

Finite Automata
Part Three

Friday Four Square!
Today at 4:15PM, Outside Gates.

Announcements

● Problem Set 4 due right now.
● Problem Set 5 out, due next Friday,

November 2.
● Play around with finite automata and regular

languages.
● No checkpoint problems.

Midterm

● Midterm is next Monday, October 29 in
Cubberly Auditorium from 7PM –
10PM.

● Covers material up through and
including this Monday's lecture on finite
automata and DFAs.

● Review session this Saturday, October
27 in Gates 104 at 2PM.

Designing NFAs

NFAs

● An NFA is a
● Nondeterministic
● Finite
● Automaton

● Conceptually similar to a DFA, but equipped with
the vast power of nondeterminism.

● There can be many or no transitions defined on
certain inputs.

● An NFA accepts a string if any series of choices
causes the string to enter an accepting state.

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0

1 0

1

0 1

start Σ

Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }
a, b

a, c

b, c

start

ε

ε

ε

NFAs and DFAs

● Any language that can be accepted by a
DFA can be accepted by an NFA.

● Why?
● Just use the same set of transitions as

before.

● Question: Can any language accepted by
an NFA also be accepted by a DFA?

● Surprisingly, the answer is yes!

Simulation

● Simulation is a key technique in
computability theory.

● If we can build an automaton A' whose
behavior simulates that of another
automaton A, then we can make a
connection between A and A'.

● To show that any language accepted by an
NFA can be accepted by a DFA, we will
show how to make a DFA that simulates
the execution of an NFA.

Simulating an NFA with a DFA

q
1

q
0

start
q

2

q
3

0 1

ε

q
4

0 q
5

0 q
5

q
2

0

1

q
03

start
q

14

0

q

1

q
5

0

q
2

1

q
2

q
5

q
1

 0

1 0

q
3

 1

 0
1

q
4 0

 10
1

0, 1

The Subset Construction

● This construction for transforming an NFA into a DFA is
called the subset construction (or sometimes the
powerset construction).

● Intuitively:
● States of the new DFA correspond to sets of states of the NFA.
● The initial state is the start state, plus all states reachable from

the start state via ε-transitions.
● Transition on state S on character a is found by following all

possible transitions on a for each state in S, then taking the set
of states reachable from there by ε-transitions.

● Accepting states are any set of states where some state in the set
is an accepting state.

● Read Sipser for a formal account.

The Subset Construction

● In converting an NFA to a DFA, the DFA's
states correspond to sets of NFA states.

● Fact: |℘(S)| = 2 |S| for any finite set S.
● In the worst-case, the construction can

result in a DFA that is exponentially
larger than the original NFA.

● Interesting challenge: Find a language
for which this worst-case behavior occurs
(there are infinitely many of them!)

A language L is called a regular language
iff there exists a DFA D such that (ℒ D) = L.

An Important Result

Theorem: A language L is regular iff there
is some NFA N such that (ℒ N) = L.

Proof Sketch: If L is regular, there exists
some DFA for it, which we can easily
convert into an NFA. If L is accepted by
some NFA, we can use the subset
construction to convert it into a DFA that
accepts the same language, so L is
regular. ■

The Union of Two Languages

● If L1 and L2 are languages over the alphabet Σ, the
language L1 ∪ L2 is the language of all strings in at
least one of the two languages.

● If L1 and L2 are regular languages, is L1 ∪ L2?

start

ε

ε

L
1

L
2

● If L1 and L2 are languages over Σ, then
L1 ∩ L2 is the language of strings in both
L1 and L2.

● Question: If L1 and L2 are regular, is
L1 ∩ L2 regular as well?

L
1
 ∪ L

2

The Intersection of Two Languages

Concatenation

● The concatenation of two languages L1
and L2 over the alphabet Σ is the
language

L1 L2 = { wx ∈ Σ* | w ∈ L1 ∧ x ∈ L2 }

● The set of strings that can be split into
two pieces: a string from L1 and a string
from L2.

Concatenation Example

● Let Σ = { a, b, …, z, A, B, …, Z } and consider
these languages over Σ:
● Noun = { Velociraptor, Rainbow, Whale, … }

● Verb = { Eats, Juggles, Loves, … }

● The = { The }

● The language TheNounVerbTheNoun is

{ TheVelociraptorEatsTheWhale,
 TheWhaleLovesTheRainbow,
 TheRainbowJugglesTheRainbow, … }

Concatenating Regular Languages

● If L1 and L2 are regular languages, is L1L2?

● Intuition – can we split a string w into two strings
xy such at x ∈ L1 and y ∈ L2?

● Idea: Run the automaton for L1 on w, and
whenever L1 reaches an accepting state,
optionally hand the rest off w to L2.

● If L2 accepts the remainder, then L1 accepted the first
part and the string is in L1L2.

● If L2 rejects the remainder, then the split was
incorrect.

Concatenating Regular Languages

start

ε

ε

ε

start

Lots and Lots of Concatenation

● Consider the language L = { aa, b }

● LL is the set of strings formed by concatenating pairs
of strings in L.
● { aaaa, aab, baa, bb }

● LLL is the set of strings formed by concatenating
triples of strings in L.
● { aaaaaa, aaaab, aabaa, aabb, baaaa, baab, bbaa, bbb}

● LLLL is the set of strings formed by concatenating
quadruples of strings in L.
● { aaaaaaaa, aaaaaab, aaaabaa, aaaabb, aabaaaa, aabaab,
aabbaa, aabbb, baaaaaa, baaaab, baabaa, baabb, bbaaaa,
bbaab, bbbaa, bbbb}

Language Exponentiation

● We can define what it means to
“exponentiate” a language as follows:

● L0 = { ε }
● The set containing just the empty string.
● Idea: Any string formed by concatenating zero

strings together is the empty string.

● Ln + 1 = LLn

● Idea: Concatenating (n + 1) strings together
works by concatenating n strings, then
concatenating one more.

The Kleene Closure

● An important operation on languages is
the Kleene Closure, which is defined as

● Intuitively, all possible ways of
concatenating any number of copies of
strings in L together.

∪
i = 0

∞
Li L* =

The Kleene Closure

If L = { a, bb }, then L* = {

ε,

a, bb,

aa, abb, bba, bbbb,

aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb,

…

}

Reasoning about Infinity

● How do we prove properties of this
infinite union?

● A Bad Line of Reasoning:
● L0 = { ε } is regular.
● L1 = L is regular.
● L2 = LL is regular
● L3 = L(LL) is regular
● …
● So their infinite union is regular.

Reasoning about Infinity

x

x

Reasoning about Infinity

x

x

Reasoning About the Infinite

● If a series of finite objects all have some
property, their infinite union does not
necessarily have that property!
● No matter how many times we zigzag that line, it's

never straight.
● Concluding that it must be equal “in the limit” is

not mathematically precise.
● (This is why calculus is interesting).

● A better intuition: Can we convert an NFA
for the language L to an NFA for the language
L*?

The Kleene Star

εstart

ε

ε

Summary

● NFAs are a powerful type of automaton that allows
for nondeterministic choices.

● NFAs can also have ε-transitions that move from
state to state without consuming any input.

● The subset construction shows that NFAs are
not more powerful than DFAs, because any NFA
can be converted into a DFA that accepts the same
language.

● The union, intersection, difference, complement,
concatenation, and Kleene closure of regular
languages are all regular languages.

Another View of Regular Languages

Rethinking Regular Languages

● We currently have several tools for
showing a language is regular.
● Construct a DFA for it.
● Construct an NFA for it.
● Apply closure properties to existing

languages.

● We have not spoken much of this last
idea.

Constructing Regular Languages

● Idea: Build up all regular languages as
follows:
● Start with a small set of simple languages we

already know to be regular.
● Using closure properties, combine these

simple languages together to form more
elaborate languages.

● A bottom-up approach to the regular
languages.

Regular Expressions

● Regular expressions are a family of
descriptions that can be used to capture
the regular languages.

● Often provide a compact and human-
readable description of the language.

● Used as the basis for numerous software
systems (Perl, flex, grep, etc.)

Atomic Regular Expressions

● The regular expressions begin with three
simple building blocks.

● The symbol Ø is a regular expression
that represents the empty language Ø.

● The symbol ε is a regular expression that
represents the language { ε }
● This is not the same as Ø!

● For any a ∈ Σ, the symbol a is a regular
expression for the language { a }

Compound Regular Expressions

● We can combine together existing regular expressions
in four ways.

● If R1 and R2 are regular expressions, R1R2 is a regular
expression represents the concatenation of the
languages of R1 and R2.

● If R1 and R2 are regular expressions, R1 | R2 is a
regular expression representing the union of R1 and
R2.

● If R is a regular expression, R* is a regular expression
for the Kleene closure of R.

● If R is a regular expression, (R) is a regular
expression with the same meaning as R.

Operator Precedence

● Regular expression operator precedence
is

(R)

R*

R1R2

R1 | R2

● So ab*c|d is parsed as ((a(b*))c)|d

Regular Expression Examples

● The regular expression trick|treat
represents the regular language { trick,
treat }

● The regular expression booo* represents
the regular language { boo, booo, boooo,
… }

● The regular expression candy!(candy!)*
represents the regular language { candy!,
candy!candy!, candy!candy!candy!, … }

Regular Expressions, Formally

● The language of a regular expression is the
language described by that regular expression.

● Formally:
● ℒ(ε) = {ε}
● ℒ(Ø) = Ø
● ℒ(a) = {a}

● ℒ(R1 R2) = (Rℒ 1) (Rℒ 2)

● ℒ(R1 | R2) = (Rℒ 1) ∪ (Rℒ 2)

● ℒ(R*) = (R)*ℒ
● ℒ((R)) = (R)ℒ

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

