

Beyond Context-Free Languages

Are some problems inherently
harder than others?

Regular
Languages CFLsDCFLs

All Languages

What sorts of
languages are out

here?

The Pumping Lemma for Regular Languages

● Let L be a regular language, so there is a
DFA D for L.

● A sufficiently long string w ∈ L must visit
some state in D twice.

● This means w went through a loop in the D.
● By replicating the characters that went

through the loop in the D, we can “pump” a
portion of w to produce new strings in the
language.

The Pumping Lemma Intuition

● The model of computation used has a
finite description.

● For sufficiently long strings, the model of
computation must repeat some step of
the computation to recognize the string.

● Under the right circumstances, we can
iterate this repeated step zero or more
times to produce more and more strings.

Recall: Parse Trees

R → a | b | c | …

R → “ε”

R → Ø

R → RR

R → R “|” R

R → R*

R → (R)

R

R R

|

R R

a a

R

*b

Parse Trees Revisited

S → [P]

P → RR | a

R → (P) | b

Parse Trees Revisited

S → [P]

P → RR | a

R → (P) | b

S

Parse Trees Revisited

S → [P]

P → RR | a

R → (P) | b

()a b

S

[]

Parse Trees Revisited

S → [P]

P → RR | a

R → (P) | b

P

()a b

S

[]

Parse Trees Revisited

S → [P]

P → RR | a

R → (P) | b

P

R R

()a b

S

[]

Parse Trees Revisited

S → [P]

P → RR | a

R → (P) | b

P

R R

()a b

S

[]

Parse Trees Revisited

S → [P]

P → RR | a

R → (P) | b

P

R R

()

P

a b

S

[]

Parse Trees Revisited

S → [P]

P → RR | a

R → (P) | b

P

R R

()

P

a b

S

[]

Parse Trees Revisited

S → [P]

P → RR | a

R → (P) | b

P

R R

()

P

a b

S

[]

Parse Trees Revisited

S → [P]

P → RR | a

R → (P) | b

P

R R

()

P

a b

S

[]

The nonterminal
P appears
twice.

Parse Trees Revisited

S → [P]

P → RR | a

R → (P) | b

P

R R

()

P

a b

S

[]

Parse Trees Revisited

S → [P]

P → RR | a

R → (P) | b

P

R R

()

P

a b

S

[]

Parse Trees Revisited

S → [P]

P → RR | a

R → (P) | b

P

R R

()

P

a b

S

[]

Parse Trees Revisited

S → [P]

P → RR | a

R → (P) | b

P

R R

()

P

a b

S

[]

Parse Trees Revisited

S → [P]

P → RR | a

R → (P) | b

P

R R

()

P

a b

S

[]

Parse Trees Revisited

S → [P]

P → RR | a

R → (P) | b

P

R R

()

P

a b

S

[]

P

R R

() b

Parse Trees Revisited

S → [P]

P → RR | a

R → (P) | b

P

R R

()

P

a b

S

[]

Parse Trees Revisited

S → [P]

P → RR | a

R → (P) | b

P

R R

()

P

a b

S

[]

Parse Trees Revisited

S → [P]

P → RR | a

R → (P) | b

P

R R

()

P

a b

S

[]

Parse Trees Revisited

S → [P]

P → RR | a

R → (P) | b

P

R R

()

P

a b

S

[]

Parse Trees Revisited

S → [P]

P → RR | a

R → (P) | b

P

R R

()

P

a b

S

[]

Parse Trees Revisited

S → [P]

P → RR | a

R → (P) | b

P

a

S

[]

Parse Trees Revisited

S → [P]

P → RR | a

R → (P) | b

P

a

S

[]

S

R

u v y zx

R

S

R

u v y zx

R

uvxyz ∈ L

S

R

u v y zx

R

uvxyz ∈ L

S

R

u v y z

x

R

uvxyz ∈ L

S

R

u v y z

xv y

R

R

uv2xy2z ∈ L

S

R

u v y z

x

v y
R

R

uv2xy2z ∈ L

S

R

u v y z

x

R

R

v

v

y

y

R

uv3xy3z ∈ L

S

R

u v y zx

R

uvxyz ∈ L

S

u zx

R

uvxyz ∈ L

S

u z

x

R

uv0xy0z ∈ L

For any context-free language L,

 There exists a positive natural number n such that

 For any w ∈ L with |w| ≥ n,

 There exists strings u, v, x, y, z such that

 For any natural number i,

 w = uvxyz,

 |vxy| ≤ n,

 |vy| > 0

 uvixyiz ∈ L where the 2nd and 4th pieces can
be replicated 0 or more times

where the 2nd and 4th pieces aren't
both empty, and

w can be broken into five pieces,

where the middle three pieces
aren't too long,

The Pumping Lemma for CFLs

For any context-free language L,

 There exists a positive natural number n such that

 For any w ∈ L with |w| ≥ n,

 There exists strings u, v, x, y, z such that

 For any natural number i,

 w = uvxyz,

 |vxy| ≤ n,

 |vy| > 0

 uvixyiz ∈ L

The Pumping Lemma for CFLs

Note that we pump
both v and y at the
same time, not just
one or the other.

Note that we pump
both v and y at the
same time, not just
one or the other.

where the 2nd and 4th pieces can
be replicated 0 or more times

where the 2nd and 4th pieces aren't
both empty, and

w can be broken into five pieces,

where the middle three pieces
aren't too long,

For any context-free language L,

 There exists a positive natural number n such that

 For any w ∈ L with |w| ≥ n,

 There exists strings u, v, x, y, z such that

 For any natural number i,

 w = uvxyz,

 |vxy| ≤ n,

 |vy| > 0

 uvixyiz ∈ L

The Pumping Lemma for CFLs

The two strings to
pump, collectively,
cannot be too long.

The two strings to
pump, collectively,
cannot be too long.

They also must
be close to one

another.

They also must
be close to one

another.

where the 2nd and 4th pieces can
be replicated 0 or more times

where the 2nd and 4th pieces aren't
both empty, and

w can be broken into five pieces,

where the middle three pieces
aren't too long,

For any context-free language L,

 There exists a positive natural number n such that

 For any w ∈ L with |w| ≥ n,

 There exists strings u, v, x, y, z such that

 For any natural number i,

 w = uvxyz,

 |vxy| ≤ n,

 |vy| > 0

 uvixyiz ∈ L

The Pumping Lemma for CFLs

where the 2nd and 4th pieces can
be replicated 0 or more times

where the 2nd and 4th pieces aren't
both empty, and

w can be broken into five pieces,

where the middle three pieces
aren't too long,

The pumping length
is not simple; see
Sipser for details.

The pumping length
is not simple; see
Sipser for details.

The Pumping Lemma Game

ADVERSARY YOU

Maliciously choose
pumping length n.

Maliciously split
w = uvxyz, with |vy| > 0

and |vxy| ≤ n

Cleverly choose a string
w ∈ L, |w| ≥ n

Cleverly choose k
 such that uvkxykz ∉ L

Grrr! Aaaargh!

L = {w ∈ {0,1,2}* | w has the same number of 0s, 1s, 2s}

The Pumping Lemma Game

ADVERSARY YOU

Maliciously choose
pumping length n.

Maliciously split
w = uvxyz, with |vy| > 0

and |vxy| ≤ n

Cleverly choose a string
w ∈ L, |w| ≥ n

Cleverly choose k
 such that uvkxykz ∉ L

Grrr! Aaaargh!

0n1n2n

L = {w ∈ {0,1,2}* | w has the same number of 0s, 1s, 2s}

Theorem: L = {w ∈ {0,1,2}* | w has the same # of 0s, 1s, 2s} is not a CFL.

Proof: By contradiction; assume L is a CFL. Let n be the pumping length
 guaranteed by the pumping lemma. Let w = 0n1n2n. Thus w ∈ L and
 |w| = 3n ≥ n. Therefore we can write w = uvxyz such that |vxy| ≤ n,
 |vy| > 0, and for any i ∈ ℕ, uvixyiz ∈ L. We consider two cases for vxy:

 Case 1: vxy is completely contained in 0n, 1n, or 2n. In that case, the string
uv2xy2z ∉ L, because this string has more copies of 0 or 1 or 2 than
the other two symbols.

 Case 2: vxy either consists of 0s and 1s or of 1s and 2s (it cannot consist
of all three symbols, because |vxy| ≤ n). Then if vxy has no 2s in it,
uv2xy2z ∉ L since it contains more 0s or 1s than 2s. Similarly, if vxy
has no 0s in it uv2xy2z ∉ L because it contains more 1s or 2s than 0s.

 In either case, we contradict the pumping lemma. Thus our assumption
 must have been wrong, so L is not a CFL. ■

For any context-free language L,
 There exists a positive natural number n such that
 For any w ∈ L with |w| ≥ n,
 There exists strings u, v, x, y, z such that
 For any natural number i,
 w = uvxyz,
 |vxy| ≤ n,
 |vy| > 0
 uvixyiz ∈ L

Theorem: L = {w ∈ {0,1,2}* | w has the same # of 0s, 1s, 2s} is not a CFL.

Proof: By contradiction; assume L is a CFL. Let n be the pumping length
 guaranteed by the pumping lemma. Let w = 0n1n2n. Thus w ∈ L and
 |w| = 3n ≥ n. Therefore we can write w = uvxyz such that |vxy| ≤ n,
 |vy| > 0, and for any i ∈ ℕ, uvixyiz ∈ L. We consider two cases for vxy:

 Case 1: vxy is completely contained in 0n, 1n, or 2n. In that case, the string
uv2xy2z ∉ L, because this string has more copies of 0 or 1 or 2 than
the other two symbols.

 Case 2: vxy either consists of 0s and 1s or of 1s and 2s (it cannot consist
of all three symbols, because |vxy| ≤ n). Then if vxy has no 2s in it,
uv2xy2z ∉ L since it contains more 0s or 1s than 2s. Similarly, if vxy
has no 0s in it uv2xy2z ∉ L because it contains more 1s or 2s than 0s.

 In either case, we contradict the pumping lemma. Thus our assumption
 must have been wrong, so L is not a CFL. ■

For any context-free language L,
 There exists a positive natural number n such that
 For any w ∈ L with |w| ≥ n,
 There exists strings u, v, x, y, z such that
 For any natural number i,
 w = uvxyz,
 |vxy| ≤ n,
 |vy| > 0
 uvixyiz ∈ L

Theorem: L = {w ∈ {0,1,2}* | w has the same # of 0s, 1s, 2s} is not a CFL.

Proof: By contradiction; assume L is a CFL. Let n be the pumping length
 guaranteed by the pumping lemma. Let w = 0n1n2n. Thus w ∈ L and
 |w| = 3n ≥ n. Therefore we can write w = uvxyz such that |vxy| ≤ n,
 |vy| > 0, and for any i ∈ ℕ, uvixyiz ∈ L. We consider two cases for vxy:

 Case 1: vxy is completely contained in 0n, 1n, or 2n. In that case, the string
uv2xy2z ∉ L, because this string has more copies of 0 or 1 or 2 than
the other two symbols.

 Case 2: vxy either consists of 0s and 1s or of 1s and 2s (it cannot consist
of all three symbols, because |vxy| ≤ n). Then if vxy has no 2s in it,
uv2xy2z ∉ L since it contains more 0s or 1s than 2s. Similarly, if vxy
has no 0s in it uv2xy2z ∉ L because it contains more 1s or 2s than 0s.

 In either case, we contradict the pumping lemma. Thus our assumption
 must have been wrong, so L is not a CFL. ■

For any context-free language L,
 There exists a positive natural number n such that
 For any w ∈ L with |w| ≥ n,
 There exists strings u, v, x, y, z such that
 For any natural number i,
 w = uvxyz,
 |vxy| ≤ n,
 |vy| > 0
 uvixyiz ∈ L

Theorem: L = {w ∈ {0,1,2}* | w has the same # of 0s, 1s, 2s} is not a CFL.

Proof: By contradiction; assume L is a CFL. Let n be the pumping length
 guaranteed by the pumping lemma. Let w = 0n1n2n. Thus w ∈ L and
 |w| = 3n ≥ n. Therefore we can write w = uvxyz such that |vxy| ≤ n,
 |vy| > 0, and for any i ∈ ℕ, uvixyiz ∈ L. We consider two cases for vxy:

 Case 1: vxy is completely contained in 0n, 1n, or 2n. In that case, the string
uv2xy2z ∉ L, because this string has more copies of 0 or 1 or 2 than
the other two symbols.

 Case 2: vxy either consists of 0s and 1s or of 1s and 2s (it cannot consist
of all three symbols, because |vxy| ≤ n). Then if vxy has no 2s in it,
uv2xy2z ∉ L since it contains more 0s or 1s than 2s. Similarly, if vxy
has no 0s in it uv2xy2z ∉ L because it contains more 1s or 2s than 0s.

 In either case, we contradict the pumping lemma. Thus our assumption
 must have been wrong, so L is not a CFL. ■

For any context-free language L,
 There exists a positive natural number n such that
 For any w ∈ L with |w| ≥ n,
 There exists strings u, v, x, y, z such that
 For any natural number i,
 w = uvxyz,
 |vxy| ≤ n,
 |vy| > 0
 uvixyiz ∈ L

Theorem: L = {w ∈ {0,1,2}* | w has the same # of 0s, 1s, 2s} is not a CFL.

Proof: By contradiction; assume L is a CFL. Let n be the pumping length
 guaranteed by the pumping lemma. Let w = 0n1n2n. Thus w ∈ L and
 |w| = 3n ≥ n. Therefore we can write w = uvxyz such that |vxy| ≤ n,
 |vy| > 0, and for any i ∈ ℕ, uvixyiz ∈ L. We consider two cases for vxy:

 Case 1: vxy is completely contained in 0n, 1n, or 2n. In that case, the string
uv2xy2z ∉ L, because this string has more copies of 0 or 1 or 2 than
the other two symbols.

 Case 2: vxy either consists of 0s and 1s or of 1s and 2s (it cannot consist
of all three symbols, because |vxy| ≤ n). Then if vxy has no 2s in it,
uv2xy2z ∉ L since it contains more 0s or 1s than 2s. Similarly, if vxy
has no 0s in it uv2xy2z ∉ L because it contains more 1s or 2s than 0s.

 In either case, we contradict the pumping lemma. Thus our assumption
 must have been wrong, so L is not a CFL. ■

For any context-free language L,
 There exists a positive natural number n such that
 For any w ∈ L with |w| ≥ n,
 There exists strings u, v, x, y, z such that
 For any natural number i,
 w = uvxyz,
 |vxy| ≤ n,
 |vy| > 0
 uvixyiz ∈ L

Theorem: L = {w ∈ {0,1,2}* | w has the same # of 0s, 1s, 2s} is not a CFL.

Proof: By contradiction; assume L is a CFL. Let n be the pumping length
 guaranteed by the pumping lemma. Let w = 0n1n2n. Thus w ∈ L and
 |w| = 3n ≥ n. Therefore we can write w = uvxyz such that |vxy| ≤ n,
 |vy| > 0, and for any i ∈ ℕ, uvixyiz ∈ L. We consider two cases for vxy:

 Case 1: vxy is completely contained in 0n, 1n, or 2n. In that case, the string
uv2xy2z ∉ L, because this string has more copies of 0 or 1 or 2 than
the other two symbols.

 Case 2: vxy either consists of 0s and 1s or of 1s and 2s (it cannot consist
of all three symbols, because |vxy| ≤ n). Then if vxy has no 2s in it,
uv2xy2z ∉ L since it contains more 0s or 1s than 2s. Similarly, if vxy
has no 0s in it uv2xy2z ∉ L because it contains more 1s or 2s than 0s.

 In either case, we contradict the pumping lemma. Thus our assumption
 must have been wrong, so L is not a CFL. ■

For any context-free language L,
 There exists a positive natural number n such that
 For any w ∈ L with |w| ≥ n,
 There exists strings u, v, x, y, z such that
 For any natural number i,
 w = uvxyz,
 |vxy| ≤ n,
 |vy| > 0
 uvixyiz ∈ L

Theorem: L = {w ∈ {0,1,2}* | w has the same # of 0s, 1s, 2s} is not a CFL.

Proof: By contradiction; assume L is a CFL. Let n be the pumping length
 guaranteed by the pumping lemma. Let w = 0n1n2n. Thus w ∈ L and
 |w| = 3n ≥ n. Therefore we can write w = uvxyz such that |vxy| ≤ n,
 |vy| > 0, and for any i ∈ ℕ, uvixyiz ∈ L. We consider two cases for vxy:

 Case 1: vxy is completely contained in 0n, 1n, or 2n. In that case, the string
uv2xy2z ∉ L, because this string has more copies of 0 or 1 or 2 than
the other two symbols.

 Case 2: vxy either consists of 0s and 1s or of 1s and 2s (it cannot consist
of all three symbols, because |vxy| ≤ n). Then if vxy has no 2s in it,
uv2xy2z ∉ L since it contains more 0s or 1s than 2s. Similarly, if vxy
has no 0s in it uv2xy2z ∉ L because it contains more 1s or 2s than 0s.

 In either case, we contradict the pumping lemma. Thus our assumption
 must have been wrong, so L is not a CFL. ■

For any context-free language L,
 There exists a positive natural number n such that
 For any w ∈ L with |w| ≥ n,
 There exists strings u, v, x, y, z such that
 For any natural number i,
 w = uvxyz,
 |vxy| ≤ n,
 |vy| > 0
 uvixyiz ∈ L

Theorem: L = {w ∈ {0,1,2}* | w has the same # of 0s, 1s, 2s} is not a CFL.

Proof: By contradiction; assume L is a CFL. Let n be the pumping length
 guaranteed by the pumping lemma. Let w = 0n1n2n. Thus w ∈ L and
 |w| = 3n ≥ n. Therefore we can write w = uvxyz such that |vxy| ≤ n,
 |vy| > 0, and for any i ∈ ℕ, uvixyiz ∈ L. We consider two cases for vxy:

 Case 1: vxy is completely contained in 0n, 1n, or 2n. In that case, the string
uv2xy2z ∉ L, because this string has more copies of 0 or 1 or 2 than
the other two symbols.

 Case 2: vxy either consists of 0s and 1s or of 1s and 2s (it cannot consist
of all three symbols, because |vxy| ≤ n). Then if vxy has no 2s in it,
uv2xy2z ∉ L since it contains more 0s or 1s than 2s. Similarly, if vxy
has no 0s in it uv2xy2z ∉ L because it contains more 1s or 2s than 0s.

 In either case, we contradict the pumping lemma. Thus our assumption
 must have been wrong, so L is not a CFL. ■

For any context-free language L,
 There exists a positive natural number n such that
 For any w ∈ L with |w| ≥ n,
 There exists strings u, v, x, y, z such that
 For any natural number i,
 w = uvxyz,
 |vxy| ≤ n,
 |vy| > 0
 uvixyiz ∈ L

Proofs using the pumping lemma for CFLs
tend to be much harder than those for
regular languages because there is no

restriction on where in the string the portion
that can be pumped can be. The string to
pump must be very carefully constructed.

Proofs using the pumping lemma for CFLs
tend to be much harder than those for
regular languages because there is no

restriction on where in the string the portion
that can be pumped can be. The string to
pump must be very carefully constructed.

Theorem: L = {w ∈ {0,1,2}* | w has the same # of 0s, 1s, 2s} is not a CFL.

Proof: By contradiction; assume L is a CFL. Let n be the pumping length
 guaranteed by the pumping lemma. Let w = 0n1n2n. Thus w ∈ L and
 |w| = 3n ≥ n. Therefore we can write w = uvxyz such that |vxy| ≤ n,
 |vy| > 0, and for any i ∈ ℕ, uvixyiz ∈ L. We consider two cases for vxy:

 Case 1: vxy is completely contained in 0n, 1n, or 2n. In that case, the string
uv2xy2z ∉ L, because this string has more copies of 0 or 1 or 2 than
the other two symbols.

 Case 2: vxy either consists of 0s and 1s or of 1s and 2s (it cannot consist
of all three symbols, because |vxy| ≤ n). Then if vxy has no 2s in it,
uv2xy2z ∉ L since it contains more 0s or 1s than 2s. Similarly, if vxy
has no 0s in it uv2xy2z ∉ L because it contains more 1s or 2s than 0s.

 In either case, we contradict the pumping lemma. Thus our assumption
 must have been wrong, so L is not a CFL. ■

For any context-free language L,
 There exists a positive natural number n such that
 For any w ∈ L with |w| ≥ n,
 There exists strings u, v, x, y, z such that
 For any natural number i,
 w = uvxyz,
 |vxy| ≤ n,
 |vy| > 0
 uvixyiz ∈ L

Theorem: L = {w ∈ {0,1,2}* | w has the same # of 0s, 1s, 2s} is not a CFL.

Proof: By contradiction; assume L is a CFL. Let n be the pumping length
 guaranteed by the pumping lemma. Let w = 0n1n2n. Thus w ∈ L and
 |w| = 3n ≥ n. Therefore we can write w = uvxyz such that |vxy| ≤ n,
 |vy| > 0, and for any i ∈ ℕ, uvixyiz ∈ L. We consider two cases for vxy:

 Case 1: vxy is completely contained in 0n, 1n, or 2n. In that case, the string
uv2xy2z ∉ L, because this string has more copies of 0 or 1 or 2 than
the other two symbols.

 Case 2: vxy either consists of 0s and 1s or of 1s and 2s (it cannot consist
of all three symbols, because |vxy| ≤ n). Then if vxy has no 2s in it,
uv2xy2z ∉ L since it contains more 0s or 1s than 2s. Similarly, if vxy
has no 0s in it uv2xy2z ∉ L because it contains more 1s or 2s than 0s.

 In either case, we contradict the pumping lemma. Thus our assumption
 must have been wrong, so L is not a CFL. ■

For any context-free language L,
 There exists a positive natural number n such that
 For any w ∈ L with |w| ≥ n,
 There exists strings u, v, x, y, z such that
 For any natural number i,
 w = uvxyz,
 |vxy| ≤ n,
 |vy| > 0
 uvixyiz ∈ L

Theorem: L = {w ∈ {0,1,2}* | w has the same # of 0s, 1s, 2s} is not a CFL.

Proof: By contradiction; assume L is a CFL. Let n be the pumping length
 guaranteed by the pumping lemma. Let w = 0n1n2n. Thus w ∈ L and
 |w| = 3n ≥ n. Therefore we can write w = uvxyz such that |vxy| ≤ n,
 |vy| > 0, and for any i ∈ ℕ, uvixyiz ∈ L. We consider two cases for vxy:

 Case 1: vxy is completely contained in 0n, 1n, or 2n. In that case, the string
uv2xy2z ∉ L, because this string has more copies of 0 or 1 or 2 than
the other two symbols.

 Case 2: vxy either consists of 0s and 1s or of 1s and 2s (it cannot consist
of all three symbols, because |vxy| ≤ n). Then if vxy has no 2s in it,
uv2xy2z ∉ L since it contains more 0s or 1s than 2s. Similarly, if vxy
has no 0s in it uv2xy2z ∉ L because it contains more 1s or 2s than 0s.

 In either case, we contradict the pumping lemma. Thus our assumption
 must have been wrong, so L is not a CFL. ■

For any context-free language L,
 There exists a positive natural number n such that
 For any w ∈ L with |w| ≥ n,
 There exists strings u, v, x, y, z such that
 For any natural number i,
 w = uvxyz,
 |vxy| ≤ n,
 |vy| > 0
 uvixyiz ∈ L

Theorem: L = {w ∈ {0,1,2}* | w has the same # of 0s, 1s, 2s} is not a CFL.

Proof: By contradiction; assume L is a CFL. Let n be the pumping length
 guaranteed by the pumping lemma. Let w = 0n1n2n. Thus w ∈ L and
 |w| = 3n ≥ n. Therefore we can write w = uvxyz such that |vxy| ≤ n,
 |vy| > 0, and for any i ∈ ℕ, uvixyiz ∈ L. We consider two cases for vxy:

 Case 1: vxy is completely contained in 0n, 1n, or 2n. In that case, the string
uv2xy2z ∉ L, because this string has more copies of 0 or 1 or 2 than
the other two symbols.

 Case 2: vxy either consists of 0s and 1s or of 1s and 2s (it cannot consist
of all three symbols, because |vxy| ≤ n). Then if vxy has no 2s in it,
uv2xy2z ∉ L since it contains more 0s or 1s than 2s. Similarly, if vxy
has no 0s in it uv2xy2z ∉ L because it contains more 1s or 2s than 0s.

 In either case, we contradict the pumping lemma. Thus our assumption
 must have been wrong, so L is not a CFL. ■

For any context-free language L,
 There exists a positive natural number n such that
 For any w ∈ L with |w| ≥ n,
 There exists strings u, v, x, y, z such that
 For any natural number i,
 w = uvxyz,
 |vxy| ≤ n,
 |vy| > 0
 uvixyiz ∈ L

Note how we chose w so that vxy can't span all three
groups of symbols. This makes it impossible to pump

all three groups at once.

Note how we chose w so that vxy can't span all three
groups of symbols. This makes it impossible to pump

all three groups at once.

Theorem: L = {w ∈ {0,1,2}* | w has the same # of 0s, 1s, 2s} is not a CFL.

Proof: By contradiction; assume L is a CFL. Let n be the pumping length
 guaranteed by the pumping lemma. Let w = 0n1n2n. Thus w ∈ L and
 |w| = 3n ≥ n. Therefore we can write w = uvxyz such that |vxy| ≤ n,
 |vy| > 0, and for any i ∈ ℕ, uvixyiz ∈ L. We consider two cases for vxy:

 Case 1: vxy is completely contained in 0n, 1n, or 2n. In that case, the string
uv2xy2z ∉ L, because this string has more copies of 0 or 1 or 2 than
the other two symbols.

 Case 2: vxy either consists of 0s and 1s or of 1s and 2s (it cannot consist
of all three symbols, because |vxy| ≤ n). Then if vxy has no 2s in it,
uv2xy2z ∉ L since it contains more 0s or 1s than 2s. Similarly, if vxy
has no 0s in it uv2xy2z ∉ L because it contains more 1s or 2s than 0s.

 In either case, we contradict the pumping lemma. Thus our assumption
 must have been wrong, so L is not a CFL. ■

For any context-free language L,
 There exists a positive natural number n such that
 For any w ∈ L with |w| ≥ n,
 There exists strings u, v, x, y, z such that
 For any natural number i,
 w = uvxyz,
 |vxy| ≤ n,
 |vy| > 0
 uvixyiz ∈ L

Theorem: L = {w ∈ {0,1,2}* | w has the same # of 0s, 1s, 2s} is not a CFL.

Proof: By contradiction; assume L is a CFL. Let n be the pumping length
 guaranteed by the pumping lemma. Let w = 0n1n2n. Thus w ∈ L and
 |w| = 3n ≥ n. Therefore we can write w = uvxyz such that |vxy| ≤ n,
 |vy| > 0, and for any i ∈ ℕ, uvixyiz ∈ L. We consider two cases for vxy:

 Case 1: vxy is completely contained in 0n, 1n, or 2n. In that case, the string
uv2xy2z ∉ L, because this string has more copies of 0 or 1 or 2 than
the other two symbols.

 Case 2: vxy either consists of 0s and 1s or of 1s and 2s (it cannot consist
of all three symbols, because |vxy| ≤ n). Then if vxy has no 2s in it,
uv2xy2z ∉ L since it contains more 0s or 1s than 2s. Similarly, if vxy
has no 0s in it uv2xy2z ∉ L because it contains more 1s or 2s than 0s.

 In either case, we contradict the pumping lemma. Thus our assumption
 must have been wrong, so L is not a CFL. ■

For any context-free language L,
 There exists a positive natural number n such that
 For any w ∈ L with |w| ≥ n,
 There exists strings u, v, x, y, z such that
 For any natural number i,
 w = uvxyz,
 |vxy| ≤ n,
 |vy| > 0
 uvixyiz ∈ L

Theorem: L = {w ∈ {0,1,2}* | w has the same # of 0s, 1s, 2s} is not a CFL.

Proof: By contradiction; assume L is a CFL. Let n be the pumping length
 guaranteed by the pumping lemma. Let w = 0n1n2n. Thus w ∈ L and
 |w| = 3n ≥ n. Therefore we can write w = uvxyz such that |vxy| ≤ n,
 |vy| > 0, and for any i ∈ ℕ, uvixyiz ∈ L. We consider two cases for vxy:

 Case 1: vxy is completely contained in 0n, 1n, or 2n. In that case, the string
uv2xy2z ∉ L, because this string has more copies of 0 or 1 or 2 than
the other two symbols.

 Case 2: vxy either consists of 0s and 1s or of 1s and 2s (it cannot consist
of all three symbols, because |vxy| ≤ n). Then if vxy has no 2s in it,
uv2xy2z ∉ L since it contains more 0s or 1s than 2s. Similarly, if vxy
has no 0s in it uv2xy2z ∉ L because it contains more 1s or 2s than 0s.

 In either case, we contradict the pumping lemma. Thus our assumption
 must have been wrong, so L is not a CFL. ■

For any context-free language L,
 There exists a positive natural number n such that
 For any w ∈ L with |w| ≥ n,
 There exists strings u, v, x, y, z such that
 For any natural number i,
 w = uvxyz,
 |vxy| ≤ n,
 |vy| > 0
 uvixyiz ∈ L

Theorem: L = {w ∈ {0,1,2}* | w has the same # of 0s, 1s, 2s} is not a CFL.

Proof: By contradiction; assume L is a CFL. Let n be the pumping length
 guaranteed by the pumping lemma. Let w = 0n1n2n. Thus w ∈ L and
 |w| = 3n ≥ n. Therefore we can write w = uvxyz such that |vxy| ≤ n,
 |vy| > 0, and for any i ∈ ℕ, uvixyiz ∈ L. We consider two cases for vxy:

 Case 1: vxy is completely contained in 0n, 1n, or 2n. In that case, the string
uv2xy2z ∉ L, because this string has more copies of 0 or 1 or 2 than
the other two symbols.

 Case 2: vxy either consists of 0s and 1s or of 1s and 2s (it cannot consist
of all three symbols, because |vxy| ≤ n). Then if vxy has no 2s in it,
uv2xy2z ∉ L since it contains more 0s or 1s than 2s. Similarly, if vxy
has no 0s in it uv2xy2z ∉ L because it contains more 1s or 2s than 0s.

 In either case, we contradict the pumping lemma. Thus our assumption
 must have been wrong, so L is not a CFL. ■

For any context-free language L,
 There exists a positive natural number n such that
 For any w ∈ L with |w| ≥ n,
 There exists strings u, v, x, y, z such that
 For any natural number i,
 w = uvxyz,
 |vxy| ≤ n,
 |vy| > 0
 uvixyiz ∈ L

Theorem: L = {w ∈ {0,1,2}* | w has the same # of 0s, 1s, 2s} is not a CFL.

Proof: By contradiction; assume L is a CFL. Let n be the pumping length
 guaranteed by the pumping lemma. Let w = 0n1n2n. Thus w ∈ L and
 |w| = 3n ≥ n. Therefore we can write w = uvxyz such that |vxy| ≤ n,
 |vy| > 0, and for any i ∈ ℕ, uvixyiz ∈ L. We consider two cases for vxy:

 Case 1: vxy is completely contained in 0n, 1n, or 2n. In that case, the string
uv2xy2z ∉ L, because this string has more copies of 0 or 1 or 2 than
the other two symbols.

 Case 2: vxy either consists of 0s and 1s or of 1s and 2s (it cannot consist
of all three symbols, because |vxy| ≤ n). Then if vxy has no 2s in it,
uv2xy2z ∉ L since it contains more 0s or 1s than 2s. Similarly, if vxy
has no 0s in it uv2xy2z ∉ L because it contains more 1s or 2s than 0s.

 In either case, we contradict the pumping lemma. Thus our assumption
 must have been wrong, so L is not a CFL. ■

For any context-free language L,
 There exists a positive natural number n such that
 For any w ∈ L with |w| ≥ n,
 There exists strings u, v, x, y, z such that
 For any natural number i,
 w = uvxyz,
 |vxy| ≤ n,
 |vy| > 0
 uvixyiz ∈ L

Using the Pumping Lemma

● Keep the following in mind when using the
context-free pumping lemma when w = uvxyz:
● Both v and y must be pumped at the same time.
● v and y need not be contiguous in the string.
● One of v and y may be empty.
● vxy may be anywhere in the string.

● I strongly suggest reading through Sipser to
get a better sense for how these proofs work.

Non-CFLs

● Regular languages cannot count once:

{ 0n1n | n ∈ ℕ } is not regular.

● CFLs cannot count twice:
● { 0n1n2n | n ∈ ℕ } is not context-free.

● A finite number of states cannot count
arbitrarily high.

● With a single stack and finite states,
cannot track two arbitrary quantities.

(Non) Closure Properties of CFLs

(Non) Closure Properties of CFLs

● Now that we have a single non-context-free language,
we can prove that CFLs are not closed under certain
operations.

● Let L1 = { 0n1n2m | n, m ∈ ℕ }

● Let L2 = {0m1n2n | n, m ∈ ℕ }

● Both of these languages are context-free.
● Can either find an explicit CFG, or note that these

languages are the concatenation of two CFLs.

● But L1 ∩ L2 = { 0n1n2n | n ∈ ℕ }, which is not a CFL.

● Context-free languages are not closed under
intersection.

(Non) Closure under Complement

● Recall that if L is regular, L is regular as well.

● However, if L is context-free, L may not be a
context-free language.

● Intuition: Using union and complement, we can
construct the intersection.

(Non) Closure under Complement

● Recall that if L is regular, L is regular as well.

● However, if L is context-free, L may not be a
context-free language.

● Intuition: Using union and complement, we can
construct the intersection.

L
1

L
2

(Non) Closure under Complement

L
1

L
2

● Recall that if L is regular, L is regular as well.

● However, if L is context-free, L may not be a
context-free language.

● Intuition: Using union and complement, we can
construct the intersection.

(Non) Closure under Complement

● Recall that if L is regular, L is regular as well.

● However, if L is context-free, L may not be a
context-free language.

● Intuition: Using union and complement, we can
construct the intersection.

L
1
 ∪ L

2

(Non) Closure under Complement

● Recall that if L is regular, L is regular as well.

● However, if L is context-free, L may not be a
context-free language.

● Intuition: Using union and complement, we can
construct the intersection.

L
1
 ∪ L

2

(Non) Closure under Subtraction

● Theorem: If L1 and L2 are regular, L1 – L2
is regular as well.

● However, if L1 and L2 are context-free,
L1 – L2 may not be context-free.

● Intuition: We can construct the
complement from the difference.
● Σ* is context-free because it is regular.
● But Σ* - L = L, which may not be context-free.

Summary of CFLs

● CFLs are strictly more powerful than the
regular languages.

● CFLs can be described by CFGs
(generation) or PDAs (recognition).

● CFGs encompass two classes of
languages – deterministic and
nondeterministic CFLs.

● Context-free languages have a pumping
lemma just as regular languages do.

Interlude for Announcements

Problem Session

● Weekly problem session meets tonight at
7PM in 380-380X.
● Covers CFLs and their limits.

● Optional, but highly recommended!

Midterm and Problem Set 4 Graded

Will be distributed at end of lecture.
After that, pick up at my office (Gates 178).

Beyond CFLs

Computability Theory

● Finite automata represent computers
with bounded memory.
● They accept precisely the regular languages.

● Pushdown automata represent
computers with a weak infinite memory.
● They accept precisely the context-free

languages.

● Regular and context-free languages are
comparatively weak.

Regular
Languages CFLsDCFLs

All Languages

Languages
recognizable by

any feasible
computing
machine

 All Languages

That same drawing, to scale.

Defining Computability

● In order to talk about what languages we
could ever hope to recognize with a
computer, we need to formalize our
model of computation with an
automaton.

● The standard automaton for this job is
the Turing machine, named after Alan
Turing, the “Father of Computer
Science.”

A Better Memory Device

● The pushdown automaton used a
(potentially infinite) stack as its memory
device.

● This severely limits how the memory can
be used:
● Accessing old data only possible after

discarding old data.
● Can't keep track of multiple unbounded

quantities.

A Better Memory Device

● A Turing machine is a finite automaton equipped
with an infinite tape as its memory.

● The tape begins with the input to the machine written
on it, followed by infinitely many blank cells.

● The machine has a tape head that can read and write
a single memory cell at a time.

0 0 1

A Better Memory Device

● A Turing machine is a finite automaton equipped
with an infinite tape as its memory.

● The tape begins with the input to the machine written
on it, followed by infinitely many blank cells.

● The machine has a tape head that can read and write
a single memory cell at a time.

0 0 1

A Better Memory Device

● A Turing machine is a finite automaton equipped
with an infinite tape as its memory.

● The tape begins with the input to the machine written
on it, followed by infinitely many blank cells.

● The machine has a tape head that can read and write
a single memory cell at a time.

A 0 1

A Better Memory Device

● A Turing machine is a finite automaton equipped
with an infinite tape as its memory.

● The tape begins with the input to the machine written
on it, followed by infinitely many blank cells.

● The machine has a tape head that can read and write
a single memory cell at a time.

A A 1

A Better Memory Device

● A Turing machine is a finite automaton equipped
with an infinite tape as its memory.

● The tape begins with the input to the machine written
on it, followed by infinitely many blank cells.

● The machine has a tape head that can read and write
a single memory cell at a time.

A A B

A Better Memory Device

● A Turing machine is a finite automaton equipped
with an infinite tape as its memory.

● The tape begins with the input to the machine written
on it, followed by infinitely many blank cells.

● The machine has a tape head that can read and write
a single memory cell at a time.

A A B X

A Better Memory Device

● A Turing machine is a finite automaton equipped
with an infinite tape as its memory.

● The tape begins with the input to the machine written
on it, followed by infinitely many blank cells.

● The machine has a tape head that can read and write
a single memory cell at a time.

A A X X

A Better Memory Device

● A Turing machine is a finite automaton equipped
with an infinite tape as its memory.

● The tape begins with the input to the machine written
on it, followed by infinitely many blank cells.

● The machine has a tape head that can read and write
a single memory cell at a time.

A A X X

A Better Memory Device

● A Turing machine is a finite automaton equipped
with an infinite tape as its memory.

● The tape begins with the input to the machine written
on it, followed by infinitely many blank cells.

● The machine has a tape head that can read and write
a single memory cell at a time.

A A X X A

A Better Memory Device

● A Turing machine is a finite automaton equipped
with an infinite tape as its memory.

● The tape begins with the input to the machine written
on it, followed by infinitely many blank cells.

● The machine has a tape head that can read and write
a single memory cell at a time.

A A X X A A

A Better Memory Device

● A Turing machine is a finite automaton equipped
with an infinite tape as its memory.

● The tape begins with the input to the machine written
on it, followed by infinitely many blank cells.

● The machine has a tape head that can read and write
a single memory cell at a time.

A A X X A A A

The Turing Machine

● A Turing machine consists of three parts:

● A finite-state control used to determine which actions
to take,

● an infinite tape serving as both input and scratch space,
and

● a tape head that can read and write the tape and move
left or right.

● At each step, the Turing machine

● Replaces the contents of the current cell with a new
symbol (which could optionally be the same symbol as
before),

● Changes state, and

● Moves the tape head to the left or to the right.

A Simple Turing Machine

q
0

q
acc

q
rej

q
1

start

1 → B, R

1 → B, R

B → B, R

 B → B, R

q
acc

q
rej

Each transition of the form

x → y, D

means “upon reading x, replace it with
symbol y and move the tape head in
direction D (which is either L or R).
 The letter B represents the blank

symbol.

Each transition of the form

x → y, D

means “upon reading x, replace it with
symbol y and move the tape head in
direction D (which is either L or R).
 The letter B represents the blank

symbol.

This special accept
state causes the

machine to
immediately accept.

This special accept
state causes the

machine to
immediately accept.

This special reject
state causes the

machine to
immediately reject.

This special reject
state causes the

machine to
immediately reject.

A Simple Turing Machine

q
0

q
acc

q
rej

q
1

start

1 → B, R

1 → B, R

B → B, R

 B → B, R

q
acc

q
rej

1 1 1 1

q
0

q
0

q
1

A Simple Turing Machine
q

acc

q
rej

q
1

start

1 → B, R

1 → B, R

B → B, R

 B → B, R

q
acc

q
rej

1 1 1 1

q
0

q
0

q
1

A Simple Turing Machine
q

acc

q
rej

q
1

start

1 → B, R

1 → B, R

B → B, R

 B → B, R

q
acc

q
rej

1 1 1 1

q
0

q
0

q
1

A Simple Turing Machine
q

acc

q
rej

q
1

start

1 → B, R

1 → B, R

B → B, R

 B → B, R

q
acc

q
rej

1 1 1 1

q
0

q
0

q
1

A Simple Turing Machine
q

acc

q
rej

q
1

start

1 → B, R

1 → B, R

B → B, R

 B → B, R

q
acc

q
rej

1 1 1

q
0

q
0

q
1

A Simple Turing Machine
q

acc

q
rej

q
1

start

1 → B, R

1 → B, R

B → B, R

 B → B, R

q
acc

q
rej

1 1 1

q
1

q
0

q
0

q
1

A Simple Turing Machine
q

acc

q
rej

start

1 → B, R

1 → B, R

B → B, R

 B → B, R

q
acc

q
rej

1 1 1

q
1

q
0

q
0

q
1

A Simple Turing Machine
q

acc

q
rej

start

1 → B, R

1 → B, R

B → B, R

 B → B, R

q
acc

q
rej

1 1 1

q
1

q
0

q
0

q
1

A Simple Turing Machine
q

acc

q
rej

start

1 → B, R

1 → B, R

B → B, R

 B → B, R

q
acc

q
rej

1 1

q
1

q
0

q
0

q
1

A Simple Turing Machine
q

acc

q
rej

start

1 → B, R

1 → B, R

B → B, R

 B → B, R

q
acc

q
rej

1 1

q
0

q
1

q
1

q
0

A Simple Turing Machine
q

acc

q
rej

start

1 → B, R

1 → B, R

B → B, R

 B → B, R

q
acc

q
rej

1 1

q
0

q
1

q
1

q
0

A Simple Turing Machine
q

acc

q
rej

start

1 → B, R

1 → B, R

B → B, R

 B → B, R

q
acc

q
rej

1 1

q
0

q
1

q
1

q
0

A Simple Turing Machine
q

acc

q
rej

start

1 → B, R

1 → B, R

B → B, R

 B → B, R

q
acc

q
rej

1

q
0

q
1

q
1

q
0

A Simple Turing Machine
q

acc

q
rej

start

1 → B, R

1 → B, R

B → B, R

 B → B, R

q
acc

q
rej

1

q
1

q
0

q
0

q
1

A Simple Turing Machine
q

acc

q
rej

start

1 → B, R

1 → B, R

B → B, R

 B → B, R

q
acc

q
rej

1

q
1

q
0

q
0

q
1

A Simple Turing Machine
q

acc

q
rej

start

1 → B, R

1 → B, R

B → B, R

 B → B, R

q
acc

q
rej

1

q
1

q
0

q
0

q
1

A Simple Turing Machine
q

acc

q
rej

start

1 → B, R

1 → B, R

B → B, R

 B → B, R

q
acc

q
rej

q
1

q
0

q
0

q
1

A Simple Turing Machine
q

acc

q
rej

start

1 → B, R

1 → B, R

B → B, R

 B → B, R

q
acc

q
rej

q
1

q
0

q
1

q
0

A Simple Turing Machine
q

acc

q
rej

start

1 → B, R

1 → B, R

B → B, R

 B → B, R

q
acc

q
rej

q
1

q
0

q
1

q
0

A Simple Turing Machine
q

acc

q
rej

start

1 → B, R

1 → B, R

B → B, R

 B → B, R

q
acc

q
rej

q
1

q
0

q
1

q
0

A Simple Turing Machine
q

acc

q
rej

start

1 → B, R

1 → B, R

B → B, R

 B → B, R

q
acc

q
rej

q
0

q
1

q
0

q
1

A Simple Turing Machine
q

acc

q
rej

start

1 → B, R

1 → B, R

B → B, R

 B → B, R

q
acc

q
rej

q
0

q
1

q
0

q
1

A Simple Turing Machine
q

acc

q
rej

start

1 → B, R

1 → B, R

B → B, R

 B → B, R

q
acc

q
rej

q
0

q
1

q
0

q
1

A Simple Turing Machine
q

acc

q
rej

start

1 → B, R

1 → B, R

B → B, R

 B → B, R

q
acc

q
rej

q
0

q
1

A Simple Turing Machine

q
0

q
acc

q
rej

q
1

start

1 → B, R

1 → B, R

B → B, R

 B → B, R

q
acc

q
rej

1

q
0

q
0

q
1

A Simple Turing Machine
q

acc

q
rej

q
1

start

1 → B, R

1 → B, R

B → B, R

 B → B, R

q
acc

q
rej

1

q
0

q
0

q
1

A Simple Turing Machine
q

acc

q
rej

q
1

start

1 → B, R

1 → B, R

B → B, R

 B → B, R

q
acc

q
rej

1

q
0

q
0

q
1

A Simple Turing Machine
q

acc

q
rej

q
1

start

1 → B, R

1 → B, R

B → B, R

 B → B, R

q
acc

q
rej

1

q
0

q
0

q
1

A Simple Turing Machine
q

acc

q
rej

q
1

start

1 → B, R

1 → B, R

B → B, R

 B → B, R

q
acc

q
rej

q
0

q
0

q
1

A Simple Turing Machine
q

acc

q
rej

q
1

start

1 → B, R

1 → B, R

B → B, R

 B → B, R

q
acc

q
rej

q
0

q
1

q
0

q
1

A Simple Turing Machine
q

acc

q
rej

start

1 → B, R

1 → B, R

B → B, R

 B → B, R

q
acc

q
rej

q
0

q
1

q
0

q
1

A Simple Turing Machine
q

acc

q
rej

start

1 → B, R

1 → B, R

B → B, R

 B → B, R

q
acc

q
rej

q
0

q
1

q
0

q
1

A Simple Turing Machine
q

acc

q
rej

start

1 → B, R

1 → B, R

B → B, R

 B → B, R

q
acc

q
rej

q
0

q
1

q
0

q
1

A Simple Turing Machine
q

acc

q
rej

start

1 → B, R

1 → B, R

B → B, R

 B → B, R

q
acc

q
rej

q
0

q
1

q
0

q
1

A Simple Turing Machine
q

acc

q
rej

start

1 → B, R

1 → B, R

B → B, R

 B → B, R

q
acc

q
rej

q
0

q
1

q
0

q
1

A Simple Turing Machine
q

acc

q
rej

start

1 → B, R

1 → B, R

B → B, R

 B → B, R

q
acc

q
rej

Acceptance

● Unlike the automata that we've seen
before, the Turing machine can revisit
characters from the input.

● The machine decides when it terminates,
rather than stopping when no input is left.

● The Turing machine accepts if it enters a
special accept state. It rejects if it enters
a special reject state.

● Turing machines can loop forever.
● More on that later...

A More Powerful Turing Machine

● Let Σ = {0, 1} and let

PALINDROME = { w ∈ Σ* | w is a palindrome}

● We can build a TM for PALINDROME as follows:
● Look at the leftmost character of the string.
● Scan across the tape until we find the end of the

string.
● If the last character doesn't match, reject the input.
● Sweep back to the left of the tape and repeat.
● If every character becomes matched, accept.

q
0

q
0

q
1

q
2

q
3

q
4

q
5

q
acc q

rej

q
1

start q
rej

q
2

q
3

q
4

q
5

B → B, R

0 → B, R

1 → B, R

0 → 0, R
1 → 1, R

B → B, L

0 → 0, R
1 → 1, R

B → B, L

B → B, R

B → B, R

q
acc

 1 → 1, R

 0 → 0, R

0 → B, L

1 → B, L

0 → 0, L
1 → 1, L

B → B, R

0 1 B
q

0

q
1

q
2

q
3

q
4

q
5

A More Sane Representation

0 1 B
q

0

q
1

q
2

q
3

q
4

q
5

B R q
1 B R q

2 B R q
acc

0 R q
1 1 R q

1 B L q
3

0 R q
2 1 R q

2 B L q
4

B L q
5 1 R q

rej B R q
acc

0 R q
rej B R q

accB L q
5

0 L q
5 1 L q

5 B R q
0

0 1 B
q

0

q
1

q
2

q
3

q
4

q
5

A More Sane Representation

0 1 B
q

0

q
1

q
2

q
3

q
4

q
5

B R q
1 B R q

2 B R q
acc

0 R q
1 1 R q

1 B L q
3

0 R q
2 1 R q

2 B L q
4

B L q
5 1 R q

rej B R q
acc

0 R q
rej B R q

accB L q
5

0 L q
5 1 L q

5 B R q
0

0 0 1 0 0

q
0

0 1 B
q

0

q
1

q
2

q
3

q
4

q
5

A More Sane Representation

0 1 B

q
1

q
2

q
3

q
4

q
5

B R q
1 B R q

2 B R q
acc

0 R q
1 1 R q

1 B L q
3

0 R q
2 1 R q

2 B L q
4

B L q
5 1 R q

rej B R q
acc

0 R q
rej B R q

accB L q
5

0 L q
5 1 L q

5 B R q
0

0 0 1 0 0

q
0

0 1 B
q

0

q
1

q
2

q
3

q
4

q
5

A More Sane Representation

0 1 B

q
1

q
2

q
3

q
4

q
5

B R q
1 B R q

2 B R q
acc

0 R q
1 1 R q

1 B L q
3

0 R q
2 1 R q

2 B L q
4

B L q
5 1 R q

rej B R q
acc

0 R q
rej B R q

accB L q
5

0 L q
5 1 L q

5 B R q
0

0 0 1 0 0

0
q

0

0 1 B
q

0

q
1

q
2

q
3

q
4

q
5

A More Sane Representation

1 B

q
1

q
2

q
3

q
4

q
5

B R q
1 B R q

2 B R q
acc

0 R q
1 1 R q

1 B L q
3

0 R q
2 1 R q

2 B L q
4

B L q
5 1 R q

rej B R q
acc

0 R q
rej B R q

accB L q
5

0 L q
5 1 L q

5 B R q
0

0 0 1 0 0

q
1

0
q

0

0
q

0

1 B

q
1

q
2

q
3

q
4

q
5

A More Sane Representation

1 B

q
2

q
3

q
4

q
5

B R q
1 B R q

2 B R q
acc

0 R q
1 1 R q

1 B L q
3

0 R q
2 1 R q

2 B L q
4

B L q
5 1 R q

rej B R q
acc

0 R q
rej B R q

accB L q
5

0 L q
5 1 L q

5 B R q
0

0 1 0 0

0

q
1

0
q

0
q

0

1 B

q
1

q
2

q
3

q
4

q
5

A More Sane Representation

1 B

q
2

q
3

q
4

q
5

B R q
1 B R q

2 B R q
acc

0 R q
1 1 R q

1 B L q
3

0 R q
2 1 R q

2 B L q
4

B L q
5 1 R q

rej B R q
acc

0 R q
rej B R q

accB L q
5

0 L q
5 1 L q

5 B R q
0

0 1 0 0

q
1

0

q
1

0
q

0
q

0

1 B

q
2

q
3

q
4

q
5

A More Sane Representation

1 B

q
2

q
3

q
4

q
5

B R q
1 B R q

2 B R q
acc

0 R q
1 1 R q

1 B L q
3

0 R q
2 1 R q

2 B L q
4

B L q
5 1 R q

rej B R q
acc

0 R q
rej B R q

accB L q
5

0 L q
5 1 L q

5 B R q
0

0 1 0 0

q
1

10

q
1

0
q

0
q

0

1 B

q
2

q
3

q
4

q
5

A More Sane Representation

B

q
2

q
3

q
4

q
5

B R q
1 B R q

2 B R q
acc

0 R q
1 1 R q

1 B L q
3

0 R q
2 1 R q

2 B L q
4

B L q
5 1 R q

rej B R q
acc

0 R q
rej B R q

accB L q
5

0 L q
5 1 L q

5 B R q
0

0 1 0 0

q
1

q
1

1100
q

0
q

0

B

q
2

q
3

q
4

q
5

A More Sane Representation

B

q
2

q
3

q
4

q
5

B R q
1 B R q

2 B R q
acc

0 R q
1 1 R q

1 B L q
3

0 R q
2 1 R q

2 B L q
4

B L q
5 1 R q

rej B R q
acc

0 R q
rej B R q

accB L q
5

0 L q
5 1 L q

5 B R q
0

0 1 0 0

q
1

0

q
1

110
q

0
q

0

B

q
2

q
3

q
4

q
5

A More Sane Representation

B

q
2

q
3

q
4

q
5

B R q
1 B R q

2 B R q
acc

0 R q
1 1 R q

1 B L q
3

0 R q
2 1 R q

2 B L q
4

B L q
5 1 R q

rej B R q
acc

0 R q
rej B R q

accB L q
5

0 L q
5 1 L q

5 B R q
0

0 1 0 0

0

q
1

0

q
1

11
q

0
q

0

B

q
2

q
3

q
4

q
5

A More Sane Representation

B

q
2

q
3

q
4

q
5

B R q
1 B R q

2 B R q
acc

0 R q
1 1 R q

1 B L q
3

0 R q
2 1 R q

2 B L q
4

B L q
5 1 R q

rej B R q
acc

0 R q
rej B R q

accB L q
5

0 L q
5 1 L q

5 B R q
0

0 1 0 0

00

q
1

q
1

11
q

0
q

0

B

q
2

q
3

q
4

q
5

A More Sane Representation

B

q
2

q
3

q
4

q
5

B R q
1 B R q

2 B R q
acc

0 R q
1 1 R q

1 B L q
3

0 R q
2 1 R q

2 B L q
4

B L q
5 1 R q

rej B R q
acc

0 R q
rej B R q

accB L q
5

0 L q
5 1 L q

5 B R q
0

0 1 0 0

00

q
1

q
1

11
q

0
q

0

B

q
2

q
3

q
4

q
5

A More Sane Representation

B

q
2

q
3

q
4

q
5

B R q
1 B R q

2 B R q
acc

0 R q
1 1 R q

1 B L q
3

0 R q
2 1 R q

2 B L q
4

B L q
5 1 R q

rej B R q
acc

0 R q
rej B R q

accB L q
5

0 L q
5 1 L q

5 B R q
0

0 1 0 0

B00

q
1

q
1

11
q

0
q

0

B

q
2

q
3

q
4

q
5

A More Sane Representation

q
2

q
3

q
4

q
5

B R q
1 B R q

2 B R q
acc

0 R q
1 1 R q

1 B L q
3

0 R q
2 1 R q

2 B L q
4

B L q
5 1 R q

rej B R q
acc

0 R q
rej B R q

accB L q
5

0 L q
5 1 L q

5 B R q
0

0 1 0 0

q
1

B

q
3

B00

q
1

11
q

0
q

0

q
2

q
3

q
4

q
5

A More Sane Representation

q
2

q
4

q
5

B R q
1 B R q

2 B R q
acc

0 R q
1 1 R q

1 B L q
3

0 R q
2 1 R q

2 B L q
4

B L q
5 1 R q

rej B R q
acc

0 R q
rej B R q

accB L q
5

0 L q
5 1 L q

5 B R q
0

0 1 0 0

0

q
1

B

q
3

B0

q
1

11
q

0
q

0

q
2

q
3

q
4

q
5

A More Sane Representation

q
2

q
4

q
5

B R q
1 B R q

2 B R q
acc

0 R q
1 1 R q

1 B L q
3

0 R q
2 1 R q

2 B L q
4

B L q
5 1 R q

rej B R q
acc

0 R q
rej B R q

accB L q
5

0 L q
5 1 L q

5 B R q
0

0 1 0 0

0

q
3

q
5

0

q
1

B

q
3

B

q
1

11
q

0
q

0

q
2

q
4

q
5

A More Sane Representation

q
2

q
4

B R q
1 B R q

2 B R q
acc

0 R q
1 1 R q

1 B L q
3

0 R q
2 1 R q

2 B L q
4

B L q
5 1 R q

rej B R q
acc

0 R q
rej B R q

accB L q
5

0 L q
5 1 L q

5 B R q
0

0 1 0

00

q
3

q
5

q
1

B

q
3

B

q
1

11
q

0
q

0

q
2

q
4

q
5

A More Sane Representation

q
2

q
4

B R q
1 B R q

2 B R q
acc

0 R q
1 1 R q

1 B L q
3

0 R q
2 1 R q

2 B L q
4

B L q
5 1 R q

rej B R q
acc

0 R q
rej B R q

accB L q
5

0 L q
5 1 L q

5 B R q
0

0 1 0

00

q
3

q
5

q
1

B

q
3

B

q
1

11
q

0
q

0

q
2

q
4

q
5

A More Sane Representation

q
2

q
4

B R q
1 B R q

2 B R q
acc

0 R q
1 1 R q

1 B L q
3

0 R q
2 1 R q

2 B L q
4

B L q
5 1 R q

rej B R q
acc

0 R q
rej B R q

accB L q
5

0 L q
5 1 L q

5 B R q
0

0 1 0

100

q
3

q
5

q
1

B

q
3

B

q
1

1
q

0
q

0

q
2

q
4

q
5

A More Sane Representation

q
2

q
4

B R q
1 B R q

2 B R q
acc

0 R q
1 1 R q

1 B L q
3

0 R q
2 1 R q

2 B L q
4

B L q
5 1 R q

rej B R q
acc

0 R q
rej B R q

accB L q
5

0 L q
5 1 L q

5 B R q
0

0 1 0

1100

q
3

q
5

q
1

B

q
3

B

q
1

q
0

q
0

q
2

q
4

q
5

A More Sane Representation

q
2

q
4

B R q
1 B R q

2 B R q
acc

0 R q
1 1 R q

1 B L q
3

0 R q
2 1 R q

2 B L q
4

B L q
5 1 R q

rej B R q
acc

0 R q
rej B R q

accB L q
5

0 L q
5 1 L q

5 B R q
0

0 1 0

0 110

q
3

q
5

q
1

B

q
3

B

q
1

q
0

q
0

q
2

q
4

q
5

A More Sane Representation

q
2

q
4

B R q
1 B R q

2 B R q
acc

0 R q
1 1 R q

1 B L q
3

0 R q
2 1 R q

2 B L q
4

B L q
5 1 R q

rej B R q
acc

0 R q
rej B R q

accB L q
5

0 L q
5 1 L q

5 B R q
0

0 1 0

00 11

q
3

q
5

q
1

B

q
3

B

q
1

q
0

q
0

q
2

q
4

q
5

A More Sane Representation

q
2

q
4

B R q
1 B R q

2 B R q
acc

0 R q
1 1 R q

1 B L q
3

0 R q
2 1 R q

2 B L q
4

B L q
5 1 R q

rej B R q
acc

0 R q
rej B R q

accB L q
5

0 L q
5 1 L q

5 B R q
0

0 1 0

B00 11

q
3

q
5

q
1

B

q
3

q
1

q
0

q
0

q
2

q
4

q
5

A More Sane Representation

q
2

q
4

B R q
1 B R q

2 B R q
acc

0 R q
1 1 R q

1 B L q
3

0 R q
2 1 R q

2 B L q
4

B L q
5 1 R q

rej B R q
acc

0 R q
rej B R q

accB L q
5

0 L q
5 1 L q

5 B R q
0

0 1 0

B
q

0

q
5

B00 11

q
3

q
5

q
1

q
3

q
1

q
0

q
2

q
4

A More Sane Representation

q
2

q
4

B R q
1 B R q

2 B R q
acc

0 R q
1 1 R q

1 B L q
3

0 R q
2 1 R q

2 B L q
4

B L q
5 1 R q

rej B R q
acc

0 R q
rej B R q

accB L q
5

0 L q
5 1 L q

5 B R q
0

0 1 0

0 B
q

0

q
5

B0 11

q
3

q
5

q
1

q
3

q
1

q
0

q
2

q
4

A More Sane Representation

q
2

q
4

B R q
1 B R q

2 B R q
acc

0 R q
1 1 R q

1 B L q
3

0 R q
2 1 R q

2 B L q
4

B L q
5 1 R q

rej B R q
acc

0 R q
rej B R q

accB L q
5

0 L q
5 1 L q

5 B R q
0

0 1 0

0

q
1

q
0

0 B
q

0

q
5

B11

q
3

q
5

q
1

q
3

q
2

q
4

A More Sane Representation

q
2

q
4

B R q
1 B R q

2 B R q
acc

0 R q
1 1 R q

1 B L q
3

0 R q
2 1 R q

2 B L q
4

B L q
5 1 R q

rej B R q
acc

0 R q
rej B R q

accB L q
5

0 L q
5 1 L q

5 B R q
0

1 0

10

q
1

q
0

0 B
q

0

q
5

B1

q
3

q
5

q
1

q
3

q
2

q
4

A More Sane Representation

q
2

q
4

B R q
1 B R q

2 B R q
acc

0 R q
1 1 R q

1 B L q
3

0 R q
2 1 R q

2 B L q
4

B L q
5 1 R q

rej B R q
acc

0 R q
rej B R q

accB L q
5

0 L q
5 1 L q

5 B R q
0

1 0

110

q
1

q
0

0 B
q

0

q
5

B

q
3

q
5

q
1

q
3

q
2

q
4

A More Sane Representation

q
2

q
4

B R q
1 B R q

2 B R q
acc

0 R q
1 1 R q

1 B L q
3

0 R q
2 1 R q

2 B L q
4

B L q
5 1 R q

rej B R q
acc

0 R q
rej B R q

accB L q
5

0 L q
5 1 L q

5 B R q
0

1 0

0 110

q
1

q
0

B
q

0

q
5

B

q
3

q
5

q
1

q
3

q
2

q
4

A More Sane Representation

q
2

q
4

B R q
1 B R q

2 B R q
acc

0 R q
1 1 R q

1 B L q
3

0 R q
2 1 R q

2 B L q
4

B L q
5 1 R q

rej B R q
acc

0 R q
rej B R q

accB L q
5

0 L q
5 1 L q

5 B R q
0

1 0

00 11

q
1

q
0

B
q

0

q
5

B

q
3

q
5

q
1

q
3

q
2

q
4

A More Sane Representation

q
2

q
4

B R q
1 B R q

2 B R q
acc

0 R q
1 1 R q

1 B L q
3

0 R q
2 1 R q

2 B L q
4

B L q
5 1 R q

rej B R q
acc

0 R q
rej B R q

accB L q
5

0 L q
5 1 L q

5 B R q
0

1 0

B00 11

q
1

q
0

B
q

0

q
5

q
3

q
5

q
1

q
3

q
2

q
4

A More Sane Representation

q
2

q
4

B R q
1 B R q

2 B R q
acc

0 R q
1 1 R q

1 B L q
3

0 R q
2 1 R q

2 B L q
4

B L q
5 1 R q

rej B R q
acc

0 R q
rej B R q

accB L q
5

0 L q
5 1 L q

5 B R q
0

1 0

B

q
1

q
3

B00 11

q
1

q
0

q
0

q
5

q
3

q
5

q
2

q
4

A More Sane Representation

q
2

q
4

B R q
1 B R q

2 B R q
acc

0 R q
1 1 R q

1 B L q
3

0 R q
2 1 R q

2 B L q
4

B L q
5 1 R q

rej B R q
acc

0 R q
rej B R q

accB L q
5

0 L q
5 1 L q

5 B R q
0

1 0

0 B

q
1

q
3

B0 11

q
1

q
0

q
0

q
5

q
3

q
5

q
2

q
4

A More Sane Representation

q
2

q
4

B R q
1 B R q

2 B R q
acc

0 R q
1 1 R q

1 B L q
3

0 R q
2 1 R q

2 B L q
4

B L q
5 1 R q

rej B R q
acc

0 R q
rej B R q

accB L q
5

0 L q
5 1 L q

5 B R q
0

1 0

0

q
3

q
5

0 B

q
1

q
3

B11

q
1

q
0

q
0

q
5

q
2

q
4

A More Sane Representation

q
2

q
4

B R q
1 B R q

2 B R q
acc

0 R q
1 1 R q

1 B L q
3

0 R q
2 1 R q

2 B L q
4

B L q
5 1 R q

rej B R q
acc

0 R q
rej B R q

accB L q
5

0 L q
5 1 L q

5 B R q
0

1

10

q
3

q
5

0 B

q
1

q
3

B1

q
1

q
0

q
0

q
5

q
2

q
4

A More Sane Representation

q
2

q
4

B R q
1 B R q

2 B R q
acc

0 R q
1 1 R q

1 B L q
3

0 R q
2 1 R q

2 B L q
4

B L q
5 1 R q

rej B R q
acc

0 R q
rej B R q

accB L q
5

0 L q
5 1 L q

5 B R q
0

1

110

q
3

q
5

0 B

q
1

q
3

B

q
1

q
0

q
0

q
5

q
2

q
4

A More Sane Representation

q
2

q
4

B R q
1 B R q

2 B R q
acc

0 R q
1 1 R q

1 B L q
3

0 R q
2 1 R q

2 B L q
4

B L q
5 1 R q

rej B R q
acc

0 R q
rej B R q

accB L q
5

0 L q
5 1 L q

5 B R q
0

1

B110

q
3

q
5

0 B

q
1

q
3

q
1

q
0

q
0

q
5

q
2

q
4

A More Sane Representation

q
2

q
4

B R q
1 B R q

2 B R q
acc

0 R q
1 1 R q

1 B L q
3

0 R q
2 1 R q

2 B L q
4

B L q
5 1 R q

rej B R q
acc

0 R q
rej B R q

accB L q
5

0 L q
5 1 L q

5 B R q
0

1

B
q

0

q
5

B110

q
3

q
5

0

q
1

q
3

q
1

q
0

q
2

q
4

A More Sane Representation

q
2

q
4

B R q
1 B R q

2 B R q
acc

0 R q
1 1 R q

1 B L q
3

0 R q
2 1 R q

2 B L q
4

B L q
5 1 R q

rej B R q
acc

0 R q
rej B R q

accB L q
5

0 L q
5 1 L q

5 B R q
0

1

1 B
q

0

q
5

B10

q
3

q
5

0

q
1

q
3

q
1

q
0

q
2

q
4

A More Sane Representation

q
2

q
4

B R q
1 B R q

2 B R q
acc

0 R q
1 1 R q

1 B L q
3

0 R q
2 1 R q

2 B L q
4

B L q
5 1 R q

rej B R q
acc

0 R q
rej B R q

accB L q
5

0 L q
5 1 L q

5 B R q
0

1

1
q

0

q
2

1 B
q

0

q
5

B0

q
3

q
5

0

q
1

q
3

q
1

q
2

q
4

A More Sane Representation

q
4

B R q
1 B R q

2 B R q
acc

0 R q
1 1 R q

1 B L q
3

0 R q
2 1 R q

2 B L q
4

B L q
5 1 R q

rej B R q
acc

0 R q
rej B R q

accB L q
5

0 L q
5 1 L q

5 B R q
0

B1
q

0

q
2

1 B
q

0

q
5

0

q
3

q
5

0

q
1

q
3

q
1

q
2

q
4

A More Sane Representation

q
4

B R q
1 B R q

2 B R q
acc

0 R q
1 1 R q

1 B L q
3

0 R q
2 1 R q

2 B L q
4

B L q
5 1 R q

rej B R q
acc

0 R q
rej B R q

accB L q
5

0 L q
5 1 L q

5 B R q
0

B

q
2

q
4

B1
q

0

q
2

1
q

0

q
5

0

q
3

q
5

0

q
1

q
3

q
1

q
4

A More Sane Representation

B R q
1 B R q

2 B R q
acc

0 R q
1 1 R q

1 B L q
3

0 R q
2 1 R q

2 B L q
4

B L q
5 1 R q

rej B R q
acc

0 R q
rej B R q

accB L q
5

0 L q
5 1 L q

5 B R q
0

BB

q
2

q
4

1
q

0

q
2

1
q

0

q
5

0

q
3

q
5

0

q
1

q
3

q
1

q
4

A More Sane Representation

B R q
1 B R q

2 B R q
acc

0 R q
1 1 R q

1 B L q
3

0 R q
2 1 R q

2 B L q
4

B L q
5 1 R q

rej B R q
acc

0 R q
rej B R q

accB L q
5

0 L q
5 1 L q

5 B R q
0

B

q
4

B

q
2

q
4

1
q

0

q
2

1
q

0

q
5

0

q
3

q
5

0

q
1

q
3

q
1

A More Sane Representation

B R q
1 B R q

2 B R q
acc

0 R q
1 1 R q

1 B L q
3

0 R q
2 1 R q

2 B L q
4

B L q
5 1 R q

rej B R q
acc

0 R q
rej B R q

accB L q
5

0 L q
5 1 L q

5 B R q
0

B

q
4

B

q
2

q
4

1
q

0

q
2

1
q

0

q
5

0

q
3

q
5

0

q
1

q
3

q
1

A More Sane Representation

B R q
1 B R q

2 B R q
acc

0 R q
1 1 R q

1 B L q
3

0 R q
2 1 R q

2 B L q
4

B L q
5 1 R q

rej B R q
acc

0 R q
rej B R q

accB L q
5

0 L q
5 1 L q

5 B R q
0

B

q
4

B

q
2

q
4

1
q

0

q
2

1
q

0

q
5

0

q
3

q
5

0

q
1

q
3

q
1

A More Sane Representation

B R q
1 B R q

2 B R q
acc

0 R q
1 1 R q

1 B L q
3

0 R q
2 1 R q

2 B L q
4

B L q
5 1 R q

rej B R q
acc

0 R q
rej B R q

accB L q
5

0 L q
5 1 L q

5 B R q
0

Accept

Reject

Reject Accept

Accept

B

q
4

B

q
2

q
4

1
q

0

q
2

1
q

0

q
5

0

q
3

q
5

0

q
1

q
3

q
1

A More Sane Representation

B R q
1 B R q

2

0 R q
1 1 R q

1 B L q
3

0 R q
2 1 R q

2 B L q
4

B L q
5 Reject

B L q
5

0 L q
5 1 L q

5 B R q
0

Accept

Reject

Reject Accept

Accept

B

q
4

B

q
2

q
4

1
q

0

q
2

1
q

0

q
5

0

q
3

q
5

0

q
1

q
3

q
1

A More Sane Representation

B R q
1 B R q

2

0 R q
1 1 R q

1 B L q
3

0 R q
2 1 R q

2 B L q
4

B L q
5 Reject

B L q
5

0 L q
5 1 L q

5 B R q
0

Turing Machines, Formally

● A Turing machine is an 8-tuple (Q, Σ, Γ, δ, q0,
qacc, qrej, B), where

Q is a finite set of states,

Σ is a finite input alphabet,

Γ is a finite tape alphabet, with Σ ⊆ Γ,

δ : Q × Γ → Q × Γ × {R, L} is the transition function,

q0 ∈ Q is the start state,

qacc ∈ Q is the accept state,

qrej ∈ Q, qrej ≠ qacc, is the reject state, and

B ∈ Γ is the blank symbol.

Turing Machines, Formally

● A Turing machine is an 8-tuple (Q, Σ, Γ, δ, q0,
qacc, qrej, B), where

● Q is a finite set of states,

Σ is a finite input alphabet,

Γ is a finite tape alphabet, with Σ ⊆ Γ,

δ : Q × Γ → Q × Γ × {R, L} is the transition function,

q0 ∈ Q is the start state,

qacc ∈ Q is the accept state,

qrej ∈ Q, qrej ≠ qacc, is the reject state, and

B ∈ Γ is the blank symbol.

Turing Machines, Formally

● A Turing machine is an 8-tuple (Q, Σ, Γ, δ, q0,
qacc, qrej, B), where

● Q is a finite set of states,
● Σ is a finite input alphabet,

Γ is a finite tape alphabet, with Σ ⊆ Γ,

δ : Q × Γ → Q × Γ × {R, L} is the transition function,

q0 ∈ Q is the start state,

qacc ∈ Q is the accept state,

qrej ∈ Q, qrej ≠ qacc, is the reject state, and

B ∈ Γ is the blank symbol.

Turing Machines, Formally

● A Turing machine is an 8-tuple (Q, Σ, Γ, δ, q0,
qacc, qrej, B), where

● Q is a finite set of states,
● Σ is a finite input alphabet,
● Γ is a finite tape alphabet, with Σ ⊆ Γ,

δ : Q × Γ → Q × Γ × {R, L} is the transition function,

q0 ∈ Q is the start state,

qacc ∈ Q is the accept state,

qrej ∈ Q, qrej ≠ qacc, is the reject state, and

B ∈ Γ is the blank symbol.

Turing Machines, Formally

● A Turing machine is an 8-tuple (Q, Σ, Γ, δ, q0,
qacc, qrej, B), where

● Q is a finite set of states,
● Σ is a finite input alphabet,
● Γ is a finite tape alphabet, with Σ ⊆ Γ,

δ : Q × Γ → Q × Γ × {R, L} is the transition function,

q0 ∈ Q is the start state,

qacc ∈ Q is the accept state,

qrej ∈ Q, qrej ≠ qacc, is the reject state, and

B ∈ Γ is the blank symbol.

Why must ?Σ ⊆ Γ

Turing Machines, Formally

● A Turing machine is an 8-tuple (Q, Σ, Γ, δ, q0,
qacc, qrej, B), where

● Q is a finite set of states,
● Σ is a finite input alphabet,
● Γ is a finite tape alphabet, with Σ ⊆ Γ,
● δ : Q × Γ → Q × Γ × {R, L} is the transition function

q0 ∈ Q is the start state,

qacc ∈ Q is the accept state,

qrej ∈ Q, qrej ≠ qacc, is the reject state, and

B ∈ Γ is the blank symbol.

Turing Machines, Formally

● A Turing machine is an 8-tuple (Q, Σ, Γ, δ, q0,
qacc, qrej, B), where

● Q is a finite set of states,
● Σ is a finite input alphabet,
● Γ is a finite tape alphabet, with Σ ⊆ Γ,
● δ : Q × Γ → Q × Γ × {R, L} is the transition function

q0 ∈ Q is the start state,

qacc ∈ Q is the accept state,

qrej ∈ Q, qrej ≠ qacc, is the reject state, and

B ∈ Γ is the blank symbol.

Each transition is based on the
current tape symbol and state.
Each transition maps to a new

state, a new tape symbol, and a
direction (either left or right).

Each transition is based on the
current tape symbol and state.
Each transition maps to a new

state, a new tape symbol, and a
direction (either left or right).

Turing Machines, Formally

● A Turing machine is an 8-tuple (Q, Σ, Γ, δ, q0,
qacc, qrej, B), where

● Q is a finite set of states,
● Σ is a finite input alphabet,
● Γ is a finite tape alphabet, with Σ ⊆ Γ,
● δ : Q × Γ → Q × Γ × {R, L} is the transition function,

● q0 ∈ Q is the start state

qacc ∈ Q is the accept state,

qrej ∈ Q, qrej ≠ qacc, is the reject state, and

B ∈ Γ is the blank symbol.

Turing Machines, Formally

● A Turing machine is an 8-tuple (Q, Σ, Γ, δ, q0,
qacc, qrej, B), where

● Q is a finite set of states,
● Σ is a finite input alphabet,
● Γ is a finite tape alphabet, with Σ ⊆ Γ,
● δ : Q × Γ → Q × Γ × {R, L} is the transition function,

● q0 ∈ Q is the start state,

● qacc ∈ Q is the accept state

qrej ∈ Q, qrej ≠ qacc, is the reject state, and

B ∈ Γ is the blank symbol.

Turing Machines, Formally

● A Turing machine is an 8-tuple (Q, Σ, Γ, δ, q0,
qacc, qrej, B), where

● Q is a finite set of states,
● Σ is a finite input alphabet,
● Γ is a finite tape alphabet, with Σ ⊆ Γ,
● δ : Q × Γ → Q × Γ × {R, L} is the transition function,

● q0 ∈ Q is the start state,

● qacc ∈ Q is the accept state,

● qrej ∈ Q, qrej ≠ qacc, is the reject state

B ∈ Γ is the blank symbol.

Turing Machines, Formally

● A Turing machine is an 8-tuple (Q, Σ, Γ, δ, q0,
qacc, qrej, B), where

● Q is a finite set of states,
● Σ is a finite input alphabet,
● Γ is a finite tape alphabet, with Σ ⊆ Γ,
● δ : Q × Γ → Q × Γ × {R, L} is the transition function,

● q0 ∈ Q is the start state,

● qacc ∈ Q is the accept state,

● qrej ∈ Q, qrej ≠ qacc, is the reject state, and

● B ∈ Γ – Σ is the blank symbol.

The Language of a Turing Machine

● The language of a TM M is the set

ℒ(M) = { w ∈ Σ* | M enters qacc when run on w }

● If there is a TM M such that ℒ(M) = L, we say that
L is Turing-recognizable.

● “Recognizable” for short.
● These languages are sometimes called recursively

enumerable.

● Any regular language is recognizable (why?)

● Harder fact: Any context-free language is
recognizable.

Programming Turing Machines

Programming Turing Machines

● Let's begin with a simple language over
Σ = {0, 1}:

● BALANCE = { w ∈ Σ* | w contains the
same number of 0s and 1s }

● How might we build a TM for BALANCE?

The Intuition

● Match the first symbol on the tape with
the next available symbol that matches it.

● Match the first symbol on the tape with
the next available symbol that matches it.

● Repeat until no symbols are left.
● If everything matches, we're done.
● If there is a mismatch, report failure.

TM for BALANCE

0 1 B

TM for BALANCE

0 1 B
q

st

TM for BALANCE

0 1 B
q

st Accept

TM for BALANCE

0 1 B
q

st Acceptq
m0RB

TM for BALANCE

0 1 B
q

st Acceptq
m0RB q

m1RB

TM for BALANCE

0 1 B
q

st Acceptq
m0RB q

m1RB

q
m0

TM for BALANCE

0 1 B
q

st Acceptq
m0RB q

m1RB

q
m0 0 R q

m0

TM for BALANCE

0 1 B
q

st Acceptq
m0RB q

m1RB

q
m0 0 R q

m0 Reject

TM for BALANCE

0 1 B
q

st Acceptq
m0RB q

m1RB

q
m0 0 R q

m0 RejectB L q
ret

TM for BALANCE

0 1 B
q

st Acceptq
m0RB q

m1RB

q
m0 0 R q

m0 RejectB L q
ret

q
m1 B L q

ret Reject1 R q
m1

TM for BALANCE

0 1 B
q

st Acceptq
m0RB q

m1RB

q
m0 0 R q

m0 RejectB L q
ret

q
m0 B L q

ret Reject1 R q
m1

q
ret

q
m1

TM for BALANCE

0 1 B
q

st Acceptq
m0RB q

m1RB

q
m0 0 R q

m0 RejectB L q
ret

q
m1 B L q

ret Reject1 R q
m1

q
ret 0 L q

ret 1 L q
ret

TM for BALANCE

0 1 B
q

st Acceptq
m0RB q

m1RB

q
m0 0 R q

m0 RejectB L q
ret

q
m1 B L q

ret Reject1 R q
m1

q
ret B R q

st0 L q
ret 1 L q

ret

TM for BALANCE

0 1 B
q

st Acceptq
m0RB q

m1RB

q
m0 0 R q

m0 RejectB L q
ret

q
m0 B L q

ret Reject1 R q
m1

q
ret B R q

st0 L q
ret 1 L q

ret

0 0 1 1

q
m1

TM for BALANCE

0 1 B
q

st Acceptq
m0RB q

m1RB

q
m0 0 R q

m0 RejectB L q
ret

q
m0 B L q

ret Reject1 R q
m1

q
ret B R q

st0 L q
ret 1 L q

ret

0 0 1 1

q
m1

q
st

0 1 B
q

st

q
m0

q
m0

q
ret

TM for BALANCE

0 1 B
Acceptq

m0RB q
m1RB

q
m0 0 R q

m0 RejectB L q
ret

q
m0 B L q

ret Reject1 R q
m1

q
ret B R q

st0 L q
ret 1 L q

ret

0 0 1 1

q
m1

0
q

st

0 1 B
q

st

q
m0

q
m0

q
ret

TM for BALANCE

1 B
Acceptq

m0RB q
m1RB

q
m0 0 R q

m0 RejectB L q
ret

q
m0 B L q

ret Reject1 R q
m1

q
ret B R q

st0 L q
ret 1 L q

ret

0 0 1 1

q
m1

q
m1

q
m1

0
q

st

q
m0

0
q

st

1 B

q
m0

q
ret

TM for BALANCE

1 B
Acceptq

m0RB q
m1RB

0 R q
m0 RejectB L q

ret

B L q
ret Reject1 R q

m1

q
ret B R q

st0 L q
ret 1 L q

ret

0 1 1

0

q
m1

q
m1

0
q

st

q
m0

q
st

1 B

q
m0

q
ret

TM for BALANCE

1 B
Acceptq

m0RB q
m1RB

0 R q
m0 RejectB L q

ret

B L q
ret Reject1 R q

m1

q
ret B R q

st0 L q
ret 1 L q

ret

0 1 1

00

q
m1

q
m1

q
st

q
m0

q
st

1 B

q
m0

q
ret

TM for BALANCE

1 B
Acceptq

m0RB q
m1RB

0 R q
m0 RejectB L q

ret

B L q
ret Reject1 R q

m1

q
ret B R q

st0 L q
ret 1 L q

ret

0 1 1

100

q
m1

q
m1

q
st

q
m0

q
st

1 B

q
m0

q
ret

TM for BALANCE

B
Acceptq

m0RB q
m1RB

0 R q
m0 RejectB L q

ret

B L q
ret Reject1 R q

m1

q
ret B R q

st0 L q
ret 1 L q

ret

0 1 1

q
m0

q
ret

1100

q
m1

q
m1

q
st

q
m0

q
st

B

q
ret

TM for BALANCE

B
Acceptq

m0RB q
m1RB

0 R q
m0 RejectB L q

ret

B L q
ret Reject1 R q

m1

B R q
st0 L q

ret 1 L q
ret

0 1

0

q
m0

q
ret

110

q
m1

q
m1

q
st

q
m0

q
st

B

q
ret

TM for BALANCE

B
Acceptq

m0RB q
m1RB

0 R q
m0 RejectB L q

ret

B L q
ret Reject1 R q

m1

B R q
st0 L q

ret 1 L q
ret

0 1

q
m0

q
ret

1100

q
m1

q
m1

q
st

q
m0

q
st

B

q
ret

TM for BALANCE

B
Acceptq

m0RB q
m1RB

0 R q
m0 RejectB L q

ret

B L q
ret Reject1 R q

m1

B R q
st0 L q

ret 1 L q
ret

0 1

B

q
m0

q
ret

1100

q
m1

q
m1

q
st

q
m0

q
st

B

q
ret

TM for BALANCE

Acceptq
m0RB q

m1RB

0 R q
m0 RejectB L q

ret

B L q
ret Reject1 R q

m1

B R q
st0 L q

ret 1 L q
ret

0 1

q
st

B

q
ret

B

q
m0

q
ret

1100

q
m1

q
m1

q
st

q
m0

TM for BALANCE

Acceptq
m0RB q

m1RB

0 R q
m0 RejectB L q

ret

B L q
ret Reject1 R q

m1

B R q
st0 L q

ret 1 L q
ret

0 1

0
q

st

B

q
ret

B

q
m0

q
ret

110

q
m1

q
m1

q
st

q
m0

TM for BALANCE

Acceptq
m0RB q

m1RB

0 R q
m0 RejectB L q

ret

B L q
ret Reject1 R q

m1

B R q
st0 L q

ret 1 L q
ret

0 1

q
st

q
m0

00
q

st

B

q
ret

B

q
m0

q
ret

11

q
m1

q
m1

TM for BALANCE

Acceptq
m0RB q

m1RB

0 R q
m0 RejectB L q

ret

B L q
ret Reject1 R q

m1

B R q
st0 L q

ret 1 L q
ret

1

q
st

q
m0

00
q

st

B

q
ret

B

q
m0

q
ret

11

q
m1

q
m1

TM for BALANCE

Acceptq
m0RB q

m1RB

0 R q
m0 RejectB L q

ret

B L q
ret Reject1 R q

m1

B R q
st0 L q

ret 1 L q
ret

1

TM for BALANCE

0 1 B
q

st Acceptq
m0RB q

m1RB

q
m0 0 R q

m0 RejectB L q
ret

q
m1 B L q

ret Reject1 R q
m1

q
ret B R q

st0 L q
ret 1 L q

ret

TM for BALANCE

0 1 B
q

st Acceptq
m0RB q

m1RB

q
m0 0 R q

m0 RejectB L q
ret

q
m1 B L q

ret Reject1 R q
m1

q
ret B R q

st0 L q
ret 1 L q

ret

TM for BALANCE

0 1 B
q

st Acceptq
m0RB q

m1RB

q
m0 0 R q

m0 Rejectx L q
ret

q
m1 x L q

ret Reject1 R q
m1

q
ret B R q

st0 L q
ret 1 L q

ret

TM for BALANCE

0 1 B
q

st Acceptq
m0RB q

m1RB

q
m0 0 R q

m0 Rejectx L q
ret

q
m1 x L q

ret Reject1 R q
m1

q
ret B R q

st0 L q
ret 1 L q

ret

x

TM for BALANCE

0 1 B
q

st Acceptq
m0RB q

m1RB

q
m0 0 R q

m0 Rejectx L q
ret

q
m1 x L q

ret Reject1 R q
m1

q
ret B R q

st0 L q
ret 1 L q

ret

x
q

stRx

TM for BALANCE

0 1 B
q

st Acceptq
m0RB q

m1RB

q
m0 0 R q

m0 Rejectx L q
ret

q
m1 x L q

ret Reject1 R q
m1

q
ret B R q

st0 L q
ret 1 L q

ret

x
q

stRx

q
m0Rx

TM for BALANCE

0 1 B
q

st Acceptq
m0RB q

m1RB

q
m0 0 R q

m0 Rejectx L q
ret

q
m1 x L q

ret Reject1 R q
m1

q
ret B R q

st0 L q
ret 1 L q

ret

x
q

stRx

q
m0Rx

q
m1Rx

TM for BALANCE

0 1 B
q

st Acceptq
m0RB q

m1RB

q
m0 0 R q

m0 Rejectx L q
ret

q
m1 x L q

ret Reject1 R q
m1

q
ret B R q

st0 L q
ret 1 L q

ret

x
q

stRx

q
m0Rx

q
m1Rx

q
retLx

TM for BALANCE

0 1 B
q

st Acceptq
m0RB q

m1RB

q
m0 0 R q

m0 Rejectx L q
ret

q
m1 x L q

ret Reject1 R q
m1

q
ret B R q

st0 L q
ret 1 L q

ret

x
q

stRx

q
m0Rx

q
m1Rx

q
retLx

0 0 1 1

TM for BALANCE

0 1 B
q

st Acceptq
m0RB q

m1RB

q
m0 0 R q

m0 Rejectx L q
ret

q
m1 x L q

ret Reject1 R q
m1

q
ret B R q

st0 L q
ret 1 L q

ret

x
q

stRx

q
m0Rx

q
m1Rx

q
retLx

0 0 1 1

q
st

0 1 B
q

st

q
m0

q
m1

q
ret

x

TM for BALANCE

0 1 B
Acceptq

m0RB q
m1RB

q
m0 0 R q

m0 Rejectx L q
ret

q
m1 x L q

ret Reject1 R q
m1

q
ret B R q

st0 L q
ret 1 L q

ret

x
q

stRx

q
m0Rx

q
m1Rx

q
retLx

0 0 1 1

0
q

st

0 1 B
q

st

q
m0

q
m1

q
ret

x

TM for BALANCE

1 B
Acceptq

m0RB q
m1RB

q
m0 0 R q

m0 Rejectx L q
ret

q
m1 x L q

ret Reject1 R q
m1

q
ret B R q

st0 L q
ret 1 L q

ret

x
q

stRx

q
m0Rx

q
m1Rx

q
retLx

0 0 1 1

0
q

st

q
m0

0
q

st

1 B

q
m0

q
m1

q
ret

x

TM for BALANCE

1 B
Acceptq

m0RB q
m1RB

0 R q
m0 Rejectx L q

ret

q
m1 x L q

ret Reject1 R q
m1

q
ret B R q

st0 L q
ret 1 L q

ret

x
q

stRx

q
m0Rx

q
m1Rx

q
retLx

0 1 1

00
q

st

q
m0

q
st

1 B

q
m0

q
m1

q
ret

x

TM for BALANCE

1 B
Acceptq

m0RB q
m1RB

0 R q
m0 Rejectx L q

ret

q
m1 x L q

ret Reject1 R q
m1

q
ret B R q

st0 L q
ret 1 L q

ret

x
q

stRx

q
m0Rx

q
m1Rx

q
retLx

0 1 1

00
q

st

q
m0

q
st

1 B

q
m0

q
m1

q
ret

x

TM for BALANCE

1 B
Acceptq

m0RB q
m1RB

0 R q
m0 Rejectx L q

ret

q
m1 x L q

ret Reject1 R q
m1

q
ret B R q

st0 L q
ret 1 L q

ret

x
q

stRx

q
m0Rx

q
m1Rx

q
retLx

0 1 1

100
q

st

q
m0

q
st

1 B

q
m0

q
m1

q
ret

x

TM for BALANCE

B
Acceptq

m0RB q
m1RB

0 R q
m0 Rejectx L q

ret

q
m1 x L q

ret Reject1 R q
m1

q
ret B R q

st0 L q
ret 1 L q

ret

x
q

stRx

q
m0Rx

q
m1Rx

q
retLx

0 1 1

1

q
m0

q
ret

100
q

st

q
m0

q
st

B

q
m1

q
ret

x

TM for BALANCE

B
Acceptq

m0RB q
m1RB

0 R q
m0 Rejectx L q

ret

q
m1 x L q

ret Reject1 R q
m1

B R q
st0 L q

ret 1 L q
ret

x
q

stRx

q
m0Rx

q
m1Rx

q
retLx

0 x 1

0 1

q
m0

q
ret

10
q

st

q
m0

q
st

B

q
m1

q
ret

x

TM for BALANCE

B
Acceptq

m0RB q
m1RB

0 R q
m0 Rejectx L q

ret

q
m1 x L q

ret Reject1 R q
m1

B R q
st0 L q

ret 1 L q
ret

x
q

stRx

q
m0Rx

q
m1Rx

q
retLx

0 x 1

00 1

q
m0

q
ret

1
q

st

q
m0

q
st

B

q
m1

q
ret

x

TM for BALANCE

B
Acceptq

m0RB q
m1RB

0 R q
m0 Rejectx L q

ret

q
m1 x L q

ret Reject1 R q
m1

B R q
st0 L q

ret 1 L q
ret

x
q

stRx

q
m0Rx

q
m1Rx

q
retLx

0 x 1

B00 1

q
m0

q
ret

1
q

st

q
m0

q
st

B

q
m1

q
ret

x

TM for BALANCE

Acceptq
m0RB q

m1RB

0 R q
m0 Rejectx L q

ret

q
m1 x L q

ret Reject1 R q
m1

B R q
st0 L q

ret 1 L q
ret

x
q

stRx

q
m0Rx

q
m1Rx

q
retLx

0 x 1

q
st

q
ret

BB00 1

q
m0

q
ret

1
q

st

q
m0

q
m1

x

TM for BALANCE

Acceptq
m0RB q

m1RB

0 R q
m0 Rejectx L q

ret

q
m1 x L q

ret Reject1 R q
m1

B R q
st0 L q

ret 1 L q
ret

x
q

stRx

q
m0Rx

q
m1Rx

q
retLx

0 x 1

0
q

st

q
ret

BB0 1

q
m0

q
ret

1
q

st

q
m0

q
m1

x

TM for BALANCE

Acceptq
m0RB q

m1RB

0 R q
m0 Rejectx L q

ret

q
m1 x L q

ret Reject1 R q
m1

B R q
st0 L q

ret 1 L q
ret

x
q

stRx

q
m0Rx

q
m1Rx

q
retLx

0 x 1

0
q

st

q
m0

0
q

st

q
ret

BB1

q
m0

q
ret

1

q
m1

x

TM for BALANCE

Acceptq
m0RB q

m1RB

0 R q
m0 Rejectx L q

ret

q
m1 x L q

ret Reject1 R q
m1

B R q
st0 L q

ret 1 L q
ret

x
q

stRx

q
m0Rx

q
m1Rx

q
retLx

x 1

x0
q

st

q
m0

0
q

st

q
ret

BB1

q
m0

q
ret

1

q
m1

x

TM for BALANCE

Acceptq
m0RB q

m1RB

0 R q
m0 Rejectx L q

ret

q
m1 x L q

ret Reject1 R q
m1

B R q
st0 L q

ret 1 L q
ret

q
stRx

q
m0Rx

q
m1Rx

q
retLx

x 1

xx0
q

st

q
m0

0
q

st

q
ret

BB1

q
m0

q
ret

1

q
m1

TM for BALANCE

Acceptq
m0RB q

m1RB

0 R q
m0 Rejectx L q

ret

q
m1 x L q

ret Reject1 R q
m1

B R q
st0 L q

ret 1 L q
ret

q
stRx

q
m0Rx

q
m1Rx

q
retLx

x 1

1 xx0
q

st

q
m0

0
q

st

q
ret

BB1

q
m0

q
ret

q
m1

TM for BALANCE

Acceptq
m0RB q

m1RB

0 R q
m0 Rejectx L q

ret

q
m1 x L q

ret Reject1 R q
m1

B R q
st0 L q

ret 1 L q
ret

q
stRx

q
m0Rx

q
m1Rx

q
retLx

x 1

q
m0

q
ret

11 xx0
q

st

q
m0

0
q

st

q
ret

BB

q
m1

TM for BALANCE

Acceptq
m0RB q

m1RB

0 R q
m0 Rejectx L q

ret

q
m1 x L q

ret Reject1 R q
m1

B R q
st0 L q

ret 1 L q
ret

q
stRx

q
m0Rx

q
m1Rx

q
retLx

x x

x

q
m0

q
ret

11 x0
q

st

q
m0

0
q

st

q
ret

BB

q
m1

TM for BALANCE

Acceptq
m0RB q

m1RB

0 R q
m0 Rejectx L q

ret

q
m1 x L q

ret Reject1 R q
m1

B R q
st0 L q

ret 1 L q
ret

q
stRx

q
m0Rx

q
m1Rx

q
retLx

x x

xx

q
m0

q
ret

110
q

st

q
m0

0
q

st

q
ret

BB

q
m1

TM for BALANCE

Acceptq
m0RB q

m1RB

0 R q
m0 Rejectx L q

ret

q
m1 x L q

ret Reject1 R q
m1

B R q
st0 L q

ret 1 L q
ret

q
stRx

q
m0Rx

q
m1Rx

q
retLx

x x

B xx

q
m0

q
ret

110
q

st

q
m0

0
q

st

q
ret

B

q
m1

TM for BALANCE

Acceptq
m0RB q

m1RB

0 R q
m0 Rejectx L q

ret

q
m1 x L q

ret Reject1 R q
m1

B R q
st0 L q

ret 1 L q
ret

q
stRx

q
m0Rx

q
m1Rx

q
retLx

x x

q
st

q
ret

BB xx

q
m0

q
ret

110
q

st

q
m0

0

q
m1

TM for BALANCE

Acceptq
m0RB q

m1RB

0 R q
m0 Rejectx L q

ret

q
m1 x L q

ret Reject1 R q
m1

B R q
st0 L q

ret 1 L q
ret

q
stRx

q
m0Rx

q
m1Rx

q
retLx

x x

x
q

st

q
ret

BB x

q
m0

q
ret

110
q

st

q
m0

0

q
m1

TM for BALANCE

Acceptq
m0RB q

m1RB

0 R q
m0 Rejectx L q

ret

q
m1 x L q

ret Reject1 R q
m1

B R q
st0 L q

ret 1 L q
ret

q
stRx

q
m0Rx

q
m1Rx

q
retLx

x x

xx
q

st

q
ret

BB

q
m0

q
ret

110
q

st

q
m0

0

q
m1

TM for BALANCE

Acceptq
m0RB q

m1RB

0 R q
m0 Rejectx L q

ret

q
m1 x L q

ret Reject1 R q
m1

B R q
st0 L q

ret 1 L q
ret

q
stRx

q
m0Rx

q
m1Rx

q
retLx

x x

xx
q

st

q
ret

BB

q
m0

q
ret

110
q

st

q
m0

0

q
m1

TM for BALANCE

Acceptq
m0RB q

m1RB

0 R q
m0 Rejectx L q

ret

q
m1 x L q

ret Reject1 R q
m1

B R q
st0 L q

ret 1 L q
ret

q
stRx

q
m0Rx

q
m1Rx

q
retLx

x x

xx
q

st

q
ret

BB

q
m0

q
ret

110
q

st

q
m0

0

q
m1

TM for BALANCE

Acceptq
m0RB q

m1RB

0 R q
m0 Rejectx L q

ret

q
m1 x L q

ret Reject1 R q
m1

B R q
st0 L q

ret 1 L q
ret

q
stRx

q
m0Rx

q
m1Rx

q
retLx

x x

B xx
q

st

q
ret

B

q
m0

q
ret

110
q

st

q
m0

0

q
m1

TM for BALANCE

Acceptq
m0RB q

m1RB

0 R q
m0 Rejectx L q

ret

q
m1 x L q

ret Reject1 R q
m1

B R q
st0 L q

ret 1 L q
ret

q
stRx

q
m0Rx

q
m1Rx

q
retLx

x x

B xx
q

st

q
ret

B

q
m0

q
ret

110
q

st

q
m0

0

q
m1

TM for BALANCE

Acceptq
m0RB q

m1RB

0 R q
m0 Rejectx L q

ret

q
m1 x L q

ret Reject1 R q
m1

B R q
st0 L q

ret 1 L q
ret

q
stRx

q
m0Rx

q
m1Rx

q
retLx

x x

The Key Insight

● Our construction worked because we
could make the finite-state control hold
extra information (which symbol we had
matched).

● General TM design trick: Treat the
finite state control as a combination
control/finite memory.

● Can hold any finite amount of information
by just replicating important states the
appropriate number of times.

A More Elaborate Language

● Consider Σ = { 1, ×, = } and the language

MULTIPLY = { 1n × 1m = 1mn | m, n ∈ ℕ }

● This language is neither regular nor
context-free, but it is recursively
enumerable.

● How would we build a TM for it?

A Turing Machine Subroutine

● A subroutine in a TM is state that, when
entered:
● Performs some specific task on the tape, then
● Terminates in a well-specified state.

● Complex Turing machines can be broken down
into smaller subroutines as follows:
● The start state fires off the first subroutine.
● After the first subroutine terminates, the next

begins.
● (etc.)
● The machine may accept or reject at any point.

Key Idea: Subroutines

● Checking whether a string is in
MULTIPLY requires several different
steps:
● Check that the string is formatted correctly.
● Compute m × n.
● Confirm that m × n matches what's given.

● Let's design a subroutine for each of
these.

Validating the Input
● High-level idea:

● Shift the input over by one step.

● Check the structure of the input.

● End up in a new state looking at the first
character of the input if successful.

1 × 1 = 1 1 × 1 = 1

1 × 1 = 1

1 × 1 = 1

Step One: Shift the Input

Step One: Shift the Input

q
s

1 × = B
????

Step One: Shift the Input

q
s B R q

1

1 × = B
???

Step One: Shift the Input

q
s B R q

1

1 × = B
B R q

× ??

Step One: Shift the Input

q
s B R q

1

1 × = B
B R q

× B R q
= ?

Step One: Shift the Input

q
s B R q

1

1 × = B
B R q

× B R q
= ?

q
1 ????

Step One: Shift the Input

q
s B R q

1

1 × = B
B R q

× B R q
= ?

q
1 1 R q

1 ???

Step One: Shift the Input

q
s B R q

1

1 × = B
B R q

× B R q
= ?

q
1 1 R q

1 1 R q
× ??

Step One: Shift the Input

q
s B R q

1

1 × = B
B R q

× B R q
= ?

q
1 1 R q

1 1 R q
× 1 R q

= ?

Step One: Shift the Input

q
s B R q

1

1 × = B
B R q

× B R q
= ?

q
1 1 R q

1 1 R q
× 1 R q

=

q
× ?

?

???

Step One: Shift the Input

q
s B R q

1

1 × = B
B R q

× B R q
= ?

q
1 1 R q

1 1 R q
× 1 R q

=

q
× × R q

1 × R q
× × R q

= ?

?

Step One: Shift the Input

q
s B R q

1

1 × = B
B R q

× B R q
= ?

q
1 1 R q

1 1 R q
× 1 R q

=

q
× × R q

1 × R q
× × R q

=

q
= ?

?

?

???

Step One: Shift the Input

q
s B R q

1

1 × = B
B R q

× B R q
= ?

q
1 1 R q

1 1 R q
× 1 R q

=

q
× × R q

1 × R q
× × R q

=

q
= = R q

1 = R q
× = R q

= ?

?

?

Step One: Shift the Input

q
s B R q

1

1 × = B
B R q

× B R q
= ?

q
1 1 R q

1 1 R q
× 1 R q

= 1 L q
R

q
× × R q

1 × R q
× × R q

= × L q
R

q
= = R q

1 = R q
× = R q

= = L q
R

Step One: Shift the Input

q
s B R q

1

1 × = B
B R q

× B R q
= ?

q
1 1 R q

1 1 R q
× 1 R q

= 1 L q
R

q
× × R q

1 × R q
× × R q

= × L q
R

q
= = R q

1 = R q
× = R q

= = L q
R

q
R ????

Step One: Shift the Input

q
s B R q

1

1 × = B
B R q

× B R q
= ?

q
1 1 R q

1 1 R q
× 1 R q

= 1 L q
R

q
× × R q

1 × R q
× × R q

= × L q
R

q
= = R q

1 = R q
× = R q

= = L q
R

q
R 1 L q

R ???

Step One: Shift the Input

q
s B R q

1

1 × = B
B R q

× B R q
= ?

q
1 1 R q

1 1 R q
× 1 R q

= 1 L q
R

q
× × R q

1 × R q
× × R q

= × L q
R

q
= = R q

1 = R q
× = R q

= = L q
R

q
R 1 L q

R × L q
R ??

Step One: Shift the Input

q
s B R q

1

1 × = B
B R q

× B R q
= ?

q
1 1 R q

1 1 R q
× 1 R q

= 1 L q
R

q
× × R q

1 × R q
× × R q

= × L q
R

q
= = R q

1 = R q
× = R q

= = L q
R

q
R 1 L q

R × L q
R = L q

R ?

Step One: Shift the Input

q
s B R q

1

1 × = B
B R q

× B R q
= ?

q
1 1 R q

1 1 R q
× 1 R q

= 1 L q
R

q
× × R q

1 × R q
× × R q

= × L q
R

q
= = R q

1 = R q
× = R q

= = L q
R

q
R 1 L q

R × L q
R = L q

R B R D

Step One: Shift the Input

q
s B R q

1

1 × = B
B R q

× B R q
= B R D

q
1 1 R q

1 1 R q
× 1 R q

= 1 L q
R

q
× × R q

1 × R q
× × R q

= × L q
R

q
= = R q

1 = R q
× = R q

= = L q
R

q
R 1 L q

R × L q
R = L q

R B R D

q
s

1 × = B

q
1

q
×

q
=

q
R

Step One: Shift the Input

q
s B R q

1

1 × = B
B R q

× B R q
= B R D

q
1 1 R q

1 1 R q
× 1 R q

= 1 L q
R

q
× × R q

1 × R q
× × R q

= × L q
R

q
= = R q

1 = R q
× = R q

= = L q
R

q
R 1 L q

R × L q
R = L q

R B R D

1 1 × 1 1 = 1 1 1 1

q
s

q
s

1 × = B

q
1

q
×

q
=

q
R

Step One: Shift the Input

B R q
1

1 × = B
B R q

× B R q
= B R D

q
1 1 R q

1 1 R q
× 1 R q

= 1 L q
R

q
× × R q

1 × R q
× × R q

= × L q
R

q
= = R q

1 = R q
× = R q

= = L q
R

q
R 1 L q

R × L q
R = L q

R B R D

1 1 × 1 1 = 1 1 1 1

1
q

s
q

s

1 × = B

q
1

q
×

q
=

q
R

Step One: Shift the Input

B R q
1

× = B
B R q

× B R q
= B R D

q
1 1 R q

1 1 R q
× 1 R q

= 1 L q
R

q
× × R q

1 × R q
× × R q

= × L q
R

q
= = R q

1 = R q
× = R q

= = L q
R

q
R 1 L q

R × L q
R = L q

R B R D

1 1 × 1 1 = 1 1 1 1

q
s

1

q
1

1
q

s

× = B

q
1

q
×

q
=

q
R

Step One: Shift the Input

B R q
1

× = B
B R q

× B R q
= B R D

1 R q
1 1 R q

× 1 R q
= 1 L q

R

q
× × R q

1 × R q
× × R q

= × L q
R

q
= = R q

1 = R q
× = R q

= = L q
R

q
R 1 L q

R × L q
R = L q

R B R D

1 × 1 1 = 1 1 1 1

1
q

s

1

q
1

q
s

× = B

q
1

q
×

q
=

q
R

Step One: Shift the Input

B R q
1

× = B
B R q

× B R q
= B R D

1 R q
1 1 R q

× 1 R q
= 1 L q

R

q
× × R q

1 × R q
× × R q

= × L q
R

q
= = R q

1 = R q
× = R q

= = L q
R

q
R 1 L q

R × L q
R = L q

R B R D

1 × 1 1 = 1 1 1 1

11
q

s

q
1

q
s

× = B

q
1

q
×

q
=

q
R

Step One: Shift the Input

B R q
1

× = B
B R q

× B R q
= B R D

1 R q
1 1 R q

× 1 R q
= 1 L q

R

q
× × R q

1 × R q
× × R q

= × L q
R

q
= = R q

1 = R q
× = R q

= = L q
R

q
R 1 L q

R × L q
R = L q

R B R D

1 × 1 1 = 1 1 1 1

×11
q

s

q
1

q
s

× = B

q
1

q
×

q
=

q
R

Step One: Shift the Input

B R q
1

= B
B R q

× B R q
= B R D

1 R q
1 1 R q

× 1 R q
= 1 L q

R

q
× × R q

1 × R q
× × R q

= × L q
R

q
= = R q

1 = R q
× = R q

= = L q
R

q
R 1 L q

R × L q
R = L q

R B R D

1 × 1 1 = 1 1 1 1

×

q
1

q
×

×11
q

s

q
1

q
s

= B

q
×

q
=

q
R

Step One: Shift the Input

B R q
1

= B
B R q

× B R q
= B R D

1 R q
1 1 R q

× 1 R q
= 1 L q

R

× R q
1 × R q

× × R q
= × L q

R

q
= = R q

1 = R q
× = R q

= = L q
R

q
R 1 L q

R × L q
R = L q

R B R D

1 1 1 1 = 1 1 1 1

1 ×

q
1

q
×

×1
q

s

q
1

q
s

= B

q
×

q
=

q
R

Step One: Shift the Input

B R q
1

= B
B R q

× B R q
= B R D

1 R q
1 1 R q

× 1 R q
= 1 L q

R

× R q
1 × R q

× × R q
= × L q

R

q
= = R q

1 = R q
× = R q

= = L q
R

q
R 1 L q

R × L q
R = L q

R B R D

1 1 1 1 = 1 1 1 1

1

q
1

q
×

1 ×

q
1

q
×

×
q

s
q

s

= B

q
=

q
R

Step One: Shift the Input

B R q
1

= B
B R q

× B R q
= B R D

1 R q
1 1 R q

× 1 R q
= 1 L q

R

× R q
1 × R q

× × R q
= × L q

R

q
= = R q

1 = R q
× = R q

= = L q
R

q
R 1 L q

R × L q
R = L q

R B R D

1 1 × 1 = 1 1 1 1

11

q
1

q
×

×

q
1

q
×

×
q

s
q

s

= B

q
=

q
R

Step One: Shift the Input

B R q
1

= B
B R q

× B R q
= B R D

1 R q
1 1 R q

× 1 R q
= 1 L q

R

× R q
1 × R q

× × R q
= × L q

R

q
= = R q

1 = R q
× = R q

= = L q
R

q
R 1 L q

R × L q
R = L q

R B R D

1 1 × 1 = 1 1 1 1

11

q
1

q
×

×

q
1

q
×

×
q

s
q

s

= B

q
=

q
R

Step One: Shift the Input

B R q
1

= B
B R q

× B R q
= B R D

1 R q
1 1 R q

× 1 R q
= 1 L q

R

× R q
1 × R q

× × R q
= × L q

R

q
= = R q

1 = R q
× = R q

= = L q
R

q
R 1 L q

R × L q
R = L q

R B R D

1 1 × 1 = 1 1 1 1

=11

q
1

q
×

×

q
1

q
×

×
q

s
q

s

= B

q
=

q
R

Step One: Shift the Input

B R q
1

B
B R q

× B R q
= B R D

1 R q
1 1 R q

× 1 R q
= 1 L q

R

× R q
1 × R q

× × R q
= × L q

R

q
= = R q

1 = R q
× = R q

= = L q
R

q
R 1 L q

R × L q
R = L q

R B R D

1 1 × 1 = 1 1 1 1

q
1

=

q
=

=11

q
1

q
×

×

q
×

×
q

s
q

s

B

q
=

q
R

Step One: Shift the Input

B R q
1

B
B R q

× B R q
= B R D

1 R q
1 1 R q

× 1 R q
= 1 L q

R

× R q
1 × R q

× × R q
= × L q

R

= R q
1 = R q

× = R q
= = L q

R

q
R 1 L q

R × L q
R = L q

R B R D

1 1 × 1 1 1 1 1 1

1

q
1

=

q
=

=1

q
1

q
×

×

q
×

×
q

s
q

s

B

q
=

q
R

Step One: Shift the Input

B R q
1

B
B R q

× B R q
= B R D

1 R q
1 1 R q

× 1 R q
= 1 L q

R

× R q
1 × R q

× × R q
= × L q

R

= R q
1 = R q

× = R q
= = L q

R

q
R 1 L q

R × L q
R = L q

R B R D

1 1 × 1 1 1 1 1 1

1

q
1

q
=

1

q
1

=

q
=

=

q
×

×

q
×

×
q

s
q

s

B

q
R

Step One: Shift the Input

B R q
1

B
B R q

× B R q
= B R D

1 R q
1 1 R q

× 1 R q
= 1 L q

R

× R q
1 × R q

× × R q
= × L q

R

= R q
1 = R q

× = R q
= = L q

R

q
R 1 L q

R × L q
R = L q

R B R D

1 1 × 1 1 = 1 1 1

11

q
1

q
=

q
1

=

q
=

=

q
×

×

q
×

×
q

s
q

s

B

q
R

Step One: Shift the Input

B R q
1

B
B R q

× B R q
= B R D

1 R q
1 1 R q

× 1 R q
= 1 L q

R

× R q
1 × R q

× × R q
= × L q

R

= R q
1 = R q

× = R q
= = L q

R

q
R 1 L q

R × L q
R = L q

R B R D

1 1 × 1 1 = 1 1 1

11

q
1

q
=

q
1

=

q
=

=

q
×

×

q
×

×
q

s
q

s

B

q
R

Step One: Shift the Input

B R q
1

B
B R q

× B R q
= B R D

1 R q
1 1 R q

× 1 R q
= 1 L q

R

× R q
1 × R q

× × R q
= × L q

R

= R q
1 = R q

× = R q
= = L q

R

q
R 1 L q

R × L q
R = L q

R B R D

1 1 × 1 1 = 1 1 1

11

q
1

q
=

q
1

=

q
=

=

q
×

×

q
×

×
q

s
q

s

B

q
R

Step One: Shift the Input

B R q
1

B
B R q

× B R q
= B R D

1 R q
1 1 R q

× 1 R q
= 1 L q

R

× R q
1 × R q

× × R q
= × L q

R

= R q
1 = R q

× = R q
= = L q

R

q
R 1 L q

R × L q
R = L q

R B R D

1 1 × 1 1 = 1 1 1

11

q
1

q
=

q
1

=

q
=

=

q
×

×

q
×

×
q

s
q

s

B

q
R

Step One: Shift the Input

B R q
1

B
B R q

× B R q
= B R D

1 R q
1 1 R q

× 1 R q
= 1 L q

R

× R q
1 × R q

× × R q
= × L q

R

= R q
1 = R q

× = R q
= = L q

R

q
R 1 L q

R × L q
R = L q

R B R D

1 1 × 1 1 = 1 1 1

11

q
1

q
=

q
1

=

q
=

=

q
×

×

q
×

×
q

s
q

s

B

q
R

Step One: Shift the Input

B R q
1

B
B R q

× B R q
= B R D

1 R q
1 1 R q

× 1 R q
= 1 L q

R

× R q
1 × R q

× × R q
= × L q

R

= R q
1 = R q

× = R q
= = L q

R

q
R 1 L q

R × L q
R = L q

R B R D

1 1 × 1 1 = 1 1 1

11

q
1

q
=

q
1

=

q
=

=

q
×

×

q
×

×
q

s
q

s

B

q
R

Step One: Shift the Input

B R q
1

B
B R q

× B R q
= B R D

1 R q
1 1 R q

× 1 R q
= 1 L q

R

× R q
1 × R q

× × R q
= × L q

R

= R q
1 = R q

× = R q
= = L q

R

q
R 1 L q

R × L q
R = L q

R B R D

1 1 × 1 1 = 1 1 1

B11

q
1

q
=

q
1

=

q
=

=

q
×

×

q
×

×
q

s
q

s

B

q
R

Step One: Shift the Input

B R q
1 B R q

× B R q
= B R D

1 R q
1 1 R q

× 1 R q
= 1 L q

R

× R q
1 × R q

× × R q
= × L q

R

= R q
1 = R q

× = R q
= = L q

R

q
R 1 L q

R × L q
R = L q

R B R D

1 1 × 1 1 = 1 1 1

q
1

B

q
R

B11

q
1

q
=

=

q
=

=

q
×

×

q
×

×
q

s
q

s

q
R

Step One: Shift the Input

B R q
1 B R q

× B R q
= B R D

1 R q
1 1 R q

× 1 R q
= 1 L q

R

× R q
1 × R q

× × R q
= × L q

R

= R q
1 = R q

× = R q
= = L q

R

1 L q
R × L q

R = L q
R B R D

1 1 × 1 1 = 1 1 1 1

1

q
1

B

q
R

B1

q
1

q
=

=

q
=

=

q
×

×

q
×

×
q

s
q

s

q
R

Step One: Shift the Input

B R q
1 B R q

× B R q
= B R D

1 R q
1 1 R q

× 1 R q
= 1 L q

R

× R q
1 × R q

× × R q
= × L q

R

= R q
1 = R q

× = R q
= = L q

R

1 L q
R × L q

R = L q
R B R D

1 1 × 1 1 = 1 1 1 1

11

q
1

B

q
R

B

q
1

q
=

=

q
=

=

q
×

×

q
×

×
q

s
q

s

q
R

Step One: Shift the Input

B R q
1 B R q

× B R q
= B R D

1 R q
1 1 R q

× 1 R q
= 1 L q

R

× R q
1 × R q

× × R q
= × L q

R

= R q
1 = R q

× = R q
= = L q

R

1 L q
R × L q

R = L q
R B R D

1 1 × 1 1 = 1 1 1 1

11

q
1

B

q
R

B

q
1

q
=

=

q
=

=

q
×

×

q
×

×
q

s
q

s

q
R

Step One: Shift the Input

B R q
1 B R q

× B R q
= B R D

1 R q
1 1 R q

× 1 R q
= 1 L q

R

× R q
1 × R q

× × R q
= × L q

R

= R q
1 = R q

× = R q
= = L q

R

1 L q
R × L q

R = L q
R B R D

1 1 × 1 1 = 1 1 1 1

11

q
1

B

q
R

B

q
1

q
=

=

q
=

=

q
×

×

q
×

×
q

s
q

s

q
R

Step One: Shift the Input

B R q
1 B R q

× B R q
= B R D

1 R q
1 1 R q

× 1 R q
= 1 L q

R

× R q
1 × R q

× × R q
= × L q

R

= R q
1 = R q

× = R q
= = L q

R

1 L q
R × L q

R = L q
R B R D

1 1 × 1 1 = 1 1 1 1

11

q
1

B

q
R

B

q
1

q
=

=

q
=

=

q
×

×

q
×

×
q

s
q

s

q
R

Step One: Shift the Input

B R q
1 B R q

× B R q
= B R D

1 R q
1 1 R q

× 1 R q
= 1 L q

R

× R q
1 × R q

× × R q
= × L q

R

= R q
1 = R q

× = R q
= = L q

R

1 L q
R × L q

R = L q
R B R D

1 1 × 1 1 = 1 1 1 1

11

q
1

B

q
R

B

q
1

q
=

=

q
=

=

q
×

×

q
×

×
q

s
q

s

q
R

Step One: Shift the Input

B R q
1 B R q

× B R q
= B R D

1 R q
1 1 R q

× 1 R q
= 1 L q

R

× R q
1 × R q

× × R q
= × L q

R

= R q
1 = R q

× = R q
= = L q

R

1 L q
R × L q

R = L q
R B R D

1 1 × 1 1 = 1 1 1 1

=11

q
1

B

q
R

B

q
1

q
=

=

q
=

q
×

×

q
×

×
q

s
q

s

q
R

Step One: Shift the Input

B R q
1 B R q

× B R q
= B R D

1 R q
1 1 R q

× 1 R q
= 1 L q

R

× R q
1 × R q

× × R q
= × L q

R

= R q
1 = R q

× = R q
= = L q

R

1 L q
R × L q

R = L q
R B R D

1 1 × 1 1 = 1 1 1 1

==11

q
1

B

q
R

B

q
1

q
=

q
=

q
×

×

q
×

×
q

s
q

s

q
R

Step One: Shift the Input

B R q
1 B R q

× B R q
= B R D

1 R q
1 1 R q

× 1 R q
= 1 L q

R

× R q
1 × R q

× × R q
= × L q

R

= R q
1 = R q

× = R q
= = L q

R

1 L q
R × L q

R = L q
R B R D

1 1 × 1 1 = 1 1 1 1

1 ==1

q
1

B

q
R

B

q
1

q
=

q
=

q
×

×

q
×

×
q

s
q

s

q
R

Step One: Shift the Input

B R q
1 B R q

× B R q
= B R D

1 R q
1 1 R q

× 1 R q
= 1 L q

R

× R q
1 × R q

× × R q
= × L q

R

= R q
1 = R q

× = R q
= = L q

R

1 L q
R × L q

R = L q
R B R D

1 1 × 1 1 = 1 1 1 1

11 ==

q
1

B

q
R

B

q
1

q
=

q
=

q
×

×

q
×

×
q

s
q

s

q
R

Step One: Shift the Input

B R q
1 B R q

× B R q
= B R D

1 R q
1 1 R q

× 1 R q
= 1 L q

R

× R q
1 × R q

× × R q
= × L q

R

= R q
1 = R q

× = R q
= = L q

R

1 L q
R × L q

R = L q
R B R D

1 1 × 1 1 = 1 1 1 1

11 ==

q
1

B

q
R

B

q
1

q
=

q
=

q
×

×

q
×

×
q

s
q

s

q
R

Step One: Shift the Input

B R q
1 B R q

× B R q
= B R D

1 R q
1 1 R q

× 1 R q
= 1 L q

R

× R q
1 × R q

× × R q
= × L q

R

= R q
1 = R q

× = R q
= = L q

R

1 L q
R × L q

R = L q
R B R D

1 1 × 1 1 = 1 1 1 1

11 ==

q
1

B

q
R

B

q
1

q
=

q
=

q
×

×

q
×

×
q

s
q

s

q
R

Step One: Shift the Input

B R q
1 B R q

× B R q
= B R D

1 R q
1 1 R q

× 1 R q
= 1 L q

R

× R q
1 × R q

× × R q
= × L q

R

= R q
1 = R q

× = R q
= = L q

R

1 L q
R × L q

R = L q
R B R D

1 1 × 1 1 = 1 1 1 1

×11 ==

q
1

B

q
R

B

q
1

q
=

q
=

q
×

×

q
×

q
s

q
s

q
R

Step One: Shift the Input

B R q
1 B R q

× B R q
= B R D

1 R q
1 1 R q

× 1 R q
= 1 L q

R

× R q
1 × R q

× × R q
= × L q

R

= R q
1 = R q

× = R q
= = L q

R

1 L q
R × L q

R = L q
R B R D

1 1 × 1 1 = 1 1 1 1

××11 ==

q
1

B

q
R

B

q
1

q
=

q
=

q
×

q
×

q
s

q
s

q
R

Step One: Shift the Input

B R q
1 B R q

× B R q
= B R D

1 R q
1 1 R q

× 1 R q
= 1 L q

R

× R q
1 × R q

× × R q
= × L q

R

= R q
1 = R q

× = R q
= = L q

R

1 L q
R × L q

R = L q
R B R D

1 1 × 1 1 = 1 1 1 1

1 ××1 ==

q
1

B

q
R

B

q
1

q
=

q
=

q
×

q
×

q
s

q
s

q
R

Step One: Shift the Input

B R q
1 B R q

× B R q
= B R D

1 R q
1 1 R q

× 1 R q
= 1 L q

R

× R q
1 × R q

× × R q
= × L q

R

= R q
1 = R q

× = R q
= = L q

R

1 L q
R × L q

R = L q
R B R D

1 1 × 1 1 = 1 1 1 1

11 ×× ==

q
1

B

q
R

B

q
1

q
=

q
=

q
×

q
×

q
s

q
s

q
R

Step One: Shift the Input

B R q
1 B R q

× B R q
= B R D

1 R q
1 1 R q

× 1 R q
= 1 L q

R

× R q
1 × R q

× × R q
= × L q

R

= R q
1 = R q

× = R q
= = L q

R

1 L q
R × L q

R = L q
R B R D

1 1 × 1 1 = 1 1 1 1

11 ×× ==

q
1

B

q
R

B

q
1

q
=

q
=

q
×

q
×

q
s

q
s

q
R

Step One: Shift the Input

B R q
1 B R q

× B R q
= B R D

1 R q
1 1 R q

× 1 R q
= 1 L q

R

× R q
1 × R q

× × R q
= × L q

R

= R q
1 = R q

× = R q
= = L q

R

1 L q
R × L q

R = L q
R B R D

1 1 × 1 1 = 1 1 1 1

11 ×× ==

q
1

B

q
R

B

q
1

q
=

q
=

q
×

q
×

q
s

q
s

q
R

Step One: Shift the Input

B R q
1 B R q

× B R q
= B R D

1 R q
1 1 R q

× 1 R q
= 1 L q

R

× R q
1 × R q

× × R q
= × L q

R

= R q
1 = R q

× = R q
= = L q

R

1 L q
R × L q

R = L q
R B R D

1 1 × 1 1 = 1 1 1 1

B11 ×× ==

q
1

B

q
R

q
1

q
=

q
=

q
×

q
×

q
s

q
s

q
R

Step One: Shift the Input

B R q
1 B R q

× B R q
= B R D

1 R q
1 1 R q

× 1 R q
= 1 L q

R

× R q
1 × R q

× × R q
= × L q

R

= R q
1 = R q

× = R q
= = L q

R

1 L q
R × L q

R = L q
R B R D

1 1 × 1 1 = 1 1 1 1

B

q
R

B11 ×× ==

q
1

q
R

q
1

q
=

q
=

q
×

q
×

q
s

q
s

Step One: Shift the Input

B R q
1 B R q

× B R q
= B R D

1 R q
1 1 R q

× 1 R q
= 1 L q

R

× R q
1 × R q

× × R q
= × L q

R

= R q
1 = R q

× = R q
= = L q

R

1 L q
R × L q

R = L q
R B R D

1 1 × 1 1 = 1 1 1 1

Step Two: Verify the Input

Step Two: Verify the Input

1 × = B

Step Two: Verify the Input

1 × =
q

st

B

Step Two: Verify the Input

1 × =
q

st

B
q

stR1

Step Two: Verify the Input

1 × =
q

st

B
q

stR1 Reject

Step Two: Verify the Input

1 × =
q

st

B
q

stR1 Reject Reject

Step Two: Verify the Input

1 × =
q

st

B
q

stR1 Reject Rejectq
×R×

Step Two: Verify the Input

1 × =
q

st

B
q

stR1 Reject Rejectq
×R×

q
×

Step Two: Verify the Input

1 × =
q

st

B
q

stR1 Reject Rejectq
×R×

q
× q

×R1

Step Two: Verify the Input

1 × =
q

st

B
q

stR1 Reject Rejectq
×R×

q
× q

×R1 Reject

Step Two: Verify the Input

1 × =
q

st

B
q

stR1 Reject Rejectq
×R×

q
× q

×R1 Reject Reject

Step Two: Verify the Input

1 × =
q

st

B
q

stR1 Reject Rejectq
×R×

q
× q

×R1 Reject RejectR= q
=

Step Two: Verify the Input

1 × =
q

st

B
q

stR1 Reject Rejectq
×R×

q
× q

×R1 Reject RejectR= q
=

q
=

Step Two: Verify the Input

1 × =
q

st

B
q

stR1 Reject Rejectq
×R×

q
× q

×R1 Reject RejectR= q
=

q
= q

=R1

Step Two: Verify the Input

1 × =
q

st

B
q

stR1 Reject Rejectq
×R×

q
× q

×R1 Reject RejectR= q
=

q
= q

=R1 Reject Reject

Step Two: Verify the Input

1 × =
q

st

B
q

stR1 Reject Rejectq
×R×

q
× q

×R1 Reject RejectR= q
=

q
= q

=R1 Reject Reject q
LLB

Step Two: Verify the Input

1 × =
q

st

B
q

stR1 Reject Rejectq
×R×

q
× q

×R1 Reject RejectR= q
=

q
= q

=R1 Reject Reject q
LLB

q
L q

LL1 q
LL× q

LL=

Step Two: Verify the Input

1 × =
q

st

B
q

stR1 Reject Rejectq
×R×

q
× q

×R1 Reject RejectR= q
=

q
= q

=R1 Reject Reject q
LLB

q
L q

LL1 q
LL× q

LL= DRB

Step Two: Verify the Input

1 × =
q

st Rejectq
stR1 q

×R×

B
Reject

q
× Rejectq

×R1 Rejectq
=R=

q
= Rejectq

=R1 Reject q
LLB

q
L q

LL1 q
LL× q

LL= DRB

1 1 × 1 = 1 1

q
st

1 × =
q

st

B

q
×

q
=

q
L

Step Two: Verify the Input

1 × =
Rejectq

stR1 q
×R×

B
Reject

q
× Rejectq

×R1 Rejectq
=R=

q
= Rejectq

=R1 Reject q
LLB

q
L q

LL1 q
LL× q

LL= DRB

1 1 × 1 = 1 1

1
q

st

1 × =
q

st

B

q
×

q
=

q
L

Step Two: Verify the Input

× =
Rejectq

stR1 q
×R×

B
Reject

q
× Rejectq

×R1 Rejectq
=R=

q
= Rejectq

=R1 Reject q
LLB

q
L q

LL1 q
LL× q

LL= DRB

1 1 × 1 = 1 1

11
q

st

× =
q

st

B

q
×

q
=

q
L

Step Two: Verify the Input

× =
Rejectq

stR1 q
×R×

B
Reject

q
× Rejectq

×R1 Rejectq
=R=

q
= Rejectq

=R1 Reject q
LLB

q
L q

LL1 q
LL× q

LL= DRB

1 1 × 1 = 1 1

11
q

st

× =
q

st

B

q
×

q
=

q
L

Step Two: Verify the Input

× =
Rejectq

stR1 q
×R×

B
Reject

q
× Rejectq

×R1 Rejectq
=R=

q
= Rejectq

=R1 Reject q
LLB

q
L q

LL1 q
LL× q

LL= DRB

1 1 × 1 = 1 1

11
q

st

× =
q

st

B

q
×

q
=

q
L

Step Two: Verify the Input

× =
Rejectq

stR1 q
×R×

B
Reject

q
× Rejectq

×R1 Rejectq
=R=

q
= Rejectq

=R1 Reject q
LLB

q
L q

LL1 q
LL× q

LL= DRB

1 1 × 1 = 1 1

×11
q

st

× =
q

st

B

q
×

q
=

q
L

Step Two: Verify the Input

=
Rejectq

stR1 q
×R×

B
Reject

q
× Rejectq

×R1 Rejectq
=R=

q
= Rejectq

=R1 Reject q
LLB

q
L q

LL1 q
LL× q

LL= DRB

1 1 × 1 = 1 1

×
q

st

q
×

×11
q

st

= B

q
×

q
=

q
L

Step Two: Verify the Input

=
Rejectq

stR1 q
×R×

B
Reject

Rejectq
×R1 Rejectq

=R=

q
= Rejectq

=R1 Reject q
LLB

q
L q

LL1 q
LL× q

LL= DRB

1 1 × 1 = 1 1

1 ×
q

st

q
×

×1
q

st

= B

q
×

q
=

q
L

Step Two: Verify the Input

=
Rejectq

stR1 q
×R×

B
Reject

Rejectq
×R1 Rejectq

=R=

q
= Rejectq

=R1 Reject q
LLB

q
L q

LL1 q
LL× q

LL= DRB

1 1 × 1 = 1 1

11 ×
q

st

q
×

×
q

st

= B

q
×

q
=

q
L

Step Two: Verify the Input

=
Rejectq

stR1 q
×R×

B
Reject

Rejectq
×R1 Rejectq

=R=

q
= Rejectq

=R1 Reject q
LLB

q
L q

LL1 q
LL× q

LL= DRB

1 1 × 1 = 1 1

=11 ×
q

st

q
×

×
q

st

= B

q
×

q
=

q
L

Step Two: Verify the Input

Rejectq
stR1 q

×R×

B
Reject

Rejectq
×R1 Rejectq

=R=

q
= Rejectq

=R1 Reject q
LLB

q
L q

LL1 q
LL× q

LL= DRB

1 1 × 1 = 1 1

=

q
×

q
=

=11 ×
q

st

q
×

×
q

st

B

q
=

q
L

Step Two: Verify the Input

Rejectq
stR1 q

×R×

B
Reject

Rejectq
×R1 Rejectq

=R=

Rejectq
=R1 Reject q

LLB

q
L q

LL1 q
LL× q

LL= DRB

1 1 × 1 = 1 1

=

q
×

q
=

=11 ×
q

st

q
×

×
q

st

B

q
=

q
L

Step Two: Verify the Input

Rejectq
stR1 q

×R×

B
Reject

Rejectq
×R1 Rejectq

=R=

Rejectq
=R1 Reject q

LLB

q
L q

LL1 q
LL× q

LL= DRB

1 1 × 1 = 1 1

1 =

q
×

q
=

=1 ×
q

st

q
×

×
q

st

B

q
=

q
L

Step Two: Verify the Input

Rejectq
stR1 q

×R×

B
Reject

Rejectq
×R1 Rejectq

=R=

Rejectq
=R1 Reject q

LLB

q
L q

LL1 q
LL× q

LL= DRB

1 1 × 1 = 1 1

11 =

q
×

q
=

=×
q

st

q
×

×
q

st

B

q
=

q
L

Step Two: Verify the Input

Rejectq
stR1 q

×R×

B
Reject

Rejectq
×R1 Rejectq

=R=

Rejectq
=R1 Reject q

LLB

q
L q

LL1 q
LL× q

LL= DRB

1 1 × 1 = 1 1

11 =

q
×

q
=

=×
q

st

q
×

×
q

st

B

q
=

q
L

Step Two: Verify the Input

Rejectq
stR1 q

×R×

B
Reject

Rejectq
×R1 Rejectq

=R=

Rejectq
=R1 Reject q

LLB

q
L q

LL1 q
LL× q

LL= DRB

1 1 × 1 = 1 1

11 =

q
×

q
=

=×
q

st

q
×

×
q

st

B

q
=

q
L

Step Two: Verify the Input

Rejectq
stR1 q

×R×

B
Reject

Rejectq
×R1 Rejectq

=R=

Rejectq
=R1 Reject q

LLB

q
L q

LL1 q
LL× q

LL= DRB

1 1 × 1 = 1 1

B11 =

q
×

q
=

=×
q

st

q
×

×
q

st

B

q
=

q
L

Step Two: Verify the Input

Rejectq
stR1 q

×R× Reject

Rejectq
×R1 Rejectq

=R=

Rejectq
=R1 Reject q

LLB

q
L q

LL1 q
LL× q

LL= DRB

1 1 × 1 = 1 1

B

q
=

q
L

B11 =

q
×

q
=

=×
q

st

q
×

×
q

st

q
L

Step Two: Verify the Input

Rejectq
stR1 q

×R× Reject

Rejectq
×R1 Rejectq

=R=

Rejectq
=R1 Reject q

LLB

q
LL1 q

LL× q
LL= DRB

1 1 × 1 = 1 1

1 B

q
=

q
L

B1 =

q
×

q
=

=×
q

st

q
×

×
q

st

q
L

Step Two: Verify the Input

Rejectq
stR1 q

×R× Reject

Rejectq
×R1 Rejectq

=R=

Rejectq
=R1 Reject q

LLB

q
LL1 q

LL× q
LL= DRB

1 1 × 1 = 1 1

11 B

q
=

q
L

B=

q
×

q
=

=×
q

st

q
×

×
q

st

q
L

Step Two: Verify the Input

Rejectq
stR1 q

×R× Reject

Rejectq
×R1 Rejectq

=R=

Rejectq
=R1 Reject q

LLB

q
LL1 q

LL× q
LL= DRB

1 1 × 1 = 1 1

11 B

q
=

q
L

B=

q
×

q
=

=×
q

st

q
×

×
q

st

q
L

Step Two: Verify the Input

Rejectq
stR1 q

×R× Reject

Rejectq
×R1 Rejectq

=R=

Rejectq
=R1 Reject q

LLB

q
LL1 q

LL× q
LL= DRB

1 1 × 1 = 1 1

11 B

q
=

q
L

B=

q
×

q
=

=×
q

st

q
×

×
q

st

q
L

Step Two: Verify the Input

Rejectq
stR1 q

×R× Reject

Rejectq
×R1 Rejectq

=R=

Rejectq
=R1 Reject q

LLB

q
LL1 q

LL× q
LL= DRB

1 1 × 1 = 1 1

1 =1 B

q
=

q
L

B=

q
×

q
=

×
q

st

q
×

×
q

st

q
L

Step Two: Verify the Input

Rejectq
stR1 q

×R× Reject

Rejectq
×R1 Rejectq

=R=

Rejectq
=R1 Reject q

LLB

q
LL1 q

LL× q
LL= DRB

1 1 × 1 = 1 1

11 B

q
=

q
L

B=

q
×

q
=

=×
q

st

q
×

×
q

st

q
L

Step Two: Verify the Input

Rejectq
stR1 q

×R× Reject

Rejectq
×R1 Rejectq

=R=

Rejectq
=R1 Reject q

LLB

q
LL1 q

LL× q
LL= DRB

1 1 × 1 = 1 1

11 B

q
=

q
L

B=

q
×

q
=

=×
q

st

q
×

×
q

st

q
L

Step Two: Verify the Input

Rejectq
stR1 q

×R× Reject

Rejectq
×R1 Rejectq

=R=

Rejectq
=R1 Reject q

LLB

q
LL1 q

LL× q
LL= DRB

1 1 × 1 = 1 1

11 B

q
=

q
L

B=

q
×

q
=

=×
q

st

q
×

×
q

st

q
L

Step Two: Verify the Input

Rejectq
stR1 q

×R× Reject

Rejectq
×R1 Rejectq

=R=

Rejectq
=R1 Reject q

LLB

q
LL1 q

LL× q
LL= DRB

1 1 × 1 = 1 1

×11 B

q
=

q
L

B=

q
×

q
=

=×
q

st

q
×

q
st

q
L

Step Two: Verify the Input

Rejectq
stR1 q

×R× Reject

Rejectq
×R1 Rejectq

=R=

Rejectq
=R1 Reject q

LLB

q
LL1 q

LL× q
LL= DRB

1 1 × 1 = 1 1

××11 B

q
=

q
L

B=

q
×

q
=

=
q

st

q
×

q
st

q
L

Step Two: Verify the Input

Rejectq
stR1 q

×R× Reject

Rejectq
×R1 Rejectq

=R=

Rejectq
=R1 Reject q

LLB

q
LL1 q

LL× q
LL= DRB

1 1 × 1 = 1 1

1 ××1 B

q
=

q
L

B=

q
×

q
=

=
q

st

q
×

q
st

q
L

Step Two: Verify the Input

Rejectq
stR1 q

×R× Reject

Rejectq
×R1 Rejectq

=R=

Rejectq
=R1 Reject q

LLB

q
LL1 q

LL× q
LL= DRB

1 1 × 1 = 1 1

11 ×× B

q
=

q
L

B=

q
×

q
=

=
q

st

q
×

q
st

q
L

Step Two: Verify the Input

Rejectq
stR1 q

×R× Reject

Rejectq
×R1 Rejectq

=R=

Rejectq
=R1 Reject q

LLB

q
LL1 q

LL× q
LL= DRB

1 1 × 1 = 1 1

11 ×× B

q
=

q
L

B=

q
×

q
=

=
q

st

q
×

q
st

q
L

Step Two: Verify the Input

Rejectq
stR1 q

×R× Reject

Rejectq
×R1 Rejectq

=R=

Rejectq
=R1 Reject q

LLB

q
LL1 q

LL× q
LL= DRB

1 1 × 1 = 1 1

11 ×× B

q
=

q
L

B=

q
×

q
=

=
q

st

q
×

q
st

q
L

Step Two: Verify the Input

Rejectq
stR1 q

×R× Reject

Rejectq
×R1 Rejectq

=R=

Rejectq
=R1 Reject q

LLB

q
LL1 q

LL× q
LL= DRB

1 1 × 1 = 1 1

B11 ×× B

q
=

q
L

=

q
×

q
=

=
q

st

q
×

q
st

q
L

Step Two: Verify the Input

Rejectq
stR1 q

×R× Reject

Rejectq
×R1 Rejectq

=R=

Rejectq
=R1 Reject q

LLB

q
LL1 q

LL× q
LL= DRB

1 1 × 1 = 1 1

B

q
L

B11 ××

q
=

q
L

=

q
×

q
=

=
q

st

q
×

q
st

Step Two: Verify the Input

Rejectq
stR1 q

×R× Reject

Rejectq
×R1 Rejectq

=R=

Rejectq
=R1 Reject q

LLB

q
LL1 q

LL× q
LL= DRB

1 1 × 1 = 1 1

Putting it Together: Shift/Verify

q
s B R q

1

1 × = B
B R q

× B R q
= B R q

s2

q
1 1 R q

1 1 R q
× 1 R q

= 1 L q
R

q
× × R q

1 × R q
× × R q

= × L q
R

q
= = R q

1 = R q
× = R q

= = L q
R

q
R 1 L q

R × L q
R = L q

R B R q
s2

q
L

q
=

q
L2

q
×

q
=2

q
st

q
×2

q
s2 Rejectq

s2R1 q
×2R× Reject

Rejectq
×2R1 Rejectq

=2R=
Rejectq

=2R1 Reject q
L2LB

q
L2L1 q

L2L× q
L2L= DRB

Step Three: Doing the Multiply

1 1 × 1 =1 11

 1 × 1 =1 1 1 1 11

 × 1 =1 1 1 1 1 11 1 1

Step Four: Checking the Multiply

 × 1 =1 1 1 1 1 11 1

 × 1 =1 1 1 1 11

 × 1 =1 1 11

 × 1 =1 1

Why This Matters

● TMs can solve a large class of problems, but
they can be enormously complicated.

● We now have two tricks for designing TMs:
● Constant storage
● Subroutines

● We can use these tricks to show that if we
can get each individual piece working, we
can solve a large problem with a TM.

Next Time

● Programming Turing Machines
● A cleaner way to think about TMs.

● The Power of Turing Machines
● Just how much expressive power do TMs

have?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223
	Slide 224
	Slide 225
	Slide 226
	Slide 227
	Slide 228
	Slide 229
	Slide 230
	Slide 231
	Slide 232
	Slide 233
	Slide 234
	Slide 235
	Slide 236
	Slide 237
	Slide 238
	Slide 239
	Slide 240
	Slide 241
	Slide 242
	Slide 243
	Slide 244
	Slide 245
	Slide 246
	Slide 247
	Slide 248
	Slide 249
	Slide 250
	Slide 251
	Slide 252
	Slide 253
	Slide 254
	Slide 255
	Slide 256
	Slide 257
	Slide 258
	Slide 259
	Slide 260
	Slide 261
	Slide 262
	Slide 263
	Slide 264
	Slide 265
	Slide 266
	Slide 267
	Slide 268
	Slide 269
	Slide 270
	Slide 271
	Slide 272
	Slide 273
	Slide 274
	Slide 275
	Slide 276
	Slide 277
	Slide 278
	Slide 279
	Slide 280
	Slide 281
	Slide 282
	Slide 283
	Slide 284
	Slide 285
	Slide 286
	Slide 287
	Slide 288
	Slide 289
	Slide 290
	Slide 291
	Slide 292
	Slide 293
	Slide 294
	Slide 295
	Slide 296
	Slide 297
	Slide 298
	Slide 299
	Slide 300
	Slide 301
	Slide 302
	Slide 303
	Slide 304
	Slide 305
	Slide 306
	Slide 307
	Slide 308
	Slide 309
	Slide 310
	Slide 311
	Slide 312
	Slide 313
	Slide 314
	Slide 315
	Slide 316
	Slide 317
	Slide 318
	Slide 319
	Slide 320
	Slide 321
	Slide 322
	Slide 323
	Slide 324
	Slide 325
	Slide 326
	Slide 327
	Slide 328
	Slide 329
	Slide 330
	Slide 331
	Slide 332
	Slide 333
	Slide 334
	Slide 335
	Slide 336
	Slide 337
	Slide 338
	Slide 339
	Slide 340
	Slide 341
	Slide 342
	Slide 343
	Slide 344
	Slide 345
	Slide 346
	Slide 347
	Slide 348
	Slide 349
	Slide 350
	Slide 351
	Slide 352
	Slide 353
	Slide 354
	Slide 355
	Slide 356
	Slide 357
	Slide 358
	Slide 359
	Slide 360
	Slide 361
	Slide 362
	Slide 363
	Slide 364
	Slide 365
	Slide 366
	Slide 367
	Slide 368
	Slide 369
	Slide 370
	Slide 371
	Slide 372
	Slide 373
	Slide 374
	Slide 375
	Slide 376
	Slide 377
	Slide 378
	Slide 379
	Slide 380
	Slide 381
	Slide 382
	Slide 383
	Slide 384
	Slide 385
	Slide 386
	Slide 387
	Slide 388
	Slide 389
	Slide 390
	Slide 391
	Slide 392
	Slide 393

