Beyond Context-Free Languages

Are some problems inherently harder than others?

What sorts of — languages are out here?

The Pumping Lemma for Regular Languages

- Let *L* be a regular language, so there is a DFA *D* for *L*.
- A sufficiently long string $w \in L$ must visit some state in D twice.
- This means *w* went through a loop in the *D*.
- By replicating the characters that went through the loop in the *D*, we can "pump" a portion of *w* to produce new strings in the language.

The Pumping Lemma Intuition

- The model of computation used has a finite description.
- For sufficiently long strings, the model of computation must repeat some step of the computation to recognize the string.
- Under the right circumstances, we can iterate this repeated step zero or more times to produce more and more strings.

Recall: Parse Trees

Parse Trees Revisited

 $S \rightarrow [P]$ $P \rightarrow RR \mid a$ $R \rightarrow (P) \mid b$

Parse Trees Revisited

 $S \rightarrow [P]$ $P \rightarrow RR \mid a$ $R \rightarrow (P) \mid b$

The Pumping Lemma for CFLs

For any context-free language L,

There exists a positive natural number *n* such that **For any** $w \in L$ with $|w| \geq n$,

There exists strings *u*, *v*, *x*, *y*, *z* such that

For any natural number *i*,

w = uvxyz, w can be broken into five pieces,

Note that we pump both v and y at the	$ vxy \leq n$,	where the middle three pieces aren't too long,
same time, not just one or the other.	vy > 0	where the 2 nd and 4 th pieces aren [.] t both empty, and
	$uv^ixy^iz\in L$	where the 2 nd and 4 th pieces can be replicated 0 or more times

The Pumping Lemma for CFLs

For any context-free language L,

There exists a positive natural number *n* such that **For any** $w \in L$ with $|w| \geq n$,

There exists strings *u*, *v*, *x*, *y*, *z* such that

w = uvxyz, w can be broken into five pieces,

For any natural number *i*,

pump, collectively, cannot be too long.

The two strings to

 $|vxy| \leq n$, aren't too long, |vy| > 0both empty, and They also must $uv^i x y^i z \in L$ be close to one another.

where the middle three pieces where the 2nd and 4th pieces aren't where the 2nd and 4th pieces can be replicated o or more times

The Pumping Lemma for CFLs

For any context-free language *L*,

There exists a positive natural number *n* such that

For any $w \in L$ with $|w| \ge n$,

There exists strings $u, v, x, y \xrightarrow{\gamma}$ such that

For any natural number *i*, The pumping length is <u>not</u> simple; see

w = uvxyz, w can be bro sipser for details.

 $|vxy| \le n$,where the middle middle mree pieces
aren't too long,|vy| > 0where the 2^{nd} and 4^{th} pieces aren't
both empty, and $uv^ixy^iz \in L$ where the 2^{nd} and 4^{th} pieces can

be replicated o or more times

The Pumping Lemma Game

 $L = \{w \in \{0,1,2\}^* \mid w \text{ has the same number of } 0s, 1s, 2s\}$

0ⁿ**1**ⁿ**2**ⁿ

For any context-free language *L*, There exists a positive natural number *n* such that For any $w \in L$ with $|w| \ge n$, There exists strings *u*, *v*, *x*, *y*, *z* such that For any natural number *i*, w = uvxyz, $|vxy| \le n$, |vy| > 0

Theorem: $L = \{w \in \{0,1,2\}^* \mid w \text{ has the same } \# \text{ of } 0s, 1s, 2s\}$ is not a CFL.

 $uv^i x y^i z \in L$

- *Proof:* By contradiction; assume *L* is a CFL. Let *n* be the pumping length guaranteed by the pumping lemma. Let $w = 0^{n}1^{n}2^{n}$. Thus $w \in L$ and $|w| = 3n \ge n$. Therefore we can write w = uvxyz such that $|vxy| \le n$, |vy| > 0, and for any $i \in \mathbb{N}$, $uv^{i}xy^{i}z \in L$. We consider two cases for vxy:
 - Case 1: vxy is completely contained in 0^n , 1^n , or 2^n . In that case, the string $uv^2xy^2z \notin L$, because this string has more copies of 0 or 1 or 2 than the other two symbols.
 - Case 2: vxy either consists of 0s and 1s or of 1s and 2s (it cannot consist of all three symbols, because $|vxy| \le n$). Then if vxy has no 2s in it, $uv^2xy^2z \notin L$ since it contains more 0s or 1s than 2s. Similarly, if vxy has no 0s in it $uv^2xy^2z \notin L$ because it contains more 1s or 2s than 0s.

In either case, we contradict the pumping lemma. Thus our assumption must have been wrong, so L is not a CFL.

Using the Pumping Lemma

- Keep the following in mind when using the context-free pumping lemma when w = uvxyz:
 - Both *v* and *y* must be pumped at the same time.
 - *v* and *y* need not be contiguous in the string.
 - One of *v* and *y* may be empty.
 - *vxy* may be anywhere in the string.
- I **strongly suggest** reading through Sipser to get a better sense for how these proofs work.

Non-CFLs

- Regular languages cannot count once: $\{ 0^n 1^n \mid n \in \mathbb{N} \}$ is not regular.
- CFLs cannot count *twice*:
 - { $0^n 1^n 2^n \mid n \in \mathbb{N}$ } is not context-free.
- A finite number of states cannot count arbitrarily high.
- With a single stack and finite states, cannot track two arbitrary quantities.

(Non) Closure Properties of CFLs

(Non) Closure Properties of CFLs

- Now that we have a single non-context-free language, we can prove that CFLs are not closed under certain operations.
- Let $L_1 = \{ \mathbf{0}^n \mathbf{1}^n \mathbf{2}^m \mid n, m \in \mathbb{N} \}$
- Let $L_2 = \{ \mathbf{0}^m \mathbf{1}^n \mathbf{2}^n \mid n, m \in \mathbb{N} \}$
- Both of these languages are context-free.
 - Can either find an explicit CFG, or note that these languages are the concatenation of two CFLs.
- But $L_1 \cap L_2 = \{ \mathbf{0}^n \mathbf{1}^n \mathbf{2}^n \mid n \in \mathbb{N} \}$, which is not a CFL.
- Context-free languages are not closed under intersection.

(Non) Closure under Complement

- Recall that if L is regular, \overline{L} is regular as well.
- However, if L is context-free, \overline{L} may not be a context-free language.
- Intuition: Using union and complement, we can construct the intersection.

(Non) Closure under Subtraction

- **Theorem:** If L_1 and L_2 are regular, $L_1 L_2$ is regular as well.
- However, if L_1 and L_2 are context-free, $L_1 - L_2$ may not be context-free.
- Intuition: We can construct the complement from the difference.
 - Σ^* is context-free because it is regular.
 - But $\Sigma^* L = \overline{L}$, which may not be context-free.

Summary of CFLs

- CFLs are strictly more powerful than the regular languages.
- CFLs can be described by CFGs (generation) or PDAs (recognition).
- CFGs encompass two classes of languages – deterministic and nondeterministic CFLs.
- Context-free languages have a pumping lemma just as regular languages do.

Problem Session

- Weekly problem session meets tonight at 7PM in 380-380X.
 - Covers CFLs and their limits.
- Optional, but highly recommended!

Midterm and Problem Set 4 Graded

Will be distributed at end of lecture. After that, pick up at my office (Gates 178).

Beyond CFLs

Computability Theory

- **Finite automata** represent computers with bounded memory.
 - They accept precisely the **regular languages**.
- **Pushdown automata** represent computers with a weak infinite memory.
 - They accept precisely the **context-free languages**.
- Regular and context-free languages are comparatively weak.

Languages recognizable by any feasible computing machine

All Languages

That same drawing, to scale.

All Languages

Defining Computability

- In order to talk about what languages we could ever hope to recognize with a computer, we need to formalize our model of computation with an automaton.
- The standard automaton for this job is the **Turing machine**, named after Alan Turing, the "Father of Computer Science."

A Better Memory Device

- The pushdown automaton used a (potentially infinite) stack as its memory device.
- This severely limits how the memory can be used:
 - Accessing old data only possible after discarding old data.
 - Can't keep track of multiple unbounded quantities.

A Better Memory Device

- A **Turing machine** is a finite automaton equipped with an **infinite tape** as its memory.
- The tape begins with the input to the machine written on it, followed by infinitely many blank cells.
- The machine has a **tape head** that can read and write a single memory cell at a time.

The Turing Machine

- A Turing machine consists of three parts:
 - A **finite-state control** used to determine which actions to take,
 - an infinite tape serving as both input and scratch space, and
 - a tape head that can read and write the tape and move left or right.
- At each step, the Turing machine
 - Replaces the contents of the current cell with a new symbol (which could optionally be the same symbol as before),
 - Changes state, and
 - Moves the tape head to the left or to the right.

Acceptance

- Unlike the automata that we've seen before, the Turing machine can revisit characters from the input.
- The machine decides when it terminates, rather than stopping when no input is left.
- The Turing machine accepts if it enters a special **accept state**. It rejects if it enters a special **reject state**.
- Turing machines can loop forever.
 - More on that later...

A More Powerful Turing Machine

• Let $\Sigma = \{0, 1\}$ and let

 $PALINDROME = \{ w \in \Sigma^* \mid w \text{ is a palindrome} \}$

- We can build a TM for *PALINDROME* as follows:
 - Look at the leftmost character of the string.
 - Scan across the tape until we find the end of the string.
 - If the last character doesn't match, reject the input.
 - Sweep back to the left of the tape and repeat.
 - If every character becomes matched, accept.

A More Sane Representation

		0			1		В			
q ₀	В	R	q ₁	В	R	q ₂	В	R	q_{acc}	
q ₁	0	R	q ₁	1	R	q ₁	В	L	q ₃	
q ₂	0	R	q ₂	1	R	q ₂	В	L	q ₄	
q ₃	В	L	q ₅	1	R	q _{rej}	В	R	q_{acc}	
q ₄	0	R	q _{rej}	В	L	q ₅	В	R	q_{acc}	
q ₅	0	L	q ₅	1	L	q ₅	В	R	\mathbf{q}_{0}	

Turing Machines, Formally

- A Turing machine is an 8-tuple (Q, Σ , Γ , δ , $q_{_0},$ $q_{_{acc}},$ $q_{_{rej}},$ B), where
 - Q is a finite set of states,
 - Σ is a finite **input alphabet**,
 - Γ is a finite **tape alphabet**, with $\Sigma \subseteq \Gamma$,
 - $\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{R, L\}$ is the **transition function**,
 - $q_0 \in Q$ is the **start state**,
 - q_{acc} ∈ Q is the accept state,
 - $q_{rej} \in Q$, $q_{rej} \neq q_{acc}$, is the **reject state**, and
 - $B \in \Gamma \Sigma$ is the **blank symbol**.

The Language of a Turing Machine

• The **language of a TM** M is the set

 $\mathscr{L}(\mathbf{M}) = \{ w \in \Sigma^* \mid M \text{ enters } \mathbf{q}_{acc} \text{ when run on } w \}$

- If there is a TM *M* such that $\mathscr{L}(M) = L$, we say that *L* is **Turing-recognizable**.
 - "Recognizable" for short.
 - These languages are sometimes called recursively enumerable.
- Any regular language is recognizable (why?)
- Harder fact: Any context-free language is recognizable.

Programming Turing Machines

Programming Turing Machines

- Let's begin with a simple language over $\Sigma = \{0, 1\}$:
- $BALANCE = \{ w \in \Sigma^* \mid w \text{ contains the same number of } 0 \text{ s and } 1 \text{ s} \}$
- How might we build a TM for *BALANCE*?

The Intuition

- Match the first symbol on the tape with the next available symbol that matches it.
- Match the first symbol on the tape with the next available symbol that matches it.
- Repeat until no symbols are left.
- If everything matches, we're done.
- If there is a mismatch, report failure.

TM for BALANCE

	0				1			В		X		
q _{st}	В	R	q _{m0}	В	R	Q _{m1}	Accept			X	R	q _{st}
q _{m0}	0	R	q _{m0}	Х	L	q _{ret}	Reject			Х	R	Q _{m0}
q _{m1}	X	L	q _{ret}	1	R	Q _{m1}	Reject		ct	Х	R	Q _{m1}
q _{ret}	0	L	q _{ret}	1	L	q _{ret}	В	R	q _{st}	X	L	q _{ret}

The Key Insight

- Our construction worked because we could make the finite-state control hold extra information (which symbol we had matched).
- *General TM design trick*: Treat the finite state control as a combination control/finite memory.
- Can hold any finite amount of information by just replicating important states the appropriate number of times.

A More Elaborate Language

- Consider $\Sigma = \{ \mathbf{1}, \mathbf{x}, \mathbf{z} \}$ and the language MULTIPLY = $\{ \mathbf{1}^n \times \mathbf{1}^m = \mathbf{1}^{mn} \mid m, n \in \mathbb{N} \}$
- This language is neither regular nor context-free, but it is recursively enumerable.
- How would we build a TM for it?

A Turing Machine Subroutine

- A **subroutine** in a TM is state that, when entered:
 - Performs some specific task on the tape, then
 - Terminates in a well-specified state.
- Complex Turing machines can be broken down into smaller subroutines as follows:
 - The start state fires off the first subroutine.
 - After the first subroutine terminates, the next begins.
 - (etc.)
 - The machine may accept or reject at any point.

Key Idea: Subroutines

- Checking whether a string is in *MULTIPLY* requires several different steps:
 - Check that the string is formatted correctly.
 - Compute $m \times n$.
 - Confirm that $m \times n$ matches what's given.
- Let's design a subroutine for each of these.

Validating the Input

- High-level idea:
 - Shift the input over by one step.

• Check the structure of the input.

• End up in a new state looking at the first character of the input if successful.

$$1 \times 1 = 1$$

Step One: Shift the Input

	1			×			=			В		
q _s	В	R	q ₁	В	R	q _×	В	R	Q_	В	R	D
q ₁	1	R	q ₁	1	R	q_×	1	R	Q_	1	L	\mathbf{q}_{R}
q _×	×	R	q ₁	×	R	q_×	×	R	Q_	×	L	\mathbf{q}_{R}
q_	=	R	q ₁	Ш	R	q_×	Η	R	Q_	Ш	L	q _R
q _R	1	L	q _R	×	L	q _R	Π	L	\mathbf{q}_{R}	В	R	D

Step Two: Verify the Input

		1			×						В		
q _s	t	1	R	q _{st}	× R q _×			F	Reje	ct	Reject		
q,	٢	1	R	q_×	Reject			=	R	q_	R	Reje	ct
q	=	1	R	q_	Reject			F	Reje	ct	В	L	q _L
q	_	1	L	qL	×	L	qL		L	q _L	В	R	D

Putting it Together: Shift/Verify

Step Three: Doing the Multiply

Step Four: Checking the Multiply

Why This Matters

- TMs can solve a large class of problems, but they can be enormously complicated.
- We now have two tricks for designing TMs:
 - Constant storage
 - Subroutines
- We can use these tricks to show that if we can get each individual piece working, we can solve a large problem with a TM.

Next Time

- Programming Turing Machines
 - A cleaner way to think about TMs.
- The Power of Turing Machines
 - Just how much expressive power do TMs have?