

Regular Expressions

and

The Limits of Regular Languages

Announcements

● Midterm tonight in Cubberly
Auditorium, 7PM – 10PM.
● Open-book, open-note, open-computer,

closed-network.
● Covers material up to and including last

Monday's lecture.

Regular Expressions

Atomic Regular Expressions

● The regular expressions begin with three
simple building blocks.

● The symbol Ø is a regular expression
that represents the empty language Ø.

● The symbol ε is a regular expression that
represents the language { ε }
● This is not the same as Ø!

● For any a ∈ Σ, the symbol a is a regular
expression for the language { a }

Compound Regular Expressions

● We can combine together existing regular expressions
in four ways.

● If R1 and R2 are regular expressions, R1R2 is a regular
expression represents the concatenation of the
languages of R1 and R2.

● If R1 and R2 are regular expressions, R1 | R2 is a
regular expression representing the union of R1 and
R2.

● If R is a regular expression, R* is a regular expression
for the Kleene closure of R.

● If R is a regular expression, (R) is a regular
expression with the same meaning as R.

Operator Precedence

● Regular expression operator precedence
is

(R)

R*

R1R2

R1 | R2

● So ab*c|d is parsed as ((a(b*))c)|d

Regular Expressions, Formally

● The language of a regular expression is the
language described by that regular expression.

● Formally:
● ℒ(ε) = {ε}
● ℒ(Ø) = Ø
● ℒ(a) = {a}

● ℒ(R1 R2) = (Rℒ 1) (Rℒ 2)

● ℒ(R1 | R2) = (Rℒ 1) ∪ (Rℒ 2)

● ℒ(R*) = (R)*ℒ
● ℒ((R)) = (R)ℒ

Regular Expressions are Awesome

● Let Σ = {0, 1}

● Let L = { w ∈ Σ* | w contains 00 as a
substring }

(0 | 1)*00(0 | 1)*

11011100101
0000

11111011110011111

Regular Expressions are Awesome

● Let Σ = {0, 1}

● Let L = { w ∈ Σ* | |w| = 4 }

(0|1)(0|1)(0|1)(0|1)

0000
1010
1111
1000

Regular Expressions are Awesome

● Let Σ = {0, 1}

● Let L = { w ∈ Σ* | |w| = 4 }

(0|1)4

0000
1010
1111
1000

Regular Expressions are Awesome

● Let Σ = {0, 1}

● Let L = { w ∈ Σ* | w contains at most one 0 }

Regular Expressions are Awesome

● Let Σ = {0, 1}

● Let L = { w ∈ Σ* | w contains at most one 0 }

1*(0 | ε)1*

11110111
111111
0111

0

Regular Expressions are Awesome

● Let Σ = {0, 1}

● Let L = { w ∈ Σ* | w contains at most one 0 }

1*0?1*

11110111
111111
0111

0

Regular Expressions are Awesome

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Regular expression for email addresses:

aa* (.aa*)* aa*.aa*@ (.aa*)*

cs103@cs.stanford.edu
first.middle.last@mail.site.org

barack.obama@whitehouse.gov

Regular Expressions are Awesome

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Regular expression for email addresses:

cs103@cs.stanford.edu
first.middle.last@mail.site.org

barack.obama@whitehouse.gov

a+(.a+)*@a+(.a+)+

Regular Expressions are Awesome

a+(.a+)*@a+(.a+)+

q
1

start
q

3
@

q
2

. a

q
0

a

 a a

q
5

. q
6

q
7

. a

 a

a

q
8

@, .

., @ @ @, .
 @

@, .

q
0

q
4

q
0

a

@, .
a, @, .

The Power of Regular Expressions

Theorem: If R is a regular expression,
then (ℒ R) is regular.

Proof idea: Induction over the structure
of regular expressions. Atomic regular
expressions are the base cases, and the
inductive step handles each way of
combining regular expressions.

Sketch of proof at the appendix of these
slides.

The Power of Regular Expressions

Theorem: If L is a regular language,
then there is a regular expression for L.

This is not obvious!

Proof idea: Show how to convert an
arbitrary NFA into a regular expression.

From NFAs to Regular Expressions

 s1 | s2 | … | sn

start

Regular expression: (s
1
 | s

2
 | … | s

n
)*

Key idea: Label
transitions with
arbitrary regular
expressions.

Key idea: Label
transitions with
arbitrary regular
expressions.

From NFAs to Regular Expressions

start

Regular expression: R

R

Key idea: If we can convert any
NFA into something that looks
like this, we can easily read off

the regular expression.

Key idea: If we can convert any
NFA into something that looks
like this, we can easily read off

the regular expression.

From NFAs to Regular Expressions

start

Regular expression: R

R

q
1

R
11

start q
2

R
22

R
12

R
21

q
2

From NFAs to Regular Expressions

start

Regular expression: R

R

q
1

start q
2

q
2

R
11

* R
12

 (R
22

 | R
21

R
11

*R
12

)*

From NFAs to Regular Expressions

q
1

start q
2

R
12

R
21

R
11

R
22

q
2

From NFAs to Regular Expressions

q
s

q
f

q
f

q
1

q
2

R
12

R
21

R
11

R
22

start ε ε

From NFAs to Regular Expressions

q
s

q
f

q
f

q
1

q
2

R
12

R
21

R
11

R
22

start ε ε

ε R
11

* R
12

Note: We're using
concatenation and

Kleene closure in order
to skip this state.

Note: We're using
concatenation and

Kleene closure in order
to skip this state.

From NFAs to Regular Expressions

q
s

q
f

q
f

q
1

q
2

R
12

R
21

R
11

R
22

start ε ε

ε R
11

* R
12

R
21

 R
11

* R
12

From NFAs to Regular Expressions

q
s

q
f

q
f

q
2

start ε

R
11

* R
12

R
22

 | R
21

 R
11

* R
12

Note: We're using union
to combine these

transitions together.

Note: We're using union
to combine these

transitions together.

From NFAs to Regular Expressions

q
s

q
f

q
f

q
2

start εR
11

* R
12

R
22

 | R
21

 R
11

* R
12

R
11

* R
12

 (R
22

 | R
21

R
11

*R
12

)* ε

From NFAs to Regular Expressions

q
s

q
f

q
f

start

R
11

* R
12

 (R
22

 | R
21

R
11

*R
12

)*

The Construction at a Glance

● Start with an NFA for the language L.

● Add a new start state qs and accept state qf to
the NFA.
● Add ε-transitions from each original accepting state

to qf, then mark them as not accepting.

● Repeatedly remove states other than qs and qf
from the NFA by “shortcutting” them until only
two states remain: qs and qf.

● The transition from qs to qf is then a regular
expression for the NFA.

There's another example!

Check the appendix to this slide deck.

Our Transformations

DFA NFA Regexp

direct conversion

subset construction

state elimination

recursive transform

Regular Languages

● A language L is regular iff
● L is accepted by some DFA.
● L is accepted by some NFA.
● L is described by some regular expression.

● What constructions on regular languages
can we do with regular expressions?

String Homomorphism

● Let Σ1 and Σ2 be alphabets.

● Consider any function h : Σ1 → Σ2* that
associates symbols in Σ1 with strings in Σ2*.

● For example:

● Σ1 = { 0, 1 }

● Σ2 = { 0, 1 }

● h(0) = ε

● h(1) = 1

String Homomorphism

● Given a function h : Σ1 → Σ2*, the function
h* : Σ1* → Σ2* is formed by applying h to
each character of a string w.

● This function is called a string
homomorphism.
● From Greek “same shape.”

String Homomorphism, Intuitively

● Example: Let Σ1 = { 0, 1, 2 } and consider the string
0121

● If Σ2 = {A, B, C, …, Z, a, b, …, z, ', [,], . }, define
h : Σ1 → Σ2* as

● h(0) = That's the way
● h(1) = [Uh huh uh huh]
● h(2) = I like it

● Then h*(0121) = That's the way [Uh huh uh huh]
I like it [Uh huh uh huh]

● Note that h*(0121) has the same structure as 0121,
just expressed differently.

Homomorphisms of Languages

● If L ⊆ Σ1* is a language and h* : Σ1* → Σ2*
is a homomorphism, the language h*(L)
is defined as

h*(L) = { h*(w) | w ∈ L }
● The language formed by applying the

homomorphism to every string in L.

Homomorphisms of Regular Languages

● Theorem: If L is a regular language over
Σ1 and h* : Σ1* → Σ2* is a homomorphism,
then h*(L) is a regular language.

● Proof sketch: Transform a regular
expression for L into a regular
expression for h*(L) by replacing all
characters in the regular expression with
the value of h applied to that character.

● Examples at the end of these slides.

The Big List of Closure Properties

● The regular languages are closed under
● Union
● Intersection
● Complement
● Concatenation
● Kleene Closure
● String Homomorphism
● Plus a whole lot more!

The Limits of Regular
Languages

Is every language regular?

An Important Observation

q
1

q
2

q
3

q
0

0

1 1

0 1

q
5

1

0

0

 0, 1

0, 1

q
4

start

0 1 1 0 1 1
q

0
q

1
q

2
q

3
q

1
q

2

1
q

4
q

3

An Important Observation

q
1

q
2

q
3

q
0

0

1 1

0 1

q
5

1

0

0

 0, 1

0, 1

q
4

start

0 1 1 0 1 1
q

0
q

1
q

2

11 1 0
q

3
q

1
q

2
q

4
q

3
q

1
q

2
q

3

Visiting Multiple States

● Let D be a DFA with n states.
● Any string w accepted by D that has length at least

n must visit some state twice.
● Number of states visited is equal to the length of the

string plus one.
● By the pigeonhole principle, some state is duplicated.

● The substring of w between those revisited states
can be removed, duplicated, tripled, etc. without
changing the fact that D accepts w.

Intuitively

x z

y

start

Informally

● Let L be a regular language.
● If we have a string w ∈ L that is

“sufficiently long,” then we can split the
string into three pieces and “pump” the
middle.

● We can write w = xyz such that xy0z, xy1z,
xy2z, …, xynz, … are all in L.
● Notation: yn means “n copies of y.”

The Weak Pumping Lemma

● The Weak Pumping Lemma for Regular
Languages states that

For any regular language L,

 There exists a positive natural number n such that

 For any w ∈ L with |w| ≥ n,

 There exists strings x, y, z such that

 For any natural number i,

 w = xyz,

 y ≠ ε

 xyiz ∈ L

This number n is
sometimes called the
pumping length.

This number n is
sometimes called the
pumping length.

The Weak Pumping Lemma

● The Weak Pumping Lemma for Regular
Languages states that

For any regular language L,

 There exists a positive natural number n such that

 For any w ∈ L with |w| ≥ n,

 There exists strings x, y, z such that

 For any natural number i,

 w = xyz,

 y ≠ ε

 xyiz ∈ L

Strings longer than
the pumping length
must have a special

property.

Strings longer than
the pumping length
must have a special

property.

The Weak Pumping Lemma

● The Weak Pumping Lemma for Regular
Languages states that

For any regular language L,

 There exists a positive natural number n such that

 For any w ∈ L with |w| ≥ n,

 There exists strings x, y, z such that

 For any natural number i,

 w = xyz,

 y ≠ ε

 xyiz ∈ L
where the middle piece can be
replicated zero or more times.

where the middle piece isn't empty,

w can be broken into three pieces,

The Weak Pumping Lemma

● Let Σ = {0, 1} and L = { w ∈ Σ* | w
contains 00 as a substring. }

● Any string of length 3 or greater can be
split into three pieces, the second of
which can be “pumped.”

The Weak Pumping Lemma

● Let Σ = {0, 1} and
L = { ε, 0, 1, 00, 01, 10, 11 }

● Any string of length 3 or greater can be
split into three pieces, the second of
which can be “pumped.”

The weak pumping lemma holds
for finite languages because
the pumping length can be

longer than the longest string!

The weak pumping lemma holds
for finite languages because
the pumping length can be

longer than the longest string!

Testing Equality

● The equality problem is defined as follows:

Given two strings x and y, decide if x = y.
● Let Σ = {0, 1, ?}. We can encode the

equality problem as a string of the form x?y.
● “Is 001 equal to 110 ?” would be 001?110
● “Is 11 equal to 11 ?” would be 11?11
● “Is 110 equal to 110 ?” would be 110?110

● Let EQUAL = { w?w | w ∈ {0, 1}* }

● Question: Is EQUAL a regular language?

What's Going On?

● The weak pumping lemma says that for
“sufficiently long” strings, we should be able
to pump some part of the string.

● We can't pump any part containing the ?,
because we can't duplicate or remove it.

● We can't pump just one part of the string,
because then the strings on opposite sides of
the ? wouldn't match.

● Can we formally show that EQUAL is not
regular?

Theorem: EQUAL is not regular.
Proof: By contradiction; assume that EQUAL is regular. Let n be the pumping

length guaranteed by the weak pumping lemma. Let w = 0n?0n. Then
w ∈ EQUAL and |w| = 2n + 1 ≥ n. Thus by the weak pumping lemma, we can
write w = xyz such that y ≠ ε and for any i ∈ ℕ, xyiz ∈ EQUAL. Then y cannot
contain ?, since otherwise if we let i = 0, then xyiz = xz does not contain ? and
would not be in EQUAL. So y is either completely to the left of the ? or
completely to the right of the ?. Let |y| = k, so k > 0. Since y is completely to
the left or right of the ?, then y = 0k. Now, we consider two cases:

Case 1: y is to the left of the ?. Then xy2z = 0n+k?0n ∉ EQUAL, contradicting the
weak pumping lemma.

Case 2: y is to the right of the ?. Then xy2z = 0n?0n+k ∉ EQUAL, contradicting
the weak pumping lemma.

In either case we reach a contradiction, so our assumption was wrong. Thus
EQUAL is not regular. ■

For any regular language L,
 There exists a positive natural number n such that
 For any w L with |w| ≥ n,∈
 There exists strings x, y, z such that
 For any natural number i,

 w = xyz,
 y ≠ ε
 xyiz L∈

Nonregular Languages

● The weak pumping lemma describes a
property common to all regular
languages.

● Any language L which does not have this
property cannot be regular.

● What other languages can we find that
are not regular?

A Canonical Nonregular Language

● Consider the language L = { 0n1n | n ∈ ℕ }.

L = { ε, 01, 0011, 000111, 00001111, … }

● L is a classic example of a nonregular
language.

● Intuitively: If you have only finitely many
states in a DFA, you can't “remember” an
arbitrary number of 0s.

● How would we prove that L is nonregular?

The Pumping Lemma as a Game

● The weak pumping lemma can be thought of as a game
between you and an adversary.

● You win if you can prove that the pumping lemma fails.

● The adversary wins if the adversary can make a choice
for which the pumping lemma succeeds.

● The game goes as follows:

● The adversary chooses a pumping length n.

● You choose a string w with |w| ≥ n and w ∈ L.

● The adversary breaks it into x, y, and z.

● You choose an i such that xyiz ∉ L (if you can't, you lose!)

The Pumping Lemma Game

ADVERSARY YOU

Maliciously choose
pumping length n.

Maliciously split
w = xyz, y ≠ ε

Cleverly choose a string
w L, |w| ≥ n∈

Cleverly choose i
 such that xyiz L∉

Grrr! Aaaargh!

Theorem: L = { 0n1n | n ∈ ℕ } is not regular.
Proof: By contradiction; assume L is regular. Let n be the

pumping length guaranteed by the weak pumping
lemma. Consider the string w = 0n1n. Then
|w| = 2n ≥ n and w ∈ L, so we can write w = xyz
such that y ≠ ε and for any i ∈ ℕ, we have xyiz ∈ L.
We consider three cases:

Case 1: y consists solely of 0s. Then
xy0z = xz = 0n - |y|1n, and since |y| > 0, xz ∉ L.

Case 2: y consists solely of 1s. Then
xy0z = xz = 0n1n - |y|, and since |y| > 0, xz ∉ L.

Case 3: y consists of k > 0 0s followed by m > 0
1s. Then xy2z has the form 0n1m0k1n, so
xy2z ∉ L.

In all three cases we reach a contradiction, so our
assumption was wrong and L is not regular. ■

Counting Symbols

● Consider the alphabet Σ = { 0, 1 } and the
language

BALANCE = { w ∈ Σ* | w contains an equal
number of 0s and 1s. }

● For example:
● 01 ∈ BALANCE

● 110010 ∈ BALANCE

● 11011 ∉ BALANCE

● Question: Is BALANCE a regular language?

An Incorrect Proof

Theorem: BALANCE is regular.

Proof: We show that BALANCE satisfies the
condition of the pumping lemma. Let n = 2
and consider any string w ∈ BALANCE such
that |w| ≥ 2. Then we can write w = xyz such
that x = z = ε and y = w, so y ≠ ε. Then for
any natural number i, xyiz = wi, which has the
same number of 0s and 1s. Since BALANCE
passes the conditions of the weak pumping
lemma, BALANCE is regular. ■

The Weak Pumping Lemma

● The Weak Pumping Lemma for Regular
Languages states that

For any regular language L,

 There exists a positive natural number n such that

 For any w ∈ L with |w| ≥ n,

 There exists strings x, y, z such that

 For any natural number i,

 w = xyz,

 y ≠ ε

 xyiz ∈ L
where the middle piece can be
replicated zero or more times.

where the middle piece isn't empty,

w can be broken into three pieces,

This says nothing about
languages that aren't regular!

This says nothing about
languages that aren't regular!

Caution with the Pumping Lemma

● The weak and full pumping lemmas describe a
necessary condition of regular languages.

● If L is regular, L passes the conditions of the
pumping lemma.

● The weak and full pumping lemmas are not a
sufficient condition of regular languages.

● If L is not regular, it still might pass the conditions
of the pumping lemma!

● If a language fails the pumping lemma, it is
definitely not regular.

● If a language passes the pumping lemma, we learn
nothing about whether it is regular or not.

BALANCE is Not Regular

● The language BALANCE can be proven
not to be regular using a stronger
version of the pumping lemma.

● To see the full pumping lemma, we need
to revisit our original insight.

An Important Observation

q
1

q
2

q
3

q
0

0

1 1

0 1

q
5

1

0

0

 0, 1

0, 1

q
4

start

0
q

0

1 1 0 1 1 0 1 1 0 1 1 1
q

1
q

2
q

3
q

2
q

4
q

3
q

1
q

2
q

3
q

1
q

2
q

3
q

1

Pumping Lemma Intuition

● Let D be a DFA with n states.
● Any string w accepted by D that has length at

least n must visit some state twice within its
first n characters.
● Number of states visited is equal n + 1.
● By the pigeonhole principle, some state is

duplicated.

● The substring of w in-between those revisited
states can be removed, duplicated, tripled,
quadrupled, etc. without changing the fact that
w is accepted by D.

The Pumping Lemma

For any regular language L,

 There exists a positive natural number n such that

 For any w ∈ L with |w| ≥ n,

 There exists strings x, y, z such that

 For any natural number i,

 w = xyz,

 |xy| ≤ n,

 y ≠ ε

 xyiz ∈ L where the middle piece can be
replicated zero or more times.

where the middle piece isn't empty,

w can be broken into three pieces,

where the first two pieces occur at
the start of the string,

Why This Change Matters

● The restriction |xy| ≤ n means that we
can limit where the string to pump must
be.

● If we specifically craft the first n
characters of the string to pump, we can
force y to have a specific property.

● We can then show that y cannot be
pumped arbitrarily many times.

Theorem: BALANCE is not regular.

Proof: By contradiction; assume that BALANCE is regular.
Let n be the length guaranteed by the pumping lemma.
Consider the string w = 0n1n. Then |w| = 2n ≥ n and
w ∈ BALANCE. Therefore, there exist strings x, y, and
z such that w = xyz, |xy| ≤ n, y ≠ ε, and for any natural
number i, xyiz ∈ BALANCE. Since |xy| ≤ n, y must
consist solely of 0s. But then xy2z = 0n+|y|1n, and since
|y| > 0, xy2z ∉ BALANCE.

We have reached a contradiction, so our assumption
was wrong and BALANCE is not regular. ■

Summary of the Pumping Lemma

● Using the pigeonhole principle, we can
prove the weak pumping lemma and
pumping lemma.

● These lemmas describe essential
properties of the regular languages.

● Any language that fails to have these
properties cannot be regular.

Next Time

● Beyond Regular Languages
● Context-free languages.
● Context-free grammars.

Appendix: From Regular Expressions to
NFAs

A Marvelous Construction

● To show that any language described by a regular
expression is regular, we show how to convert a
regular expression into an NFA.

● Theorem: For any regular expression R, there is an
NFA N such that

● ℒ(R) = (ℒ N)

● N has exactly one accepting state.

● N has no transitions into its start state.

● N has no transitions out of its accepting state.

start

Base Cases

εstart

Automaton for ε

astart

Automaton for single character a

start

Automaton for Ø

R
1

Construction for R1R2

R
2

start
ε

Construction for R1 | R2

R
2

R
1start

ε

ε

ε

ε

Construction for R*

R

start ε ε

ε

ε

Appendix: Homomorphisms of Regular
Languages

● Consider the language defined by the
regular expression (0120)* and the
function
● h(0) = n
● h(1) = y
● h(2) = a

● Then h*((0120)*) = ((n)(y)(a)(n))*

Homomorphisms of Regular Languages

● Consider the language 011* and the
function
● h(0) = Here
● h(1) = Kitty

● Then h*(011*) = (Here)(Kitty)(Kitty)*

Homomorphisms of Regular Languages

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80

