

Pushdown Automata

Friday Four Square!
Today at 4:15PM, Outside Gates

Announcements

● Problem Set 5 due right now
● Or Monday at 2:15PM with a late day.

● Problem Set 6 out, due next Friday,
November 9.
● Covers context-free languages, CFGs, and

PDAs.

● Midterm and Problem Set 4 should be
graded by Monday.

Generation vs. Recognition

● We saw two approaches to describe regular languages:

● Build automata that accept precisely the strings in the
language.

● Design regular expressions that describe precisely the
strings in the language.

● Regular expressions generate all of the strings in the
language.

● Useful for listing off all strings in the language.

● Finite automata recognize all of the strings in the
language.

● Useful for detecting whether a specific string is in the
language.

Context-Free Languages

● Yesterday, we saw the context-free
languages, which are those that can be
generated by context-free grammars.

● Is there some way to build an automaton
that can recognize the context-free
languages?

The Problem

● Finite automata accept precisely the
regular languages.

● We may need unbounded memory to
recognize context-free languages.
● e.g. { 0n1n | n ∈ ℕ } requires unbounded

counting.

● How do we build an automaton with
finitely many states but unbounded
memory?

A B C A ...

The finite-state
control acts as a
finite memory.

The finite-state
control acts as a
finite memory.

The input tape holds
the input string.

The input tape holds
the input string.

Memory Device
We can add an infinite
memory device the

finite-state control can
use to store information.

We can add an infinite
memory device the

finite-state control can
use to store information.

Adding Memory to Automata

● We can augment a finite automaton by
adding in a memory device for the
automaton to store extra information.

● The finite automaton now can base its
transition on both the current symbol being
read and values stored in memory.

● The finite automaton can issue commands
to the memory device whenever it makes a
transition.
● e.g. add new data, change existing data, etc.

Stack-Based Memory

● There are many types of memory that we
might give to an automaton.
● We'll see at least two this quarter.

● One of the simplest types of memory is a
stack.

 a

Stack-Based Memory

● There are many types of memory that we
might give to an automaton.
● We'll see at least two this quarter.

● One of the simplest types of memory is a
stack.

 a

Stack-Based Memory

● There are many types of memory that we
might give to an automaton.
● We'll see at least two this quarter.

● One of the simplest types of memory is a
stack.

b

 a

Stack-Based Memory

● There are many types of memory that we
might give to an automaton.
● We'll see at least two this quarter.

● One of the simplest types of memory is a
stack.

b
c

 a

Stack-Based Memory

● There are many types of memory that we
might give to an automaton.
● We'll see at least two this quarter.

● One of the simplest types of memory is a
stack.

b
c
d

 a

Stack-Based Memory

● There are many types of memory that we
might give to an automaton.
● We'll see at least two this quarter.

● One of the simplest types of memory is a
stack.

b
c

 a

Stack-Based Memory

● There are many types of memory that we
might give to an automaton.
● We'll see at least two this quarter.

● One of the simplest types of memory is a
stack.

b
c
e

 a

Stack-Based Memory

● There are many types of memory that we
might give to an automaton.
● We'll see at least two this quarter.

● One of the simplest types of memory is a
stack.

b
c

 a

Stack-Based Memory

● There are many types of memory that we
might give to an automaton.
● We'll see at least two this quarter.

● One of the simplest types of memory is a
stack.

b

Stack-Based Memory

● Only the top of the stack is visible at any
point in time.

● New symbols may be pushed onto the
stack, which cover up the old stack top.

● The top symbol of the stack may be
popped, exposing the symbol below it.

Pushdown Automata

● A pushdown automaton (PDA) is a finite
automaton equipped with a stack-based memory.

● Each transition
● is based on the current input symbol and the top of

the stack,
● optionally pops the top of the stack, and
● optionally pushes new symbols onto the stack.

● Initially, the stack holds a special symbol Z
0
 that

indicates the bottom of the stack.

Our First PDA

● Consider the language

L = { w ∈ Σ* | w is a string of balanced
parentheses }

over Σ = { (,) }

● We can exploit the stack to our advantage:

● Whenever we see a (, push it onto the stack.

● Whenever we see a), pop the corresponding (
from the stack (or fail if not matched)

● When input is consumed, if the stack is empty, accept.

Our First PDA

● Consider the language

L = { w ∈ Σ* | w is a string of balanced
parentheses }

over Σ = { (,) }

● We can exploit the stack to our advantage:

● Whenever we see a (, push it onto the stack.

● Whenever we see a), pop the corresponding (
from the stack (or fail if not matched)

● When input is consumed, if the stack is empty, accept.

Our First PDA

● Consider the language

L = { w ∈ Σ* | w is a string of balanced
digits }

over Σ = { 0, 1 }

● We can exploit the stack to our advantage:

● Whenever we see a 0, push it onto the stack.

● Whenever we see a 1, pop the corresponding 0
from the stack (or fail if not matched)

● When input is consumed, if the stack is empty, accept.

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 0 0 1 1 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 0 0 1 1 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

Z
0

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 0 0 1 1 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

Z
0

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 0 0 1 1 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

Z
0

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 0 0 1 1 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

Z
0

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 0 0 1 1 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

Z
0

A transition of the form

a, b → z

Means “If the current input
symbol is a and the current
stack symbol is b, then

follow this transition, pop b,
and push the string z.

A transition of the form

a, b → z

Means “If the current input
symbol is a and the current
stack symbol is b, then

follow this transition, pop b,
and push the string z.

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 0 0 1 1 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

Z
0

A transition of the form

a, b → z

Means “If the current input
symbol is a and the current
stack symbol is b, then

follow this transition, pop b,
and push the string z.

A transition of the form

a, b → z

Means “If the current input
symbol is a and the current
stack symbol is b, then

follow this transition, pop b,
and push the string z.

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 0 0 1 1 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

Z
0

To find an applicable
transition, match the

current input/stack pair.

To find an applicable
transition, match the

current input/stack pair.

A transition of the form

a, b → z

Means “If the current input
symbol is a and the current
stack symbol is b, then

follow this transition, pop b,
and push the string z.

A transition of the form

a, b → z

Means “If the current input
symbol is a and the current
stack symbol is b, then

follow this transition, pop b,
and push the string z.

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 0 0 1 1 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

Z
0

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 0 0 1 1 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 0 0 1 1 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

If a transition reads the top
symbol of the stack, it always
pops that symbol (though it

might replace it)

If a transition reads the top
symbol of the stack, it always
pops that symbol (though it

might replace it)

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 0 0 1 1 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

Z
0

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 0 0 1 1 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

0

Z
0

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 0 0 1 1 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

0
Each transition then pushes some

(possibly empty) string back onto the
stack. Notice that the leftmost
symbol is pushed onto the top.

Each transition then pushes some
(possibly empty) string back onto the

stack. Notice that the leftmost
symbol is pushed onto the top.

Z
0

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 0 0 1 1 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

0

Z
0

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 0 0 1 1 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

0

Z
0

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 0 0 1 1 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

0

Z
0

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 0 0 1 1 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

0

Z
0

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 0 0 1 1 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

0

Z
0

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 0 0 1 1 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

0

Z
0

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 0 0 1 1 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

Z
0

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 0 0 1 1 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

00

Z
0

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 0 0 1 1 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

00

Z
0

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 0 0 1 1 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

00

Z
0

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 0 0 1 1 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

00

Z
0

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 0 0 1 1 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

0

Z
0

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 0 0 1 1 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

000

Z
0

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 0 0 1 1 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

000

Z
0

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 0 0 1 1 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

000

Z
0

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 0 0 1 1 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

000

Z
0

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 0 0 1 1 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

00

Z
0

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 0 0 1 1 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

00
We now push the string onto ε

the stack, which adds no new
characters. This essentially

means “pop the stack.”

We now push the string onto ε

the stack, which adds no new
characters. This essentially

means “pop the stack.”

Z
0

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 0 0 1 1 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

00

Z
0

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 0 0 1 1 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

00

Z
0

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 0 0 1 1 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

00

Z
0

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 0 0 1 1 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

0

Z
0

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 0 0 1 1 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

0

Z
0

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 0 0 1 1 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

0

Z
0

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 0 0 1 1 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

0

Z
0

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 0 0 1 1 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

Z
0

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 0 0 1 1 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

Z
0

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 0 0 1 1 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

Z
0

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 0 0 1 1 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

Z
0

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 0 0 1 1 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

This transition can be taken at any
time Z

0
 is atop the stack, but we've

nondeterministically guessed that this
would be a good time to take it.

This transition can be taken at any
time Z

0
 is atop the stack, but we've

nondeterministically guessed that this
would be a good time to take it.

Z
0

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 0 0 1 1 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 0 0 1 1 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 0 0 1 1 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 0 0 1 1 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 0 0 1 1 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 0 0 1 1 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 1 1 0 0 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 1 1 0 0 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

Z
0

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 1 1 0 0 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

Z
0

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 1 1 0 0 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

Z
0

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 1 1 0 0 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

Z
0

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 1 1 0 0 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

Z
0

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 1 1 0 0 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

Z
0

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 1 1 0 0 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

0

Z
0

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 1 1 0 0 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

0

Z
0

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 1 1 0 0 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

0

Z
0

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 1 1 0 0 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

0

Z
0

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 1 1 0 0 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

Z
0

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 1 1 0 0 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

Z
0

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 1 1 0 0 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

Z
0

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 1 1 0 0 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

Z
0

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 1 1 0 0 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 1 1 0 0 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 1 1 0 0 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 1 1 0 0 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 1 1 0 0 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 1 1 0 0 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 1 1 0 0 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

Z
0

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 1 1 0 0 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

Z
0

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 1 1 0 0 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

Z
0

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 1 1 0 0 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 1 1 0 0 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 1 1 0 0 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 1 1 0 0 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 1 1 0 0 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 1 1 0 0 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 1 1 0 0 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

Pushdown Automata

● Formally, a pushdown automaton is a
nondeterministic machine defined by the 7-tuple (Q, Σ,
Γ, δ, q0, Z0, F), where

Q is a finite set of states,

Σ is an alphabet,

Γ is the stack alphabet of symbols that can be pushed on
the stack (with Σ ⊆ Γ)

δ : Q × Σε × Γε → P(Q × Γ*) is the transition function,
where no tuple is mapped to an infinite set,

q0 ∈ Q is the start state,

Z0 ∈ Γ is the stack start symbol, and

F ⊆ Q is the set of accepting states.

Pushdown Automata

● Formally, a pushdown automaton is a
nondeterministic machine defined by the 7-tuple (Q, Σ,
Γ, δ, q0, Z0, F), where

● Q is a finite set of states

Σ is an alphabet,

Γ is the stack alphabet of symbols that can be pushed on
the stack (with Σ ⊆ Γ)

δ : Q × Σε × Γε → P(Q × Γ*) is the transition function,
where no tuple is mapped to an infinite set,

q0 ∈ Q is the start state,

Z0 ∈ Γ is the stack start symbol, and

F ⊆ Q is the set of accepting states.

Pushdown Automata

● Formally, a pushdown automaton is a
nondeterministic machine defined by the 7-tuple (Q, Σ,
Γ, δ, q0, Z0, F), where

● Q is a finite set of states,
● Σ is an alphabet

Γ is the stack alphabet of symbols that can be pushed on
the stack (with Σ ⊆ Γ)

δ : Q × Σε × Γε → P(Q × Γ*) is the transition function,
where no tuple is mapped to an infinite set,

q0 ∈ Q is the start state,

Z0 ∈ Γ is the stack start symbol, and

F ⊆ Q is the set of accepting states.

Pushdown Automata

● Formally, a pushdown automaton is a
nondeterministic machine defined by the 7-tuple (Q, Σ,
Γ, δ, q0, Z0, F), where

● Q is a finite set of states,
● Σ is an alphabet,
● Γ is the stack alphabet of symbols that can be pushed on

the stack

δ : Q × Σε × Γε → P(Q × Γ*) is the transition function,
where no tuple is mapped to an infinite set,

q0 ∈ Q is the start state,

Z0 ∈ Γ is the stack start symbol, and

F ⊆ Q is the set of accepting states.

Pushdown Automata

● Formally, a pushdown automaton is a
nondeterministic machine defined by the 7-tuple (Q, Σ,
Γ, δ, q0, Z0, F), where

● Q is a finite set of states,
● Σ is an alphabet,
● Γ is the stack alphabet of symbols that can be pushed on

the stack

δ : Q × Σε × Γε → P(Q × Γ*) is the transition function,
where no tuple is mapped to an infinite set,

q0 ∈ Q is the start state,

Z0 ∈ Γ is the stack start symbol, and

F ⊆ Q is the set of accepting states.

The stack alphabet allows PDAs' stacks
to store extra information that can't

otherwise be encoded by the input string.

The stack alphabet allows PDAs' stacks
to store extra information that can't

otherwise be encoded by the input string.

Pushdown Automata

● Formally, a pushdown automaton is a
nondeterministic machine defined by the 7-tuple (Q, Σ,
Γ, δ, q0, Z0, F), where

● Q is a finite set of states,
● Σ is an alphabet,
● Γ is the stack alphabet of symbols that can be pushed on

the stack,

● δ : Q × Σε × Γε → (Q × Γ*) is the ℘ transition function,
where no tuple is mapped to an infinite set

q0 ∈ Q is the start state,

Z0 ∈ Γ is the stack start symbol, and

F ⊆ Q is the set of accepting states.

Pushdown Automata

● Formally, a pushdown automaton is a
nondeterministic machine defined by the 7-tuple (Q, Σ,
Γ, δ, q0, Z0, F), where

● Q is a finite set of states,
● Σ is an alphabet,
● Γ is the stack alphabet of symbols that can be pushed on

the stack,

● δ : Q × Σε × Γε → (Q × Γ*) is the ℘ transition function,
where no tuple is mapped to an infinite set

q0 ∈ Q is the start state,

Z0 ∈ Γ is the stack start symbol, and

F ⊆ Q is the set of accepting states.

Each transition is based
on a combination of the
current state, the current

input symbol, and the
current stack symbol.

Each transition is based
on a combination of the
current state, the current

input symbol, and the
current stack symbol.

Pushdown Automata

● Formally, a pushdown automaton is a
nondeterministic machine defined by the 7-tuple (Q, Σ,
Γ, δ, q0, Z0, F), where

● Q is a finite set of states,
● Σ is an alphabet,
● Γ is the stack alphabet of symbols that can be pushed on

the stack,

● δ : Q × Σε × Γε → (Q × Γ*) is the ℘ transition function,
where no tuple is mapped to an infinite set

q0 ∈ Q is the start state,

Z0 ∈ Γ is the stack start symbol, and

F ⊆ Q is the set of accepting states.

Each transition is based
on a combination of the
current state, the current

input symbol, and the
current stack symbol.

Each transition is based
on a combination of the
current state, the current

input symbol, and the
current stack symbol.

The function maps to a
set of state/string pairs,
and the string is pushed

atop the stack.

The function maps to a
set of state/string pairs,
and the string is pushed

atop the stack.

Pushdown Automata

● Formally, a pushdown automaton is a
nondeterministic machine defined by the 7-tuple (Q, Σ,
Γ, δ, q0, Z0, F), where

● Q is a finite set of states,
● Σ is an alphabet,
● Γ is the stack alphabet of symbols that can be pushed on

the stack,

● δ : Q × Σε × Γε → (Q × Γ*) is the ℘ transition function,
where no tuple is mapped to an infinite set

q0 ∈ Q is the start state,

Z0 ∈ Γ is the stack start symbol, and

F ⊆ Q is the set of accepting states.

Each transition is based
on a combination of the
current state, the current

input symbol, and the
current stack symbol.

Each transition is based
on a combination of the
current state, the current

input symbol, and the
current stack symbol.

The function maps to a
set of state/string pairs,
and the string is pushed

atop the stack.

The function maps to a
set of state/string pairs,
and the string is pushed

atop the stack.

We only allow a
finite set of choices
to be made at each

point.

We only allow a
finite set of choices
to be made at each

point.

Pushdown Automata

● Formally, a pushdown automaton is a
nondeterministic machine defined by the 7-tuple (Q, Σ,
Γ, δ, q0, Z0, F), where

● Q is a finite set of states,
● Σ is an alphabet,
● Γ is the stack alphabet of symbols that can be pushed on

the stack,

● δ : Q × Σε × Γε → (Q × Γ*) is the ℘ transition function,
where no tuple is mapped to an infinite set,

● q0 ∈ Q is the start state

Z0 ∈ Γ is the stack start symbol, and

F ⊆ Q is the set of accepting states.

Pushdown Automata

● Formally, a pushdown automaton is a
nondeterministic machine defined by the 7-tuple (Q, Σ,
Γ, δ, q0, Z0, F), where

● Q is a finite set of states,
● Σ is an alphabet,
● Γ is the stack alphabet of symbols that can be pushed on

the stack,

● δ : Q × Σε × Γε → (Q × Γ*) is the ℘ transition function,
where no tuple is mapped to an infinite set,

● q0 ∈ Q is the start state,

● Z0 ∈ Γ is the stack start symbol

F ⊆ Q is the set of accepting states.

Pushdown Automata

● Formally, a pushdown automaton is a
nondeterministic machine defined by the 7-tuple (Q, Σ,
Γ, δ, q0, Z0, F), where

● Q is a finite set of states,
● Σ is an alphabet,
● Γ is the stack alphabet of symbols that can be pushed on

the stack,

● δ : Q × Σε × Γε → (Q × Γ*) is the ℘ transition function,
where no tuple is mapped to an infinite set,

● q0 ∈ Q is the start state,

● Z0 ∈ Γ is the stack start symbol

F ⊆ Q is the set of accepting states.

This ensures that there is
a symbol on the stack that

we can use to detect
whether the stack has
nothing else on it.

This ensures that there is
a symbol on the stack that

we can use to detect
whether the stack has
nothing else on it.

Pushdown Automata

● Formally, a pushdown automaton is a
nondeterministic machine defined by the 7-tuple (Q, Σ,
Γ, δ, q0, Z0, F), where

● Q is a finite set of states,
● Σ is an alphabet,
● Γ is the stack alphabet of symbols that can be pushed on

the stack,

● δ : Q × Σε × Γε → (Q × Γ*) is the ℘ transition function,
where no tuple is mapped to an infinite set,

● q0 ∈ Q is the start state,

● Z0 ∈ Γ is the stack start symbol, and

● F ⊆ Q is the set of accepting states.

Pushdown Automata

● Formally, a pushdown automaton is a
nondeterministic machine defined by the 7-tuple (Q, Σ,
Γ, δ, q0, Z0, F), where

● Q is a finite set of states,
● Σ is an alphabet,
● Γ is the stack alphabet of symbols that can be pushed on

the stack,

● δ : Q × Σε × Γε → (Q × Γ*) is the ℘ transition function,
where no tuple is mapped to an infinite set,

● q0 ∈ Q is the start state,

● Z0 ∈ Γ is the stack start symbol, and

● F ⊆ Q is the set of accepting states.
● The automaton accepts if it ends in an accepting state

with no input remaining.

The Language of a PDA

● The language of a PDA is the set of
strings that the PDA accepts:

ℒ(P) = { w ∈ Σ* | P accepts w }
● If P is a PDA where (ℒ P) = L, we say that

P recognizes L.

A Note on Terminology

● Finite automata are highly standardized.
● There are many equivalent but different

definitions of PDAs.
● The one we will use is a slight variant on the one

described in Sipser.
● Sipser does not have a start stack symbol.
● Sipser does not allow transitions to push multiple

symbols onto the stack.

● Feel free to use either this version or Sipser's;
the two are equivalent to one another.

A PDA for Palindromes

● A palindrome is a string that is the same forwards
and backwards.

● Let Σ = {0, 1} and consider the language

PALINDROME = { w ∈ Σ* | w is a palindrome }.

● How would we build a PDA for PALINDROME?

● Idea: Push the first half of the symbols on to the stack,
then verify that the second half of the symbols match.

● Nondeterministically guess when we've read half of
the symbols.

● This handles even-length strings; we'll see a cute trick
to handle odd-length strings in a minute.

A PDA for Palindromes

start

A PDA for Palindromes

start

0, Z
0
 → 0Z

0

0, 0 → 00
0, 1 → 01

1, Z
0
 → 1Z

0

1, 0 → 10
1, 1 → 11

A PDA for Palindromes

start

0, Z
0
 → 0Z

0

0, 0 → 00
0, 1 → 01

1, Z
0
 → 1Z

0

1, 0 → 10
1, 1 → 11

A PDA for Palindromes

start

0, Z
0
 → 0Z

0

0, 0 → 00
0, 1 → 01

1, Z
0
 → 1Z

0

1, 0 → 10
1, 1 → 11

A PDA for Palindromes

start

0, Z
0
 → 0Z

0

0, 0 → 00
0, 1 → 01

1, Z
0
 → 1Z

0

1, 0 → 10
1, 1 → 11

A PDA for Palindromes

start

0, ε → 0
1, ε → 1

A PDA for Palindromes

start

0, ε → 0
1, ε → 1

This transition indicates
that the transition does

not pop anything from the
stack. It just pushes on
a new symbol instead.

A PDA for Palindromes

start

0, ε → 0
1, ε → 1

A PDA for Palindromes

start

0, ε → 0
1, ε → 1

A PDA for Palindromes

start

Σ, ε → Σ

A PDA for Palindromes

start

Σ, ε → Σ

The here refers to the Σ

same symbol in both
contexts. It is a

shorthand for “treat any
symbol in this way”Σ

The here refers to the Σ

same symbol in both
contexts. It is a

shorthand for “treat any
symbol in this way”Σ

A PDA for Palindromes

start

Σ, ε → Σ

A PDA for Palindromes

ε, ε → ε
start

Σ, ε → Σ

A PDA for Palindromes

ε, ε → ε
start

Σ, ε → Σ

This transition means “don't consume any input,
don't change the top of the stack, and don't
add anything to a stack. It's the equivalent of

an -transition in an NFA.ε

This transition means “don't consume any input,
don't change the top of the stack, and don't
add anything to a stack. It's the equivalent of

an -transition in an NFA.ε

A PDA for Palindromes

ε, ε → ε
start

Σ, ε → Σ 0, 0 → ε
1, 1 → ε

A PDA for Palindromes

ε, ε → ε
start

Σ, ε → Σ Σ, Σ → ε

A PDA for Palindromes

ε, ε → ε
start

Σ, ε → Σ Σ, Σ → ε

ε, Z
0
 → ε

A PDA for Palindromes

ε, ε → ε
start

Σ, ε → Σ Σ, Σ → ε

ε, Z
0
 → ε

A PDA for Palindromes

ε, ε → ε
Σ, ε → ε

start

Σ, ε → Σ Σ, Σ → ε

ε, Z
0
 → ε

A PDA for Palindromes

ε, ε → ε
Σ, ε → ε

start

Σ, ε → Σ Σ, Σ → ε

ε, Z
0
 → ε

This transition lets us consume
one character before we start

matching what we just saw. This
lets us match odd-length

palindromes

This transition lets us consume
one character before we start

matching what we just saw. This
lets us match odd-length

palindromes

A PDA for Palindromes

ε, ε → ε
Σ, ε → ε

start

0 1 1 1 1 0

Σ, ε → Σ Σ, Σ → ε

ε, Z
0
 → ε

Z
0

A PDA for Palindromes

ε, ε → ε
Σ, ε → ε

start

0 1 1 1 1 0

Σ, ε → Σ Σ, Σ → ε

ε, Z
0
 → ε

Z
0

A PDA for Palindromes

ε, ε → ε
Σ, ε → ε

start

0 1 1 1 1 0

Σ, ε → Σ Σ, Σ → ε

ε, Z
0
 → ε

Z
0

A PDA for Palindromes

ε, ε → ε
Σ, ε → ε

start

0 1 1 1 1 0

Σ, ε → Σ Σ, Σ → ε

ε, Z
0
 → ε

Z
0

A PDA for Palindromes

ε, ε → ε
Σ, ε → ε

start

0 1 1 1 1 0

Σ, ε → Σ Σ, Σ → ε

ε, Z
0
 → ε

Z
0

A PDA for Palindromes

ε, ε → ε
Σ, ε → ε

start

0 1 1 1 1 0

Σ, ε → Σ Σ, Σ → ε

ε, Z
0
 → ε

0

Z
0

A PDA for Palindromes

ε, ε → ε
Σ, ε → ε

start

0 1 1 1 1 0

Σ, ε → Σ Σ, Σ → ε

ε, Z
0
 → ε

0

Z
0

A PDA for Palindromes

ε, ε → ε
Σ, ε → ε

start

0 1 1 1 1 0

Σ, ε → Σ Σ, Σ → ε

ε, Z
0
 → ε

0

Z
0

A PDA for Palindromes

ε, ε → ε
Σ, ε → ε

start

0 1 1 1 1 0

Σ, ε → Σ Σ, Σ → ε

ε, Z
0
 → ε

01

Z
0

A PDA for Palindromes

ε, ε → ε
Σ, ε → ε

start

0 1 1 1 1 0

Σ, ε → Σ Σ, Σ → ε

ε, Z
0
 → ε

01

Z
0

A PDA for Palindromes

ε, ε → ε
Σ, ε → ε

start

0 1 1 1 1 0

Σ, ε → Σ Σ, Σ → ε

ε, Z
0
 → ε

01

Z
0

A PDA for Palindromes

ε, ε → ε
Σ, ε → ε

start

0 1 1 1 1 0

Σ, ε → Σ Σ, Σ → ε

ε, Z
0
 → ε

011

Z
0

A PDA for Palindromes

ε, ε → ε
Σ, ε → ε

start

0 1 1 1 1 0

Σ, ε → Σ Σ, Σ → ε

ε, Z
0
 → ε

011

Z
0

A PDA for Palindromes

ε, ε → ε
Σ, ε → ε

start

0 1 1 1 1 0

Σ, ε → Σ Σ, Σ → ε

ε, Z
0
 → ε

011

Z
0

A PDA for Palindromes

ε, ε → ε
Σ, ε → ε

start

0 1 1 1 1 0

Σ, ε → Σ Σ, Σ → ε

ε, Z
0
 → ε

011

Z
0

A PDA for Palindromes

ε, ε → ε
Σ, ε → ε

start

0 1 1 1 1 0

Σ, ε → Σ Σ, Σ → ε

ε, Z
0
 → ε

011

Z
0

A PDA for Palindromes

ε, ε → ε
Σ, ε → ε

start

0 1 1 1 1 0

Σ, ε → Σ Σ, Σ → ε

ε, Z
0
 → ε

011

Z
0

A PDA for Palindromes

ε, ε → ε
Σ, ε → ε

start

0 1 1 1 1 0

Σ, ε → Σ Σ, Σ → ε

ε, Z
0
 → ε

01

Z
0

A PDA for Palindromes

ε, ε → ε
Σ, ε → ε

start

0 1 1 1 1 0

Σ, ε → Σ Σ, Σ → ε

ε, Z
0
 → ε

01

Z
0

A PDA for Palindromes

ε, ε → ε
Σ, ε → ε

start

0 1 1 1 1 0

Σ, ε → Σ Σ, Σ → ε

ε, Z
0
 → ε

01

Z
0

A PDA for Palindromes

ε, ε → ε
Σ, ε → ε

start

0 1 1 1 1 0

Σ, ε → Σ Σ, Σ → ε

ε, Z
0
 → ε

0

Z
0

A PDA for Palindromes

ε, ε → ε
Σ, ε → ε

start

0 1 1 1 1 0

Σ, ε → Σ Σ, Σ → ε

ε, Z
0
 → ε

0

Z
0

A PDA for Palindromes

ε, ε → ε
Σ, ε → ε

start

0 1 1 1 1 0

Σ, ε → Σ Σ, Σ → ε

ε, Z
0
 → ε

0

Z
0

A PDA for Palindromes

ε, ε → ε
Σ, ε → ε

start

0 1 1 1 1 0

Σ, ε → Σ Σ, Σ → ε

ε, Z
0
 → ε

Z
0

A PDA for Palindromes

ε, ε → ε
Σ, ε → ε

start

0 1 1 1 1 0

Σ, ε → Σ Σ, Σ → ε

ε, Z
0
 → ε

Z
0

A PDA for Palindromes

ε, ε → ε
Σ, ε → ε

start

0 1 1 1 1 0

Σ, ε → Σ Σ, Σ → ε

ε, Z
0
 → ε

A PDA for Palindromes

ε, ε → ε
Σ, ε → ε

start

0 1 1 1 1 0

Σ, ε → Σ Σ, Σ → ε

ε, Z
0
 → ε

A PDA for Palindromes

ε, ε → ε
Σ, ε → ε

start

0 1 1 1 1 0

Σ, ε → Σ Σ, Σ → ε

ε, Z
0
 → ε

A PDA for Palindromes

ε, ε → ε
Σ, ε → ε

start

0 1 1 1 1 0

Σ, ε → Σ Σ, Σ → ε

ε, Z
0
 → ε

A PDA for Palindromes

ε, ε → ε
Σ, ε → ε

start

0 1 1 1 1 0

Σ, ε → Σ Σ, Σ → ε

ε, Z
0
 → ε

A PDA for Palindromes

ε, ε → ε
Σ, ε → ε

start

0 1 1 1 1 0

Σ, ε → Σ Σ, Σ → ε

ε, Z
0
 → ε

A PDA for Palindromes

ε, ε → ε
Σ, ε → ε

start

Σ, ε → Σ Σ, Σ → ε

ε, Z
0
 → ε

A PDA for Palindromes

ε, ε → ε
Σ, ε → ε

start

0 1 0 1 0

Σ, ε → Σ Σ, Σ → ε

ε, Z
0
 → ε

Z
0

A PDA for Palindromes

ε, ε → ε
Σ, ε → ε

start

0 1 0 1 0

Σ, ε → Σ Σ, Σ → ε

ε, Z
0
 → ε

Z
0

A PDA for Palindromes

ε, ε → ε
Σ, ε → ε

start

0 1 0 1 0

Σ, ε → Σ Σ, Σ → ε

ε, Z
0
 → ε

Z
0

A PDA for Palindromes

ε, ε → ε
Σ, ε → ε

start

0 1 0 1 0

Σ, ε → Σ Σ, Σ → ε

ε, Z
0
 → ε

Z
0

A PDA for Palindromes

ε, ε → ε
Σ, ε → ε

start

0 1 0 1 0

Σ, ε → Σ Σ, Σ → ε

ε, Z
0
 → ε

Z
0

A PDA for Palindromes

ε, ε → ε
Σ, ε → ε

start

0 1 0 1 0

Σ, ε → Σ Σ, Σ → ε

ε, Z
0
 → ε

0

Z
0

A PDA for Palindromes

ε, ε → ε
Σ, ε → ε

start

0 1 0 1 0

Σ, ε → Σ Σ, Σ → ε

ε, Z
0
 → ε

0

Z
0

A PDA for Palindromes

ε, ε → ε
Σ, ε → ε

start

0 1 0 1 0

Σ, ε → Σ Σ, Σ → ε

ε, Z
0
 → ε

0

Z
0

A PDA for Palindromes

ε, ε → ε
Σ, ε → ε

start

0 1 0 1 0

Σ, ε → Σ Σ, Σ → ε

ε, Z
0
 → ε

01

Z
0

A PDA for Palindromes

ε, ε → ε
Σ, ε → ε

start

0 1 0 1 0

Σ, ε → Σ Σ, Σ → ε

ε, Z
0
 → ε

01

Z
0

A PDA for Palindromes

ε, ε → ε
Σ, ε → ε

start

0 1 0 1 0

Σ, ε → Σ Σ, Σ → ε

ε, Z
0
 → ε

01

Z
0

A PDA for Palindromes

ε, ε → ε
Σ, ε → ε

start

0 1 0 1 0

Σ, ε → Σ Σ, Σ → ε

ε, Z
0
 → ε

01

Z
0

A PDA for Palindromes

ε, ε → ε
Σ, ε → ε

start

0 1 0 1 0

Σ, ε → Σ Σ, Σ → ε

ε, Z
0
 → ε

01

Z
0

A PDA for Palindromes

ε, ε → ε
Σ, ε → ε

start

0 1 0 1 0

Σ, ε → Σ Σ, Σ → ε

ε, Z
0
 → ε

0

Z
0

A PDA for Palindromes

ε, ε → ε
Σ, ε → ε

start

0 1 0 1 0

Σ, ε → Σ Σ, Σ → ε

ε, Z
0
 → ε

0

Z
0

A PDA for Palindromes

ε, ε → ε
Σ, ε → ε

start

0 1 0 1 0

Σ, ε → Σ Σ, Σ → ε

ε, Z
0
 → ε

0

Z
0

A PDA for Palindromes

ε, ε → ε
Σ, ε → ε

start

0 1 0 1 0

Σ, ε → Σ Σ, Σ → ε

ε, Z
0
 → ε

Z
0

A PDA for Palindromes

ε, ε → ε
Σ, ε → ε

start

0 1 0 1 0

Σ, ε → Σ Σ, Σ → ε

ε, Z
0
 → ε

Z
0

A PDA for Palindromes

ε, ε → ε
Σ, ε → ε

start

0 1 0 1 0

Σ, ε → Σ Σ, Σ → ε

ε, Z
0
 → ε

A PDA for Palindromes

ε, ε → ε
Σ, ε → ε

start

0 1 0 1 0

Σ, ε → Σ Σ, Σ → ε

ε, Z
0
 → ε

A PDA for Palindromes

ε, ε → ε
Σ, ε → ε

start

0 1 0 1 0

Σ, ε → Σ Σ, Σ → ε

ε, Z
0
 → ε

A PDA for Palindromes

ε, ε → ε
Σ, ε → ε

start

0 1 0 1 0

Σ, ε → Σ Σ, Σ → ε

ε, Z
0
 → ε

A PDA for Palindromes

ε, ε → ε
Σ, ε → ε

start

0 1 0 1 0

Σ, ε → Σ Σ, Σ → ε

ε, Z
0
 → ε

A Note on Nondeterminism

● In an NFA, we could interpret nondeterminism
as being in multiple states simultaneously.

● This is only possible because NFAs have no
extra storage.

q
1

q
1

q
0

q
0

q
2

q
2

q
2

start 1 1 q
2

 0, 1

A Note on Nondeterminism

● In an NFA, we could interpret nondeterminism
as being in multiple states simultaneously.

● This is only possible because NFAs have no
extra storage.

q
1

q
1

q
0

q
0

q
2

q
2

q
2

start 1 1 q
2

 0, 1

q
1

q
1

q
0

q
0

q
2

q
2

q
2

start 1 1 q
2

 0, 1

A Note on Nondeterminism

● In an NFA, we could interpret nondeterminism
as being in multiple states simultaneously.

● This is only possible because NFAs have no
extra storage.

q
1

q
1

q
0

q
0

q
2

q
2

q
2

start 1 1 q
2

 0, 1

A Note on Nondeterminism

● In a PDA, if there are multiple
nondeterministic choices, you cannot
treat the machine as being in multiple
states at once.
● Each state might have its own stack

associated with it.

● Instead, there are multiple parallel
copies of the machine running at once,
each of which has its own stack.

A PDA for Arithmetic

● Let Σ = { int, +, *, (,) } and consider
the language

ARITH = { w ∈ Σ* | w is a legal
 arithmetic expression }

● Examples:
● int + int * int
● ((int + int) * (int + int)) + (int)

● Can we build a PDA for ARITH?

A PDA for Arithmetic

A PDA for Arithmetic

start

A PDA for Arithmetic

int, ε → ε

start

A PDA for Arithmetic

int, ε → ε

+, ε → ε
*, ε → ε

start

A PDA for Arithmetic

int, ε → ε

+, ε → ε
*, ε → ε

(, ε → (

start

A PDA for Arithmetic

int, ε → ε

+, ε → ε
*, ε → ε

(, ε → (), (→ ε

start

A PDA for Arithmetic

int, ε → ε

+, ε → ε
*, ε → ε

ε, Z
0
 → ε

(, ε → (), (→ ε

start

A PDA for Arithmetic

int, ε → ε

+, ε → ε
*, ε → ε

ε, Z
0
 → ε

(, ε → (), (→ ε

start

int + int * int

A PDA for Arithmetic

int, ε → ε

+, ε → ε
*, ε → ε

ε, Z
0
 → ε

(, ε → (), (→ ε

start

Z
0

int + int * int

A PDA for Arithmetic

int, ε → ε

+, ε → ε
*, ε → ε

ε, Z
0
 → ε

(, ε → (), (→ ε

start

Z
0

int + int * int

A PDA for Arithmetic

int, ε → ε

+, ε → ε
*, ε → ε

ε, Z
0
 → ε

(, ε → (), (→ ε

start

Z
0

int + int * int

int int

A PDA for Arithmetic

int, ε → ε

+, ε → ε
*, ε → ε

ε, Z
0
 → ε

(, ε → (), (→ ε

start

Z
0

int + int * intint

int int int

A PDA for Arithmetic

int, ε → ε

+, ε → ε
*, ε → ε

ε, Z
0
 → ε

(, ε → (), (→ ε

start

Z
0

int + int * int

int int int

A PDA for Arithmetic

int, ε → ε

+, ε → ε
*, ε → ε

ε, Z
0
 → ε

(, ε → (), (→ ε

start

Z
0

int + int * int+

+int int int

A PDA for Arithmetic

int, ε → ε

+, ε → ε
*, ε → ε

ε, Z
0
 → ε

(, ε → (), (→ ε

start

Z
0

int + int * int

int+int int int

A PDA for Arithmetic

int, ε → ε

+, ε → ε
*, ε → ε

ε, Z
0
 → ε

(, ε → (), (→ ε

start

Z
0

int + * int

intint+int int

A PDA for Arithmetic

int, ε → ε

+, ε → ε
*, ε → ε

ε, Z
0
 → ε

(, ε → (), (→ ε

start

Z
0

int + * int

intint+int int

A PDA for Arithmetic

int, ε → ε

+, ε → ε
*, ε → ε

ε, Z
0
 → ε

(, ε → (), (→ ε

start

Z
0

int + * int*

*intint+int int

A PDA for Arithmetic

int, ε → ε

+, ε → ε
*, ε → ε

ε, Z
0
 → ε

(, ε → (), (→ ε

start

Z
0

int + * int

int*intint+int int

A PDA for Arithmetic

int, ε → ε

+, ε → ε
*, ε → ε

ε, Z
0
 → ε

(, ε → (), (→ ε

start

Z
0

int + *

intint*intint+int

A PDA for Arithmetic

int, ε → ε

+, ε → ε
*, ε → ε

ε, Z
0
 → ε

(, ε → (), (→ ε

start

Z
0

int + *

intint*intint+int

A PDA for Arithmetic

int, ε → ε

+, ε → ε
*, ε → ε

ε, Z
0
 → ε

(, ε → (), (→ ε

start

Z
0

int + *

intint*intint+int

A PDA for Arithmetic

int, ε → ε

+, ε → ε
*, ε → ε

ε, Z
0
 → ε

(, ε → (), (→ ε

start

int + *

intint*intint+int

A PDA for Arithmetic

int, ε → ε

+, ε → ε
*, ε → ε

ε, Z
0
 → ε

(, ε → (), (→ ε

start

int + *

A PDA for Arithmetic

int, ε → ε

+, ε → ε
*, ε → ε

ε, Z
0
 → ε

(, ε → (), (→ ε

start

))((intint*intint+int

A PDA for Arithmetic

int, ε → ε

+, ε → ε
*, ε → ε

ε, Z
0
 → ε

(, ε → (), (→ ε

start

int + *((++int intintint))

))((intint*intint+int

A PDA for Arithmetic

int, ε → ε

+, ε → ε
*, ε → ε

ε, Z
0
 → ε

(, ε → (), (→ ε

start

Z
0

int + *((++int intintint))

))((intint*intint+int

A PDA for Arithmetic

int, ε → ε

+, ε → ε
*, ε → ε

ε, Z
0
 → ε

(, ε → (), (→ ε

start

Z
0

int + *((++int intintint))

))((intint*intint+int

A PDA for Arithmetic

int, ε → ε

+, ε → ε
*, ε → ε

ε, Z
0
 → ε

(, ε → (), (→ ε

start

Z
0

int + *((++int intintint))

intint))((intint*intint+int

A PDA for Arithmetic

int, ε → ε

+, ε → ε
*, ε → ε

ε, Z
0
 → ε

(, ε → (), (→ ε

start

Z
0

+ *((++ intintint))

intintint))((intint*intint+

A PDA for Arithmetic

int, ε → ε

+, ε → ε
*, ε → ε

ε, Z
0
 → ε

(, ε → (), (→ ε

start

Z
0

+ *((++ intintint))

+intintint))((intint*intint+

A PDA for Arithmetic

int, ε → ε

+, ε → ε
*, ε → ε

ε, Z
0
 → ε

(, ε → (), (→ ε

start

Z
0

*((++ intintint))

++intintint))((intint*intint

A PDA for Arithmetic

int, ε → ε

+, ε → ε
*, ε → ε

ε, Z
0
 → ε

(, ε → (), (→ ε

start

Z
0

*((++ intintint))

(++intintint))(intint*intint

A PDA for Arithmetic

int, ε → ε

+, ε → ε
*, ε → ε

ε, Z
0
 → ε

(, ε → (), (→ ε

start

Z
0

*((++ intintint))

((++intintint))intint*intint

A PDA for Arithmetic

int, ε → ε

+, ε → ε
*, ε → ε

ε, Z
0
 → ε

(, ε → (), (→ ε

start

Z
0

*((++ intintint)) (

(((++intintint))intint*intint

A PDA for Arithmetic

int, ε → ε

+, ε → ε
*, ε → ε

ε, Z
0
 → ε

(, ε → (), (→ ε

start

Z
0

*(++ intintint)) (

((((++intintint))intint*intint

A PDA for Arithmetic

int, ε → ε

+, ε → ε
*, ε → ε

ε, Z
0
 → ε

(, ε → (), (→ ε

start

Z
0

* ++ intintint)) ((

int((((++intintint))intint*int

A PDA for Arithmetic

int, ε → ε

+, ε → ε
*, ε → ε

ε, Z
0
 → ε

(, ε → (), (→ ε

start

Z
0

* ++ intintint)) ((

intint((((++intintint))intint*

A PDA for Arithmetic

int, ε → ε

+, ε → ε
*, ε → ε

ε, Z
0
 → ε

(, ε → (), (→ ε

start

Z
0

* ++ intintint)) ((

intint((((++intintint))intint

A PDA for Arithmetic

int, ε → ε

+, ε → ε
*, ε → ε

ε, Z
0
 → ε

(, ε → (), (→ ε

start

Z
0

++ intintint)) ((

**intint((((++intintint))intint

A PDA for Arithmetic

int, ε → ε

+, ε → ε
*, ε → ε

ε, Z
0
 → ε

(, ε → (), (→ ε

start

Z
0

++ intintint)) ((

int**intint((((++intintint))int

A PDA for Arithmetic

int, ε → ε

+, ε → ε
*, ε → ε

ε, Z
0
 → ε

(, ε → (), (→ ε

start

Z
0

++ intintint)) ((

intint**intint((((++intintint))

A PDA for Arithmetic

int, ε → ε

+, ε → ε
*, ε → ε

ε, Z
0
 → ε

(, ε → (), (→ ε

start

Z
0

++ intintint)) ((

)intint**intint((((++intintint)

A PDA for Arithmetic

int, ε → ε

+, ε → ε
*, ε → ε

ε, Z
0
 → ε

(, ε → (), (→ ε

start

Z
0

++ intintint)) ((

))intint**intint((((++intintint

A PDA for Arithmetic

int, ε → ε

+, ε → ε
*, ε → ε

ε, Z
0
 → ε

(, ε → (), (→ ε

start

Z
0

++ intintint)) (

+))intint**intint((((++intintint

A PDA for Arithmetic

int, ε → ε

+, ε → ε
*, ε → ε

ε, Z
0
 → ε

(, ε → (), (→ ε

start

Z
0

+ intintint)) (

++))intint**intint((((++intintint

A PDA for Arithmetic

int, ε → ε

+, ε → ε
*, ε → ε

ε, Z
0
 → ε

(, ε → (), (→ ε

start

Z
0

intintint)) (

intint++))intint**intint((((++intintint

A PDA for Arithmetic

int, ε → ε

+, ε → ε
*, ε → ε

ε, Z
0
 → ε

(, ε → (), (→ ε

start

Z
0

int)) (

intintint++))intint**intint((((++intintint

A PDA for Arithmetic

int, ε → ε

+, ε → ε
*, ε → ε

ε, Z
0
 → ε

(, ε → (), (→ ε

start

Z
0

)) (

)intintint++))intint**intint((((++intintint

A PDA for Arithmetic

int, ε → ε

+, ε → ε
*, ε → ε

ε, Z
0
 → ε

(, ε → (), (→ ε

start

Z
0

) (

))intintint++))intint**intint((((++intintint

A PDA for Arithmetic

int, ε → ε

+, ε → ε
*, ε → ε

ε, Z
0
 → ε

(, ε → (), (→ ε

start

Z
0

Z
0

))intintint++))intint**intint((((++intintint

A PDA for Arithmetic

int, ε → ε

+, ε → ε
*, ε → ε

ε, Z
0
 → ε

(, ε → (), (→ ε

start

))intintint++))intint**intint((((++intintint

A PDA for Arithmetic

int, ε → ε

+, ε → ε
*, ε → ε

ε, Z
0
 → ε

(, ε → (), (→ ε

start

))intintint++))intint**intint((((++intintint

A PDA for Arithmetic

int, ε → ε

+, ε → ε
*, ε → ε

ε, Z
0
 → ε

(, ε → (), (→ ε

start

))intintint++))intint**intint((((++intintint

A PDA for Arithmetic

int, ε → ε

+, ε → ε
*, ε → ε

ε, Z
0
 → ε

(, ε → (), (→ ε

start

Why PDAs Matter

● Recall: A language is context-free iff there is some CFG
that generates it.

● Important, non-obvious theorem: A language is
context-free iff there is some PDA that recognizes it.

● Need to prove two directions:
● If L is context-free, then there is a PDA for it.
● If there is a PDA for L, then L is context-free.

● Part (1) is absolutely beautiful and we'll see it in a
second.

● Part (2) is brilliant, but a bit too involved for lecture
(you should read this in Sipser).

From CFGs to PDAs

● Theorem: If G is a CFG for a language L,
then there exists a PDA for L as well.

● Idea: Build a PDA that simulates
expanding out the CFG from the start
symbol to some particular string.

● Stack holds the part of the string we
haven't matched yet.

From CFGs to PDAs

● Example: Let Σ = { 1, ≥ } and let
GE = { 1m≥1n | m, n ∈ ℕ ∧ m ≥ n }
● 111≥11 ∈ GE

● 11≥11 ∈ GE

● 1111≥11 ∈ GE

● ≥ ∈ GE

● One CFG for GE is the following:

S → 1S1 | 1S | ≥

● How would we build a PDA for GE?

From CFGs to PDAs

S → 1S1
S → 1S
S → ≥

From CFGs to PDAs

start

S → 1S1
S → 1S
S → ≥

From CFGs to PDAs

S → 1S1
S → 1S
S → ≥

ε, ε → S
start

S → 1S1
S → 1S
S → ≥

From CFGs to PDAs

S → 1S1
S → 1S
S → ≥

ε, ε → S
start

We begin by putting the start symbol
of the grammar onto the stack so

that we can begin applying
productions.

We begin by putting the start symbol
of the grammar onto the stack so

that we can begin applying
productions.

S → 1S1
S → 1S
S → ≥

From CFGs to PDAs

S → 1S1
S → 1S
S → ≥

ε, S → 1S
ε, S → 1S1
ε, S → ≥
Σ, Σ → ε

ε, ε → S
start

S → 1S1
S → 1S
S → ≥

From CFGs to PDAs

S → 1S1
S → 1S
S → ≥

ε, S → 1S
ε, S → 1S1
ε, S → ≥
Σ, Σ → ε

ε, ε → S
start

These transitions allow us to
nondeterministically guess which

production to use when the top of
the stack is a nonterminal.

These transitions allow us to
nondeterministically guess which

production to use when the top of
the stack is a nonterminal.

S → 1S1
S → 1S
S → ≥

From CFGs to PDAs

S → 1S1
S → 1S
S → ≥

ε, S → 1S
ε, S → 1S1
ε, S → ≥
Σ, Σ → ε

ε, ε → S
start

S → 1S1
S → 1S
S → ≥

From CFGs to PDAs

S → 1S1
S → 1S
S → ≥

ε, S → 1S
ε, S → 1S1
ε, S → ≥
Σ, Σ → ε

ε, ε → S
start

Once we have guessed the right
production, this rule lets us match
the next character from the input

with the next terminal we
produced.

Once we have guessed the right
production, this rule lets us match
the next character from the input

with the next terminal we
produced.

S → 1S1
S → 1S
S → ≥

From CFGs to PDAs

S → 1S1
S → 1S
S → ≥

ε, S → 1S
ε, S → 1S1
ε, S → ≥
Σ, Σ → ε

ε, ε → S ε, Z
0
 → Z

0start

S → 1S1
S → 1S
S → ≥

From CFGs to PDAs

S → 1S1
S → 1S
S → ≥

ε, S → 1S
ε, S → 1S1
ε, S → ≥
Σ, Σ → ε

ε, ε → S ε, Z
0
 → Z

0start

Once we have fully expanded out all
nonterminals and matched all the terminals
on the stack, we can transition into the

accepting state.

Once we have fully expanded out all
nonterminals and matched all the terminals
on the stack, we can transition into the

accepting state.

S → 1S1
S → 1S
S → ≥

From CFGs to PDAs

S → 1S1
S → 1S
S → ≥

ε, S → 1S
ε, S → 1S1
ε, S → ≥
Σ, Σ → ε

ε, ε → S ε, Z
0
 → Z

0start

1 1 1 ≥ 1 1

S → 1S1
S → 1S
S → ≥

From CFGs to PDAs

S → 1S1
S → 1S
S → ≥

ε, S → 1S
ε, S → 1S1
ε, S → ≥
Σ, Σ → ε

ε, ε → S ε, Z
0
 → Z

0start

Z
01 1 1 ≥ 1 1

S → 1S1
S → 1S
S → ≥

From CFGs to PDAs

S → 1S1
S → 1S
S → ≥

ε, S → 1S
ε, S → 1S1
ε, S → ≥
Σ, Σ → ε

ε, ε → S ε, Z
0
 → Z

0start

Z
01 1 1 ≥ 1 1

S → 1S1
S → 1S
S → ≥

From CFGs to PDAs

S → 1S1
S → 1S
S → ≥

ε, S → 1S
ε, S → 1S1
ε, S → ≥
Σ, Σ → ε

ε, ε → S ε, Z
0
 → Z

0start

Z
01 1 1 ≥ 1 1

S → 1S1
S → 1S
S → ≥

From CFGs to PDAs

S → 1S1
S → 1S
S → ≥

ε, S → 1S
ε, S → 1S1
ε, S → ≥
Σ, Σ → ε

ε, ε → S ε, Z
0
 → Z

0start

Z
01 1 1 ≥ 1 1

S → 1S1
S → 1S
S → ≥

From CFGs to PDAs

S → 1S1
S → 1S
S → ≥

ε, S → 1S
ε, S → 1S1
ε, S → ≥
Σ, Σ → ε

ε, ε → S ε, Z
0
 → Z

0start

Z
01 1 1 ≥ 1 1 S

S → 1S1
S → 1S
S → ≥

From CFGs to PDAs

S → 1S1
S → 1S
S → ≥

ε, S → 1S
ε, S → 1S1
ε, S → ≥
Σ, Σ → ε

ε, ε → S ε, Z
0
 → Z

0start

Z
01 1 1 ≥ 1 1 S

S → 1S1
S → 1S
S → ≥

From CFGs to PDAs

S → 1S1
S → 1S
S → ≥

ε, S → 1S
ε, S → 1S1
ε, S → ≥
Σ, Σ → ε

ε, ε → S ε, Z
0
 → Z

0start

Z
01 1 1 ≥ 1 1 S

Now that the stack top
is a nonterminal, we

guess which production
to use.

Now that the stack top
is a nonterminal, we

guess which production
to use.

S → 1S1
S → 1S
S → ≥

From CFGs to PDAs

S → 1S1
S → 1S
S → ≥

ε, S → 1S
ε, S → 1S1
ε, S → ≥
Σ, Σ → ε

ε, ε → S ε, Z
0
 → Z

0start

Z
01 1 1 ≥ 1 1 S

S → 1S1
S → 1S
S → ≥

From CFGs to PDAs

S → 1S1
S → 1S
S → ≥

ε, S → 1S
ε, S → 1S1
ε, S → ≥
Σ, Σ → ε

ε, ε → S ε, Z
0
 → Z

0start

Z
01 1 1 ≥ 1 1

S → 1S1
S → 1S
S → ≥

From CFGs to PDAs

S → 1S1
S → 1S
S → ≥

ε, S → 1S
ε, S → 1S1
ε, S → ≥
Σ, Σ → ε

ε, ε → S ε, Z
0
 → Z

0start

Z
01 1 1 ≥ 1 1 S1

S → 1S1
S → 1S
S → ≥

From CFGs to PDAs

S → 1S1
S → 1S
S → ≥

ε, S → 1S
ε, S → 1S1
ε, S → ≥
Σ, Σ → ε

ε, ε → S ε, Z
0
 → Z

0start

Z
01 1 1 ≥ 1 1 S1

S → 1S1
S → 1S
S → ≥

From CFGs to PDAs

S → 1S1
S → 1S
S → ≥

ε, S → 1S
ε, S → 1S1
ε, S → ≥
Σ, Σ → ε

ε, ε → S ε, Z
0
 → Z

0start

Z
01 1 1 ≥ 1 1 S1

Since the top of the stack is a
terminal, we can match it with

the next input symbol.

Since the top of the stack is a
terminal, we can match it with

the next input symbol.

S → 1S1
S → 1S
S → ≥

From CFGs to PDAs

S → 1S1
S → 1S
S → ≥

ε, S → 1S
ε, S → 1S1
ε, S → ≥
Σ, Σ → ε

ε, ε → S ε, Z
0
 → Z

0start

Z
01 1 1 ≥ 1 1 S1

S → 1S1
S → 1S
S → ≥

From CFGs to PDAs

S → 1S1
S → 1S
S → ≥

ε, S → 1S
ε, S → 1S1
ε, S → ≥
Σ, Σ → ε

ε, ε → S ε, Z
0
 → Z

0start

Z
01 1 1 ≥ 1 1 S

S → 1S1
S → 1S
S → ≥

From CFGs to PDAs

S → 1S1
S → 1S
S → ≥

ε, S → 1S
ε, S → 1S1
ε, S → ≥
Σ, Σ → ε

ε, ε → S ε, Z
0
 → Z

0start

Z
01 1 1 ≥ 1 1 S

S → 1S1
S → 1S
S → ≥

From CFGs to PDAs

S → 1S1
S → 1S
S → ≥

ε, S → 1S
ε, S → 1S1
ε, S → ≥
Σ, Σ → ε

ε, ε → S ε, Z
0
 → Z

0start

Z
01 1 1 ≥ 1 1 S

S → 1S1
S → 1S
S → ≥

From CFGs to PDAs

S → 1S1
S → 1S
S → ≥

ε, S → 1S
ε, S → 1S1
ε, S → ≥
Σ, Σ → ε

ε, ε → S ε, Z
0
 → Z

0start

Z
01 1 1 ≥ 1 1

S → 1S1
S → 1S
S → ≥

From CFGs to PDAs

S → 1S1
S → 1S
S → ≥

ε, S → 1S
ε, S → 1S1
ε, S → ≥
Σ, Σ → ε

ε, ε → S ε, Z
0
 → Z

0start

Z
01 1 1 ≥ 1 1 11 S

S → 1S1
S → 1S
S → ≥

From CFGs to PDAs

S → 1S1
S → 1S
S → ≥

ε, S → 1S
ε, S → 1S1
ε, S → ≥
Σ, Σ → ε

ε, ε → S ε, Z
0
 → Z

0start

Z
01 1 1 ≥ 1 1 11 S

S → 1S1
S → 1S
S → ≥

From CFGs to PDAs

S → 1S1
S → 1S
S → ≥

ε, S → 1S
ε, S → 1S1
ε, S → ≥
Σ, Σ → ε

ε, ε → S ε, Z
0
 → Z

0start

Z
01 1 1 ≥ 1 1 11 S

S → 1S1
S → 1S
S → ≥

From CFGs to PDAs

S → 1S1
S → 1S
S → ≥

ε, S → 1S
ε, S → 1S1
ε, S → ≥
Σ, Σ → ε

ε, ε → S ε, Z
0
 → Z

0start

Z
01 1 1 ≥ 1 1 1S

S → 1S1
S → 1S
S → ≥

From CFGs to PDAs

S → 1S1
S → 1S
S → ≥

ε, S → 1S
ε, S → 1S1
ε, S → ≥
Σ, Σ → ε

ε, ε → S ε, Z
0
 → Z

0start

Z
01 1 1 ≥ 1 1 1S

S → 1S1
S → 1S
S → ≥

From CFGs to PDAs

S → 1S1
S → 1S
S → ≥

ε, S → 1S
ε, S → 1S1
ε, S → ≥
Σ, Σ → ε

ε, ε → S ε, Z
0
 → Z

0start

Z
01 1 1 ≥ 1 1 1S

S → 1S1
S → 1S
S → ≥

From CFGs to PDAs

S → 1S1
S → 1S
S → ≥

ε, S → 1S
ε, S → 1S1
ε, S → ≥
Σ, Σ → ε

ε, ε → S ε, Z
0
 → Z

0start

Z
01 1 1 ≥ 1 1 1

S → 1S1
S → 1S
S → ≥

From CFGs to PDAs

S → 1S1
S → 1S
S → ≥

ε, S → 1S
ε, S → 1S1
ε, S → ≥
Σ, Σ → ε

ε, ε → S ε, Z
0
 → Z

0start

Z
01 1 1 ≥ 1 1 11S1

S → 1S1
S → 1S
S → ≥

From CFGs to PDAs

S → 1S1
S → 1S
S → ≥

ε, S → 1S
ε, S → 1S1
ε, S → ≥
Σ, Σ → ε

ε, ε → S ε, Z
0
 → Z

0start

Z
01 1 1 ≥ 1 1 11S1

S → 1S1
S → 1S
S → ≥

From CFGs to PDAs

S → 1S1
S → 1S
S → ≥

ε, S → 1S
ε, S → 1S1
ε, S → ≥
Σ, Σ → ε

ε, ε → S ε, Z
0
 → Z

0start

Z
01 1 1 ≥ 1 1 11S1

S → 1S1
S → 1S
S → ≥

From CFGs to PDAs

S → 1S1
S → 1S
S → ≥

ε, S → 1S
ε, S → 1S1
ε, S → ≥
Σ, Σ → ε

ε, ε → S ε, Z
0
 → Z

0start

Z
01 1 1 ≥ 1 1 11S

S → 1S1
S → 1S
S → ≥

From CFGs to PDAs

S → 1S1
S → 1S
S → ≥

ε, S → 1S
ε, S → 1S1
ε, S → ≥
Σ, Σ → ε

ε, ε → S ε, Z
0
 → Z

0start

Z
01 1 1 ≥ 1 1 11S

S → 1S1
S → 1S
S → ≥

From CFGs to PDAs

S → 1S1
S → 1S
S → ≥

ε, S → 1S
ε, S → 1S1
ε, S → ≥
Σ, Σ → ε

ε, ε → S ε, Z
0
 → Z

0start

Z
01 1 1 ≥ 1 1 11S

S → 1S1
S → 1S
S → ≥

From CFGs to PDAs

S → 1S1
S → 1S
S → ≥

ε, S → 1S
ε, S → 1S1
ε, S → ≥
Σ, Σ → ε

ε, ε → S ε, Z
0
 → Z

0start

Z
01 1 1 ≥ 1 1 11

S → 1S1
S → 1S
S → ≥

From CFGs to PDAs

S → 1S1
S → 1S
S → ≥

ε, S → 1S
ε, S → 1S1
ε, S → ≥
Σ, Σ → ε

ε, ε → S ε, Z
0
 → Z

0start

Z
01 1 1 ≥ 1 1 11≥

S → 1S1
S → 1S
S → ≥

From CFGs to PDAs

S → 1S1
S → 1S
S → ≥

ε, S → 1S
ε, S → 1S1
ε, S → ≥
Σ, Σ → ε

ε, ε → S ε, Z
0
 → Z

0start

Z
01 1 1 ≥ 1 1 11≥

S → 1S1
S → 1S
S → ≥

From CFGs to PDAs

S → 1S1
S → 1S
S → ≥

ε, S → 1S
ε, S → 1S1
ε, S → ≥
Σ, Σ → ε

ε, ε → S ε, Z
0
 → Z

0start

Z
01 1 1 ≥ 1 1 11≥

S → 1S1
S → 1S
S → ≥

From CFGs to PDAs

S → 1S1
S → 1S
S → ≥

ε, S → 1S
ε, S → 1S1
ε, S → ≥
Σ, Σ → ε

ε, ε → S ε, Z
0
 → Z

0start

Z
01 1 1 ≥ 1 1 11

S → 1S1
S → 1S
S → ≥

From CFGs to PDAs

S → 1S1
S → 1S
S → ≥

ε, S → 1S
ε, S → 1S1
ε, S → ≥
Σ, Σ → ε

ε, ε → S ε, Z
0
 → Z

0start

Z
01 1 1 ≥ 1 1 11

S → 1S1
S → 1S
S → ≥

From CFGs to PDAs

S → 1S1
S → 1S
S → ≥

ε, S → 1S
ε, S → 1S1
ε, S → ≥
Σ, Σ → ε

ε, ε → S ε, Z
0
 → Z

0start

Z
01 1 1 ≥ 1 1 11

S → 1S1
S → 1S
S → ≥

From CFGs to PDAs

S → 1S1
S → 1S
S → ≥

ε, S → 1S
ε, S → 1S1
ε, S → ≥
Σ, Σ → ε

ε, ε → S ε, Z
0
 → Z

0start

Z
01 1 1 ≥ 1 1 1

S → 1S1
S → 1S
S → ≥

From CFGs to PDAs

S → 1S1
S → 1S
S → ≥

ε, S → 1S
ε, S → 1S1
ε, S → ≥
Σ, Σ → ε

ε, ε → S ε, Z
0
 → Z

0start

Z
01 1 1 ≥ 1 1 1

S → 1S1
S → 1S
S → ≥

From CFGs to PDAs

S → 1S1
S → 1S
S → ≥

ε, S → 1S
ε, S → 1S1
ε, S → ≥
Σ, Σ → ε

ε, ε → S ε, Z
0
 → Z

0start

Z
01 1 1 ≥ 1 1 1

S → 1S1
S → 1S
S → ≥

From CFGs to PDAs

S → 1S1
S → 1S
S → ≥

ε, S → 1S
ε, S → 1S1
ε, S → ≥
Σ, Σ → ε

ε, ε → S ε, Z
0
 → Z

0start

Z
01 1 1 ≥ 1 1

S → 1S1
S → 1S
S → ≥

From CFGs to PDAs

S → 1S1
S → 1S
S → ≥

ε, S → 1S
ε, S → 1S1
ε, S → ≥
Σ, Σ → ε

ε, ε → S ε, Z
0
 → Z

0start

Z
01 1 1 ≥ 1 1

S → 1S1
S → 1S
S → ≥

From CFGs to PDAs

S → 1S1
S → 1S
S → ≥

ε, S → 1S
ε, S → 1S1
ε, S → ≥
Σ, Σ → ε

ε, ε → S ε, Z
0
 → Z

0start

Z
01 1 1 ≥ 1 1

At this point we've completely
matched the string, so it's time to
transition to the accepting state.

At this point we've completely
matched the string, so it's time to
transition to the accepting state.

S → 1S1
S → 1S
S → ≥

From CFGs to PDAs

S → 1S1
S → 1S
S → ≥

ε, S → 1S
ε, S → 1S1
ε, S → ≥
Σ, Σ → ε

ε, ε → S ε, Z
0
 → Z

0start

Z
01 1 1 ≥ 1 1

S → 1S1
S → 1S
S → ≥

From CFGs to PDAs

S → 1S1
S → 1S
S → ≥

ε, S → 1S
ε, S → 1S1
ε, S → ≥
Σ, Σ → ε

ε, ε → S ε, Z
0
 → Z

0start

1 1 1 ≥ 1 1

S → 1S1
S → 1S
S → ≥

Z
0

From CFGs to PDAs

S → 1S1
S → 1S
S → ≥

ε, S → 1S
ε, S → 1S1
ε, S → ≥
Σ, Σ → ε

ε, ε → S ε, Z
0
 → Z

0start

1 1 1 ≥ 1 1

S → 1S1
S → 1S
S → ≥

Z
0

From CFGs to PDAs

S → 1S1
S → 1S
S → ≥

ε, S → 1S
ε, S → 1S1
ε, S → ≥
Σ, Σ → ε

ε, ε → S ε, Z
0
 → Z

0start

1 1 1 ≥ 1 1

S → 1S1
S → 1S
S → ≥

Z
0

From CFGs to PDAs

S → 1S1
S → 1S
S → ≥

ε, S → 1S
ε, S → 1S1
ε, S → ≥
Σ, Σ → ε

ε, ε → S ε, Z
0
 → Z

0start

1 1 1 ≥ 1 1

S → 1S1
S → 1S
S → ≥

Z
0

From CFGs to PDAs

S → 1S1
S → 1S
S → ≥

ε, S → 1S
ε, S → 1S1
ε, S → ≥
Σ, Σ → ε

ε, ε → S ε, Z
0
 → Z

0start

1 1 1 ≥ 1 1

S → 1S1
S → 1S
S → ≥

From CFGs to PDAs

● Make three states: start, parsing, and accepting.

● There is a transition ε, ε → S from start to parsing.

● Corresponds to starting off with the start symbol S.

● There is a transition ε, A → ω from parsing to itself for
each production A → ω.

● Corresponds to predicting which production to use.

● There is a transition Σ, Σ → ε from parsing to itself.

● Corresponds to matching a character of the input.

● There is a transition ε, Z0 → Z0 from parsing to
accepting.

● Corresponds to completely matching the input.

From CFGs to PDAs

● The PDA constructed this way is called a
predict/match parser.

● Each step either predicts which
production to use or matches some
symbol of the input.

From PDAs to CFGs

● The other direction of the proof (converting
a PDA to a CFG) is much harder.

● Intuitively, create a CFG representing paths
between states in the PDA.

● Lots of tricky details, but a marvelous proof.
● It's just too large to fit into the margins of this

slide.

● Read Sipser for more details.

Regular and Context-Free Languages

Theorem: Any regular language is context-free.

Proof Sketch: Let L be any regular language and consider
a DFA D for L. Then we can convert D into a PDA for L by
converting any transition on a symbol a into a transition
a, ε → ε that ignores the stack. This new PDA accepts L,
so L is context-free. ■-ish

Regular and Context-Free Languages

Theorem: Any regular language is context-free.

Proof Sketch: Let L be any regular language and consider
a DFA D for L. Then we can convert D into a PDA for L by
converting any transition on a symbol a into a transition
a, ε → ε that ignores the stack. This new PDA accepts L,
so L is context-free. ■-ish

Regular and Context-Free Languages

Theorem: Any regular language is context-free.

Proof Sketch: Let L be any regular language and consider
a DFA D for L. Then we can convert D into a PDA for L by
converting any transition on a symbol a into a transition
a, ε → ε that ignores the stack. This new PDA accepts L,
so L is context-free. ■-ish

Regular and Context-Free Languages

Theorem: Any regular language is context-free.

Proof Sketch: Let L be any regular language and consider
a DFA D for L. Then we can convert D into a PDA for L by
converting any transition on a symbol a into a transition
a, ε → ε that ignores the stack. This new PDA accepts L,
so L is context-free. ■-ish

Refining the Context-Free Languages

NPDAs and DPDAs

● With finite automata, we considered both
deterministic (DFAs) and
nondeterministic (NFAs) automata.

● So far, we've only seen nondeterministic
PDAs (or NPDAs).

● What about deterministic PDAs
(DPDAs)?

DPDAs

● A deterministic pushdown automaton is a PDA with the
extra property that

For each state in the PDA, and for any combination
of a current input symbol and a current stack symbol,

there is at most one transition defined.

● In other words, there is at most one legal sequence of
transitions that can be followed for any input.

● This does not preclude ε-transitions, as long as there is never a
conflict between following the ε-transition or some other
transition.

● However, there can be at most one ε-transition that could be
followed at any one time.

● This does not preclude the automaton “dying” from having no
transitions defined; DPDAs can have undefined transitions.

DPDAs

A deterministic pushdown automaton is a PDA with the
extra property that

For each state in the PDA, and for any combination
of a current input symbol and a current stack symbol,

there is at most one transition defined.

In other words, there is at most one legal sequence of
transitions that can be followed for any input.

This does not preclude ε-transitions, as long as there is never a
conflict between following the ε-transition or some other
transition.

However, there can be at most one ε-transition that could be
followed at any one time.

● This does not preclude the automaton “dying” from having no
transitions defined; DPDAs can have undefined transitions.

A deterministic pushdown automaton is a PDA with the
extra property that

For each state in the PDA, and for any combination
of a current input symbol and a current stack symbol,

there is at most one transition defined.

In other words, there is at most one legal sequence of
transitions that can be followed for any input.

This does not preclude ε-transitions, as long as there is never a
conflict between following the ε-transition or some other
transition.

However, there can be at most one ε-transition that could be
followed at any one time.

● This does not preclude the automaton “dying” from having no
transitions defined; DPDAs can have undefined transitions.

DPDAs

Sipser's definition of DPDAs
does not allow the machine to
“die” in some configuration.

For CS103, we'll allow
transitions to be missing.

Sipser's definition of DPDAs
does not allow the machine to
“die” in some configuration.

For CS103, we'll allow
transitions to be missing.

Is this a DPDA?

ε, Z
0
 → ε

start

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

Is this a DPDA?

ε, Z
0
 → ε

start

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

Is this a DPDA?

ε, Z
0
 → ε

start

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

Is this a DPDA?

0, ε → 0

0, 0 → 00
1, 0 → ε

ε, Z
0
 → Z

0

start

This ε-transition is allowable
because no other transitions in this

state use the input symbol 0

This ε-transition is allowable
because no other transitions in this

state use the input symbol 0

Is this a DPDA?

0, ε → 0

0, 0 → 00
1, 0 → ε

ε, Z
0
 → Z

0

start

This ε-transition is allowable
because no other transitions in this
state use the stack symbol Z0.

This ε-transition is allowable
because no other transitions in this
state use the stack symbol Z0.

Is this a DPDA?

0, ε → 0

0, 0 → 00
1, 0 → ε

ε, Z
0
 → Z

0

start

Is this a DPDA?

0, ε → 0

0, 0 → 00
1, 0 → ε

ε, Z
0
 → Z

0

start

0 1 0 0 1 1

Is this a DPDA?

0, ε → 0

0, 0 → 00
1, 0 → ε

ε, Z
0
 → Z

0

start

Z
00 1 0 0 1 1

Is this a DPDA?

0, ε → 0

0, 0 → 00
1, 0 → ε

ε, Z
0
 → Z

0

start

Z
00 1 0 0 1 1

Is this a DPDA?

0, ε → 0

0, 0 → 00
1, 0 → ε

ε, Z
0
 → Z

0

start

Z
00 1 0 0 1 1

Is this a DPDA?

0, ε → 0

0, 0 → 00
1, 0 → ε

ε, Z
0
 → Z

0

start

Z
00 1 0 0 1 1

Is this a DPDA?

0, ε → 0

0, 0 → 00
1, 0 → ε

ε, Z
0
 → Z

0

start

Z
00 1 0 0 1 1 0

Is this a DPDA?

0, ε → 0

0, 0 → 00
1, 0 → ε

ε, Z
0
 → Z

0

start

Z
00 1 0 0 1 1 0

Is this a DPDA?

0, ε → 0

0, 0 → 00
1, 0 → ε

ε, Z
0
 → Z

0

start

Z
00 1 0 0 1 1 0

Is this a DPDA?

0, ε → 0

0, 0 → 00
1, 0 → ε

ε, Z
0
 → Z

0

start

Z
00 1 0 0 1 1

Is this a DPDA?

0, ε → 0

0, 0 → 00
1, 0 → ε

ε, Z
0
 → Z

0

start

Z
00 1 0 0 1 1

Is this a DPDA?

0, ε → 0

0, 0 → 00
1, 0 → ε

ε, Z
0
 → Z

0

start

Z
00 1 0 0 1 1

Is this a DPDA?

0, ε → 0

0, 0 → 00
1, 0 → ε

ε, Z
0
 → Z

0

start

0 1 0 0 1 1

Is this a DPDA?

0, ε → 0

0, 0 → 00
1, 0 → ε

ε, Z
0
 → Z

0

start

Z
00 1 0 0 1 1

Is this a DPDA?

0, ε → 0

0, 0 → 00
1, 0 → ε

ε, Z
0
 → Z

0

start

Z
00 1 0 0 1 1

Is this a DPDA?

0, ε → 0

0, 0 → 00
1, 0 → ε

ε, Z
0
 → Z

0

start

Z
00 1 0 0 1 1

Is this a DPDA?

0, ε → 0

0, 0 → 00
1, 0 → ε

ε, Z
0
 → Z

0

start

Z
00 1 0 0 1 1 0

Is this a DPDA?

0, ε → 0

0, 0 → 00
1, 0 → ε

ε, Z
0
 → Z

0

start

Z
00 1 0 0 1 1 0

Is this a DPDA?

0, ε → 0

0, 0 → 00
1, 0 → ε

ε, Z
0
 → Z

0

start

Z
00 1 0 0 1 1 0

Is this a DPDA?

0, ε → 0

0, 0 → 00
1, 0 → ε

ε, Z
0
 → Z

0

start

Z
00 1 0 0 1 1

Is this a DPDA?

0, ε → 0

0, 0 → 00
1, 0 → ε

ε, Z
0
 → Z

0

start

Z
00 1 0 0 1 1 00

Is this a DPDA?

0, ε → 0

0, 0 → 00
1, 0 → ε

ε, Z
0
 → Z

0

start

Z
00 1 0 0 1 1 00

Is this a DPDA?

0, ε → 0

0, 0 → 00
1, 0 → ε

ε, Z
0
 → Z

0

start

Z
00 1 0 0 1 1 00

Is this a DPDA?

0, ε → 0

0, 0 → 00
1, 0 → ε

ε, Z
0
 → Z

0

start

Z
00 1 0 0 1 1 0

Is this a DPDA?

0, ε → 0

0, 0 → 00
1, 0 → ε

ε, Z
0
 → Z

0

start

Z
00 1 0 0 1 1 0

Is this a DPDA?

0, ε → 0

0, 0 → 00
1, 0 → ε

ε, Z
0
 → Z

0

start

Z
00 1 0 0 1 1 0

Is this a DPDA?

0, ε → 0

0, 0 → 00
1, 0 → ε

ε, Z
0
 → Z

0

start

Z
00 1 0 0 1 1

Is this a DPDA?

0, ε → 0

0, 0 → 00
1, 0 → ε

ε, Z
0
 → Z

0

start

Z
00 1 0 0 1 1

Is this a DPDA?

0, ε → 0

0, 0 → 00
1, 0 → ε

ε, Z
0
 → Z

0

start

Z
00 1 0 0 1 1

Is this a DPDA?

0, ε → 0

0, 0 → 00
1, 0 → ε

ε, Z
0
 → Z

0

start

0 1 0 0 1 1

Is this a DPDA?

0, ε → 0

0, 0 → 00
1, 0 → ε

ε, Z
0
 → Z

0

start

Z
00 1 0 0 1 1

Is this a DPDA?

0, ε → 0

0, 0 → 00
1, 0 → ε

ε, Z
0
 → Z

0

start

Z
00 1 0 0 1 1

Is this a DPDA?

0, ε → 0

0, 0 → 00
1, 0 → ε

ε, Z
0
 → Z

0

start

Z
00 1 0 0 1 1

Is this a DPDA?

0, ε → 0

0, 0 → 00
1, 0 → ε

ε, Z
0
 → Z

0

start

Z
00 1 0 0 1 1

Why DPDAs Matter

● Because DPDAs are deterministic, they can
be simulated efficiently:
● Keep track of the top of the stack.
● Store an action/goto table that says what

operations to perform on the stack and what
state to enter on each input/stack pair.

● Loop over the input, processing input/stack pairs
until the automaton rejects or ends in an
accepting state with all input consumed.

● If we can find a DPDA for a CFL, then we can
recognize strings in that language efficiently.

If we can find a DPDA for a CFL, then we
can recognize strings in that language

efficiently.

Can we guarantee that we can always find
a DPDA for a CFL?

The Power of Nondeterminism

● When dealing with finite automata, there is no
difference in the power of NFAs and DFAs.

● However, when dealing with PDAs, there are CFLs
that can be recognized by NPDAs that cannot be
recognized by DPDAs.

● Simple example: The language of palindromes.
● How do you know when you've read half the string?

● NPDAs are more powerful than DPDAs.

Deterministic CFLs

● A context-free language L is called a
deterministic context-free language (DCFL) if
there is some DPDA that recognizes L.

● Not all CFLs are DCFLs, though many important
ones are.

● Balanced parentheses, most programming
languages, etc.

Regular
Languages CFLs DCFLsWhy are all regular

languages DCFLs?

Why are all regular
languages DCFLs?

Summary

● Automata can be augmented with a memory
storage to increase their power.

● PDAs are finite automata equipped with a
stack.

● PDAs accept precisely the context-free
languages:
● Any CFG can be converted to a PDA.
● Any PDA can be converted to a CFG.

● Deterministic PDAs are strictly weaker than
nondeterministic PDAs.

Next Time

● The Limits of CFLs
● A New Pumping Lemma
● Non-Closure Properties of CFLs

● Turing Machines
● An extremely powerful computing device...
● ...that is almost impossible to program.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223
	Slide 224
	Slide 225
	Slide 226
	Slide 227
	Slide 228
	Slide 229
	Slide 230
	Slide 231
	Slide 232
	Slide 233
	Slide 234
	Slide 235
	Slide 236
	Slide 237
	Slide 238
	Slide 239
	Slide 240
	Slide 241
	Slide 242
	Slide 243
	Slide 244
	Slide 245
	Slide 246
	Slide 247
	Slide 248
	Slide 249
	Slide 250
	Slide 251
	Slide 252
	Slide 253
	Slide 254
	Slide 255
	Slide 256
	Slide 257
	Slide 258
	Slide 259
	Slide 260
	Slide 261
	Slide 262
	Slide 263
	Slide 264
	Slide 265
	Slide 266
	Slide 267
	Slide 268
	Slide 269
	Slide 270
	Slide 271
	Slide 272
	Slide 273
	Slide 274
	Slide 275
	Slide 276
	Slide 277
	Slide 278
	Slide 279
	Slide 280
	Slide 281
	Slide 282
	Slide 283
	Slide 284
	Slide 285
	Slide 286
	Slide 287
	Slide 288
	Slide 289
	Slide 290
	Slide 291
	Slide 292
	Slide 293
	Slide 294
	Slide 295
	Slide 296
	Slide 297
	Slide 298
	Slide 299
	Slide 300
	Slide 301
	Slide 302
	Slide 303
	Slide 304
	Slide 305
	Slide 306
	Slide 307
	Slide 308
	Slide 309
	Slide 310
	Slide 311
	Slide 312
	Slide 313
	Slide 314
	Slide 315
	Slide 316
	Slide 317
	Slide 318
	Slide 319
	Slide 320
	Slide 321
	Slide 322
	Slide 323
	Slide 324
	Slide 325
	Slide 326
	Slide 327
	Slide 328
	Slide 329
	Slide 330
	Slide 331
	Slide 332
	Slide 333
	Slide 334
	Slide 335
	Slide 336
	Slide 337
	Slide 338
	Slide 339
	Slide 340
	Slide 341
	Slide 342
	Slide 343
	Slide 344
	Slide 345
	Slide 346
	Slide 347
	Slide 348
	Slide 349
	Slide 350
	Slide 351
	Slide 352
	Slide 353
	Slide 354
	Slide 355
	Slide 356
	Slide 357
	Slide 358
	Slide 359
	Slide 360
	Slide 361
	Slide 362
	Slide 363
	Slide 364
	Slide 365
	Slide 366
	Slide 367
	Slide 368
	Slide 369
	Slide 370
	Slide 371
	Slide 372
	Slide 373
	Slide 374
	Slide 375
	Slide 376
	Slide 377

