
\end{aligned}
$$

Parse Trees Revisited

$$
\begin{aligned}
& S \rightarrow[\mathbf{P}] \\
& \mathbf{P} \rightarrow \mathbf{R} \mid \mathrm{R} \\
& \mathbf{R} \rightarrow \mathbf{(P) | b}
\end{aligned}
$$

Parse Trees Revisited

$$
\begin{aligned}
& \mathbf{S} \rightarrow[\mathbf{P}] \\
& \mathbf{P} \rightarrow \mathbf{R} \mathbf{R} \mid \mathrm{a} \\
& \mathbf{R} \rightarrow \mathbf{(P)} \mid \mathrm{b}
\end{aligned}
$$

The Pumping Lemma for CFLs

For any context-free language L,
There exists a positive natural number n such that
For any $w \in L$ with $|w| \geq n$,
There exists strings u, v, x, y, z such that
For any natural number i,

$$
\begin{array}{ll}
w=u v x y z, & \text { w can be broken into five pieces, } \\
|v x y| \leq n, & \begin{array}{l}
\text { where the middle three pieces } \\
\text { aren't too long, }
\end{array} \\
|v y|>0 & \begin{array}{l}
\text { where the } 2^{\text {nd }} \text { and } 4^{\text {th }} \text { pieces aren't } \\
\text { both empty, and }
\end{array} \\
u v^{i} x y^{i} z \in L & \begin{array}{l}
\text { where the } 2^{\text {nd }} \text { and } 4^{\text {th }} \text { pieces can } \\
\text { be replicated } 0 \text { or more times }
\end{array}
\end{array}
$$

Note that we pump both v and y at the same time, not just one or the other.

The Pumping Lemma for CFLs

For any context-free language L,
There exists a positive natural number n such that
For any $w \in L$ with $|w| \geq n$,
There exists strings u, v, x, y, z such that The two strings to For any natural number i,
pump, collectively, cannot be too long.

They also must be close to one another.

$$
w=u v x y z, \quad w \text { can be broken into five pieces, }
$$

$$
|v x y| \leq n
$$

$$
|v y|>0
$$

$$
u v^{i x y} y^{i z} \in L
$$

where the middle three pieces aren't too long,
where the $2^{\text {nd }}$ and $4^{\text {th }}$ pieces are 't both empty, and
where the $2^{\text {nd }}$ and $4^{\text {th }}$ pieces can be replicated 0 or more times

The Pumping Lemma for CFLs

For any context-free language L,
There exists a positive natural number n such that
For any $w \in L$ with $|w| \geq n$,
There exists strings u, v, x, y vouch that
For any natural number $i, \begin{aligned} & \text { The pumping length } \\ & \text { is not simple; see }\end{aligned}$
$w=u v x y z, w$ can be bro sipser for details.
$|v x y| \leq n, \quad$ aren't too long,
$|v y|>0$
where the $2^{\text {nd }}$ and $4^{\text {th }}$ pieces are' t
both empty, and
$u v^{i} x y^{i} z \in L$
where the $2^{\text {nd }}$ and $4^{\text {th }}$ pieces can be replicated o or more times

The Pumping Lemma Game

$L=\left\{w \in\{0,1,2\}^{*} \mid w\right.$ has the same number of $\left.0 \mathrm{~s}, 1 \mathrm{~s}, 2 \mathrm{~s}\right\}$

ADVERSARY

Maliciously choose pumping length n.

Maliciously split
$w=u v x y z$, with $|v y|>0$ and $|v x y| \leq n$

Grrr! Aaaargh!

YOU

Cleverly choose a string

$$
w \in L,|w| \geq n
$$

$$
0^{\mathrm{n}} 1^{\mathrm{n}} 2^{\mathrm{n}}
$$

For any context-free language L,
There exists a positive natural number n such that
For any $w \in L$ with $|w| \geq n$,
There exists strings u, v, x, y, z such that
For any natural number i,

$$
\begin{aligned}
& w=u v x y z, \\
& |v x y| \leq n, \\
& |v y|>0 \\
& u v^{i} x y^{i} z \in L
\end{aligned}
$$

Theorem: $L=\left\{w \in\{0,1,2\}^{*} \mid w\right.$ has the same \# of $\left.0 \mathrm{~s}, 1 \mathrm{~s}, 2 \mathrm{~s}\right\}$ is not a CFL.
Proof: By contradiction; assume L is a CFL. Let n be the pumping length guaranteed by the pumping lemma. Let $w=0^{\mathrm{n}} 1^{\mathrm{n}} 2^{\mathrm{n}}$. Thus $w \in L$ and $|w|=3 n \geq n$. Therefore we can write $w=u v x y z$ such that $|v x y| \leq n$, $|v y|>0$, and for any $i \in \mathbb{N}, u v^{i} x y^{i} z \in L$. We consider two cases for $v x y$:
Case 1: vxy is completely contained in $0^{n}, 1^{n}$, or 2^{n}. In that case, the string $u v^{2} x y^{2} z \notin L$, because this string has more copies of 0 or 1 or 2 than the other two symbols.
Case 2: vxy either consists of 0 s and 1 s or of 1 s and 2 s (it cannot consist of all three symbols, because $|v x y| \leq n$). Then if $v x y$ has no 2 s in it, $u v^{2} x y^{2} z \notin L$ since it contains more 0 s or 1 s than 2 s . Similarly, if $v x y$ has no 0s in it $u v^{2} x y^{2} z \notin L$ because it contains more 1s or $2 s$ than 0 s.

In either case, we contradict the pumping lemma. Thus our assumption must have been wrong, so L is not a CFL.

Using the Pumping Lemma

- Keep the following in mind when using the context-free pumping lemma when $w=u v x y z$:
- Both v and y must be pumped at the same time.
- v and y need not be contiguous in the string.
- One of v and y may be empty.
- vxy may be anywhere in the string.
- I strongly suggest reading through Sipser to get a better sense for how these proofs work.

Non-CFLs

- Regular languages cannot count once:

$$
\left\{0^{n} 1^{n} \mid n \in \mathbb{N}\right\} \text { is not regular. }
$$

- CFLs cannot count twice:
- $\left\{0^{n} 1^{n} 2^{n} \mid n \in \mathbb{N}\right\}$ is not context-free.
- A finite number of states cannot count arbitrarily high.
- With a single stack and finite states, cannot track two arbitrary quantities.

(Non) Closure Properties of CFLs

(Non) Closure Properties of CFLs

- Now that we have a single non-context-free language, we can prove that CFLs are not closed under certain operations.
- Let $L_{1}=\left\{0^{\mathrm{n}} 1^{\mathrm{n}} \mathbf{2}^{\mathrm{m}} \mid n, m \in \mathbb{N}\right\}$
- Let $L_{2}=\left\{0^{\mathrm{m}} 1^{\mathrm{n}} 2^{\mathrm{n}} \mid n, m \in \mathbb{N}\right\}$
- Both of these languages are context-free.
- Can either find an explicit CFG, or note that these languages are the concatenation of two CFLs.
- But $L_{1} \cap L_{2}=\left\{0^{\mathrm{n}} 1^{\mathrm{n}} 2^{\mathrm{n}} \mid n \in \mathbb{N}\right\}$, which is not a CFL.
- Context-free languages are not closed under intersection.

(Non) Closure under Complement

- Recall that if L is regular, \bar{L} is regular as well.
- However, if L is context-free, \bar{L} may not be a context-free language.
- Intuition: Using union and complement, we can construct the intersection.

(Non) Closure under Subtraction

- Theorem: If L_{1} and L_{2} are regular, $L_{1}-L_{2}$ is regular as well.
- However, if L_{1} and L_{2} are context-free, $L_{1}-L_{2}$ may not be context-free.
- Intuition: We can construct the complement from the difference.
- Σ^{*} is context-free because it is regular.
- But $\Sigma^{*}-L=\bar{L}$, which may not be context-free.

Summary of CFLs

- CFLs are strictly more powerful than the regular languages.
- CFLs can be described by CFGs (generation) or PDAs (recognition).
- CFGs encompass two classes of languages - deterministic and nondeterministic CFLs.
- Context-free languages have a pumping lemma just as regular languages do.

Problem Session

- Weekly problem session meets tonight at 7PM in 380-380X.
- Covers CFLs and their limits.
- Optional, but highly recommended!

Midterm and Problem Set 4 Graded

Will be distributed at end of lecture. After that, pick up at my office (Gates 178).

Beyond CFLs

Computability Theory

- Finite automata represent computers with bounded memory.
- They accept precisely the regular languages.
- Pushdown automata represent computers with a weak infinite memory.
- They accept precisely the context-free languages.
- Regular and context-free languages are comparatively weak.

Languages recognizable by any feasible computing machine

All Languages

That same drawing, to scale.

All Languages

Defining Computability

- In order to talk about what languages we could ever hope to recognize with a computer, we need to formalize our model of computation with an automaton.
- The standard automaton for this job is the Turing machine, named after Alan Turing, the "Father of Computer Science."

A Better Memory Device

- The pushdown automaton used a (potentially infinite) stack as its memory device.
- This severely limits how the memory can be used:
- Accessing old data only possible after discarding old data.
- Can't keep track of multiple unbounded quantities.

A Better Memory Device

- A Turing machine is a finite automaton equipped with an infinite tape as its memory.
- The tape begins with the input to the machine written on it, followed by infinitely many blank cells.
- The machine has a tape head that can read and write a single memory cell at a time.

00
1

The Turing Machine

- A Turing machine consists of three parts:
- A finite-state control used to determine which actions to take,
- an infinite tape serving as both input and scratch space, and
- a tape head that can read and write the tape and move left or right.
- At each step, the Turing machine
- Replaces the contents of the current cell with a new symbol (which could optionally be the same symbol as before),
- Changes state, and
- Moves the tape head to the left or to the right.

A Simple Turing Machine

This special accept state causes the machine to immediately accept.

Each transition of the form

$$
x \rightarrow y, D
$$

means "upon reading \boldsymbol{X}, replace it with symbol \boldsymbol{y} and move the tape head in direction \mathbf{D} (which is either \mathbf{L} or \mathbf{R}). The letter \mathbf{B} represents the blank symbol.

This special reject state causes the machine to immediately reject.

Acceptance

- Unlike the automata that we've seen before, the Turing machine can revisit characters from the input.
- The machine decides when it terminates, rather than stopping when no input is left.
- The Turing machine accepts if it enters a special accept state. It rejects if it enters a special reject state.
- Turing machines can loop forever.
- More on that later...

A More Powerful Turing Machine

- Let $\Sigma=\{0,1\}$ and let PALINDROME $=\left\{w \in \Sigma^{*} \mid w\right.$ is a palindrome $\}$
- We can build a TM for PALINDROME as follows:
- Look at the leftmost character of the string.
- Scan across the tape until we find the end of the string.
- If the last character doesn't match, reject the input.
- Sweep back to the left of the tape and repeat.
- If every character becomes matched, accept.

A More Sane Representation

	0		1		B	
q_{0}	B	$\mathrm{R} \mathrm{q}_{1}$	B	$\mathrm{R} \mathrm{q}_{2}$	B	$R \mathrm{q}_{\text {acc }}$
q_{1}	0	$\mathrm{R} \mathrm{q}_{1}$	1	$\begin{array}{lll}\mathrm{R} & \mathrm{q}_{1} \\ \mathrm{R}\end{array}$	B	L q_{3}
q_{2}	0	$\mathrm{R} \mathrm{q}_{2}$	1	$\mathrm{R} \mathrm{q}_{2}$	B	L q_{4}
q_{3}	B	L q_{5}	1	$R \mathrm{q}_{\mathrm{rej}}$	B	$R \mathrm{q}_{\text {acc }}$
q_{4}	0	$R \mathrm{q}_{\text {rej }}$	B	L q_{5}	B	$R \mathrm{q}_{\text {aco }}$
q_{5}	0	L q_{5}	1	L q_{5}	B	R q_{0}

Turing Machines, Formally

- A Turing machine is an 8 -tuple ($\mathrm{Q}, \Sigma, \Gamma, \delta, \mathrm{q}_{0}$, $\mathrm{q}_{\mathrm{acc}}, \mathrm{q}_{\mathrm{rej}}$, B), where
- Q is a finite set of states,
- Σ is a finite input alphabet,
- Γ is a finite tape alphabet, with $\Sigma \subseteq \Gamma$,
- $\delta: \mathrm{Q} \times \Gamma \rightarrow \mathrm{Q} \times \Gamma \times\{\mathrm{R}, \mathrm{L}\}$ is the transition function,
- $\mathrm{q}_{0} \in \mathrm{Q}$ is the start state,
- $q_{\text {acc }} \in Q$ is the accept state,
- $\mathrm{q}_{\mathrm{rej}} \in \mathrm{Q}, \mathrm{q}_{\mathrm{rej}} \neq \mathrm{q}_{\mathrm{acc}}$, is the reject state, and
- $B \in \Gamma-\Sigma$ is the blank symbol.

The Language of a Turing Machine

- The language of a TM M is the set

$$
\mathscr{A}(\mathrm{M})=\left\{w \in \Sigma^{*} \mid M \text { enters } \mathrm{q}_{\mathrm{acc}} \text { when run on } w\right\}
$$

- If there is a TM M such that $\mathscr{A}(M)=L$, we say that L is Turing-recognizable.
- "Recognizable" for short.
- These languages are sometimes called recursively enumerable.
- Any regular language is recognizable (why?)
- Harder fact: Any context-free language is recognizable.

Programming Turing Machines

Programming Turing Machines

- Let's begin with a simple language over $\Sigma=\{0,1\}$:
- BALANCE $=\left\{w \in \Sigma^{*} \mid w\right.$ contains the same number of 0s and 1s \}
- How might we build a TM for BALANCE?

The Intuition

- Match the first symbol on the tape with the next available symbol that matches it.
- Match the first symbol on the tape with the next available symbol that matches it.
- Repeat until no symbols are left.
- If everything matches, we're done.
- If there is a mismatch, report failure.

TM for BALANCE

	0			1			B Accept		X		
$\mathrm{q}_{\text {st }}$	B	R	$\mathrm{q}_{\mathrm{m} 0}$	B	R	$\mathrm{q}_{\mathrm{m} 1}$			x	R	$\mathrm{q}_{\text {st }}$
$\mathrm{q}_{\text {m0 }}$	0	R	q_{m}	X	L	$\mathrm{q}_{\mathrm{ret}}$	Rej		x	R	q_{mo}
$\mathrm{q}_{\mathrm{m} 1}$	x	L	$\mathrm{q}_{\text {ret }}$	1	R	$\mathrm{q}_{\mathrm{m} 1}$	Rej		x	R	$\mathrm{q}_{\mathrm{m} 1}$
$\mathrm{q}_{\text {ret }}$	0	L	$\mathrm{q}_{\text {ret }}$	1	L	$\mathrm{q}_{\text {ret }}$	B R	$\mathrm{q}_{\text {st }}$	x	L	$\mathrm{q}_{\text {ret }}$

The Key Insight

- Our construction worked because we could make the finite-state control hold extra information (which symbol we had matched).
- General TM design trick: Treat the finite state control as a combination control/finite memory.
- Can hold any finite amount of information by just replicating important states the appropriate number of times.

A More Elaborate Language

- Consider $\Sigma=\{1, x,=\}$ and the language

$$
\text { MULTIPLY }=\left\{1^{n} \times 1^{m}=1^{m n} \mid m, n \in \mathbb{N}\right\}
$$

- This language is neither regular nor context-free, but it is recursively enumerable.
- How would we build a TM for it?

A Turing Machine Subroutine

- A subroutine in a TM is state that, when entered:
- Performs some specific task on the tape, then
- Terminates in a well-specified state.
- Complex Turing machines can be broken down into smaller subroutines as follows:
- The start state fires off the first subroutine.
- After the first subroutine terminates, the next begins.
- (etc.)
- The machine may accept or reject at any point.

Key Idea: Subroutines

- Checking whether a string is in MULTIPLY requires several different steps:
- Check that the string is formatted correctly.
- Compute $m \times n$.
- Confirm that $m \times n$ matches what's given.
- Let's design a subroutine for each of these.

Validating the Input

- High-level idea:
- Shift the input over by one step.

$$
1 \times 1=1 \quad \square \quad 1 \times 1
$$

- Check the structure of the input.

$$
\begin{array}{|l|l|l|l|l|l|}
\hline & 1 & \times & 1 \\
\hline
\end{array}
$$

- End up in a new state looking at the first character of the input if successful.

$$
1 \times 1=1
$$

Step One: Shift the Input

	1						$=$			B		
q_{5}	B	R	q_{1}	B	R	q_{x}	B	R	$\mathrm{q}=$	B	R	D
q_{1}	1	R	q_{1}	1	R	q_{x}	1	R	$\mathrm{q}_{=}$	1	L	q_{R}
q_{x}	\times	R	q_{1}	\times	R	q_{x}	\times	R	$\mathrm{q}_{=}$	\times	L	a_{R}
$\mathrm{q}=$	$=$	R	q_{1}	$=$	R	q_{x}	$=$	R	q_{s}	$=$	L	a_{R}
q_{R}	1	L	q_{R}	\times	L	q_{R}	$=$	L	a_{R}	B	R	D

Step Two: Verify the Input

	1			\times			$=$		B		
$\mathrm{q}_{\text {st }}$	1	R	$\mathrm{q}_{\text {st }}$	\times	R	$\mathrm{q}_{\text {x }}$		ject		崖	
q_{x}	1	R	q_{x}		eject			R		,	
$\mathrm{q}_{=}$	1	R	$\mathrm{q}=$		eject			ject	B	L	q_{1}
q_{L}	1	L	q_{L}	\times	L	q_{L}	=	L q	B	R	D

Putting it Together: Shift/Verify

Step Three: Doing the Multiply

Step Four: Checking the Multiply

$$
\begin{aligned}
& \hline x \\
& \hline \times 1 \\
& \hline
\end{aligned}
$$

$$
\begin{array}{|l|l|l|l|l|l|l|}
\hline \times & 1 & 1 & 1 & = & 1 & 1 \\
\hline
\end{array}
$$

$$
\times 111=
$$

Why This Matters

- TMs can solve a large class of problems, but they can be enormously complicated.
- We now have two tricks for designing TMs:
- Constant storage
- Subroutines
- We can use these tricks to show that if we can get each individual piece working, we can solve a large problem with a TM.

Next Time

- Programming Turing Machines
- A cleaner way to think about TMs.
- The Power of Turing Machines
- Just how much expressive power do TMs have?

