
  

Pushdown Automata



  

Friday Four Square!
Today at 4:15PM, Outside Gates



  

Announcements

● Problem Set 5 due right now
● Or Monday at 2:15PM with a late day.

● Problem Set 6 out, due next Friday, 
November 9.
● Covers context-free languages, CFGs, and 

PDAs.

● Midterm and Problem Set 4 should be 
graded by Monday.



  

Generation vs. Recognition

● We saw two approaches to describe regular languages:

● Build automata that accept precisely the strings in the 
language.

● Design regular expressions that describe precisely the 
strings in the language.

● Regular expressions generate all of the strings in the 
language.

● Useful for listing off all strings in the language.

● Finite automata recognize all of the strings in the 
language.

● Useful for detecting whether a specific string is in the 
language.



  

Context-Free Languages

● Yesterday, we saw the context-free 
languages, which are those that can be 
generated by context-free grammars.

● Is there some way to build an automaton 
that can recognize the context-free 
languages?



  

The Problem

● Finite automata accept precisely the 
regular languages.

● We may need unbounded memory to 
recognize context-free languages.
● e.g. { 0n1n | n ∈ ℕ } requires unbounded 

counting.

● How do we build an automaton with 
finitely many states but unbounded 
memory?



  

A B C A ...

The finite-state 
control acts as a 
finite memory.

The finite-state 
control acts as a 
finite memory.

The input tape holds 
the input string.

The input tape holds 
the input string.

Memory Device
We can add an infinite 
memory device the 

finite-state control can 
use to store information.

We can add an infinite 
memory device the 

finite-state control can 
use to store information.



  

Adding Memory to Automata

● We can augment a finite automaton by 
adding in a memory device for the 
automaton to store extra information.

● The finite automaton now can base its 
transition on both the current symbol being 
read and values stored in memory.

● The finite automaton can issue commands 
to the memory device whenever it makes a 
transition.
● e.g. add new data, change existing data, etc.



  

Stack-Based Memory

● There are many types of memory that we 
might give to an automaton.
● We'll see at least two this quarter.

● One of the simplest types of memory is a 
stack.
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Stack-Based Memory

● Only the top of the stack is visible at any 
point in time.

● New symbols may be pushed onto the 
stack, which cover up the old stack top.

● The top symbol of the stack may be 
popped, exposing the symbol below it.



  

Pushdown Automata

● A pushdown automaton (PDA) is a finite 
automaton equipped with a stack-based memory.

● Each transition
● is based on the current input symbol and the top of 

the stack,
● optionally pops the top of the stack, and
● optionally pushes new symbols onto the stack.

● Initially, the stack holds a special symbol Z
0
 that 

indicates the bottom of the stack.



  

Our First PDA

● Consider the language 

L = { w ∈ Σ* | w is a string of balanced       
parentheses }

over Σ = { (, ) }

● We can exploit the stack to our advantage:

● Whenever we see a (, push it onto the stack.

● Whenever we see a ), pop the corresponding ( 
from the stack (or fail if not matched)

● When input is consumed, if the stack is empty, accept.
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Our First PDA

● Consider the language 

L = { w ∈ Σ* | w is a string of balanced 
digits }    

over Σ = { 0, 1 }

● We can exploit the stack to our advantage:

● Whenever we see a 0, push it onto the stack.

● Whenever we see a 1, pop the corresponding 0
from the stack (or fail if not matched)

● When input is consumed, if the stack is empty, accept.



  

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε
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Pushdown Automata

● Formally, a pushdown automaton is a 
nondeterministic machine defined by the 7-tuple (Q, Σ, 
Γ, δ, q0, Z0, F), where

Q is a finite set of states,

Σ is an alphabet,

Γ is the stack alphabet of symbols that can be pushed on 
the stack (with Σ ⊆ Γ)

δ : Q × Σε × Γε → P(Q × Γ*) is the transition function, 
where no tuple is mapped to an infinite set,

q0 ∈ Q is the start state,

Z0 ∈ Γ is the stack start symbol, and

F ⊆ Q is the set of accepting states.
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The Language of a PDA

● The language of a PDA is the set of 
strings that the PDA accepts:

ℒ(P) = { w ∈ Σ* | P accepts w }   
● If P is a PDA where (ℒ P) = L, we say that 

P recognizes L.



  

A Note on Terminology

● Finite automata are highly standardized.
● There are many equivalent but different 

definitions of PDAs.
● The one we will use is a slight variant on the one 

described in Sipser.
● Sipser does not have a start stack symbol.
● Sipser does not allow transitions to push multiple 

symbols onto the stack.

● Feel free to use either this version or Sipser's; 
the two are equivalent to one another.



  

A PDA for Palindromes

● A palindrome is a string that is the same forwards 
and backwards.

● Let Σ = {0, 1} and consider the language

PALINDROME = { w ∈ Σ* | w is a palindrome }.

● How would we build a PDA for PALINDROME?

● Idea: Push the first half of the symbols on to the stack, 
then verify that the second half of the symbols match.

● Nondeterministically guess when we've read half of 
the symbols.

● This handles even-length strings; we'll see a cute trick 
to handle odd-length strings in a minute.
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that the transition does 

not pop anything from the 
stack.  It just pushes on 
a new symbol instead.
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A Note on Nondeterminism

● In an NFA, we could interpret nondeterminism 
as being in multiple states simultaneously.

● This is only possible because NFAs have no 
extra storage.
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A Note on Nondeterminism

● In a PDA, if there are multiple 
nondeterministic choices, you cannot 
treat the machine as being in multiple 
states at once.
● Each state might have its own stack 

associated with it.

● Instead, there are multiple parallel 
copies of the machine running at once, 
each of which has its own stack.



  

A PDA for Arithmetic

● Let Σ = { int, +, *, (, ) } and consider 
the language

ARITH = { w ∈ Σ* | w is a legal                          
                           arithmetic expression }

● Examples:
● int + int * int
● ((int + int) * (int + int)) + (int)

● Can we build a PDA for ARITH?
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Why PDAs Matter

● Recall: A language is context-free iff there is some CFG 
that generates it.

● Important, non-obvious theorem: A language is 
context-free iff there is some PDA that recognizes it.

● Need to prove two directions:
● If L is context-free, then there is a PDA for it.
● If there is a PDA for L, then L is context-free.

● Part (1) is absolutely beautiful and we'll see it in a 
second.

● Part (2) is brilliant, but a bit too involved for lecture 
(you should read this in Sipser).



  

From CFGs to PDAs

● Theorem: If G is a CFG for a language L, 
then there exists a PDA for L as well.

● Idea: Build a PDA that simulates 
expanding out the CFG from the start 
symbol to some particular string.

● Stack holds the part of the string we 
haven't matched yet.



  

From CFGs to PDAs

● Example: Let Σ = { 1, ≥ } and let
GE = { 1m≥1n | m, n ∈ ℕ ∧ m ≥ n }
● 111≥11 ∈ GE

● 11≥11 ∈ GE

● 1111≥11 ∈ GE

● ≥ ∈ GE

● One CFG for GE is the following:

S → 1S1 | 1S | ≥       

● How would we build a PDA for GE?
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From CFGs to PDAs

● Make three states: start, parsing, and accepting.

● There is a transition ε, ε → S from start to parsing.

● Corresponds to starting off with the start symbol S.

● There is a transition ε, A → ω from parsing to itself for 
each production A → ω.

● Corresponds to predicting which production to use.

● There is a transition Σ, Σ → ε from parsing to itself.

● Corresponds to matching a character of the input.

● There is a transition ε, Z0 → Z0 from parsing to 
accepting.

● Corresponds to completely matching the input.



  

From CFGs to PDAs

● The PDA constructed this way is called a 
predict/match parser.

● Each step either predicts which 
production to use or matches some 
symbol of the input.



  

From PDAs to CFGs

● The other direction of the proof (converting 
a PDA to a CFG) is much harder.

● Intuitively, create a CFG representing paths 
between states in the PDA.

● Lots of tricky details, but a marvelous proof.
● It's just too large to fit into the margins of this 

slide.

● Read Sipser for more details.



  

Regular and Context-Free Languages

Theorem: Any regular language is context-free.

Proof Sketch: Let L be any regular language and consider 
a DFA D for L.  Then we can convert D into a PDA for L by 
converting any transition on a symbol a into a transition 
a, ε → ε that ignores the stack.  This new PDA accepts L, 
so L is context-free. ■-ish
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Refining the Context-Free Languages



  

NPDAs and DPDAs

● With finite automata, we considered both 
deterministic (DFAs) and 
nondeterministic (NFAs) automata.

● So far, we've only seen nondeterministic 
PDAs (or NPDAs).

● What about deterministic PDAs 
(DPDAs)?



  

DPDAs

● A deterministic pushdown automaton is a PDA with the 
extra property that

For each state in the PDA, and for any combination
of a current input symbol and a current stack symbol,

there is at most one transition defined.

● In other words, there is at most one legal sequence of 
transitions that can be followed for any input.

● This does not preclude ε-transitions, as long as there is never a 
conflict between following the ε-transition or some other 
transition.

● However, there can be at most one ε-transition that could be 
followed at any one time.

● This does not preclude the automaton “dying” from having no 
transitions defined; DPDAs can have undefined transitions.
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Why DPDAs Matter

● Because DPDAs are deterministic, they can 
be simulated efficiently:
● Keep track of the top of the stack.
● Store an action/goto table that says what 

operations to perform on the stack and what 
state to enter on each input/stack pair.

● Loop over the input, processing input/stack pairs 
until the automaton rejects or ends in an 
accepting state with all input consumed.

● If we can find a DPDA for a CFL, then we can 
recognize strings in that language efficiently.



  

If we can find a DPDA for a CFL, then we 
can recognize strings in that language 

efficiently.

Can we guarantee that we can always find 
a DPDA for a CFL?



  

The Power of Nondeterminism

● When dealing with finite automata, there is no 
difference in the power of NFAs and DFAs.

● However, when dealing with PDAs, there are CFLs 
that can be recognized by NPDAs that cannot be 
recognized by DPDAs.

● Simple example: The language of palindromes.
● How do you know when you've read half the string?

● NPDAs are more powerful than DPDAs.



  

Deterministic CFLs

● A context-free language L is called a 
deterministic context-free language (DCFL) if 
there is some DPDA that recognizes L.

● Not all CFLs are DCFLs, though many important 
ones are.

● Balanced parentheses, most programming 
languages, etc.

Regular
Languages CFLs DCFLsWhy are all regular 

languages DCFLs?

Why are all regular 
languages DCFLs?



  

Summary

● Automata can be augmented with a memory 
storage to increase their power.

● PDAs are finite automata equipped with a 
stack.

● PDAs accept precisely the context-free 
languages:
● Any CFG can be converted to a PDA.
● Any PDA can be converted to a CFG.

● Deterministic PDAs are strictly weaker than 
nondeterministic PDAs.



  

Next Time

● The Limits of CFLs
● A New Pumping Lemma
● Non-Closure Properties of CFLs

● Turing Machines
● An extremely powerful computing device...
● ...that is almost impossible to program.
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