
  

Finite Automata
Part Three



  

Friday Four Square!
Today at 4:15PM, Outside Gates.



  

Announcements

● Problem Set 4 due right now.
● Problem Set 5 out, due next Friday, 

November 2.
● Play around with finite automata and regular 

languages.
● No checkpoint problems.  



  



  

Midterm

● Midterm is next Monday, October 29 in 
Cubberly Auditorium from 7PM – 
10PM.

● Covers material up through and 
including this Monday's lecture on finite 
automata and DFAs.

● Review session this Saturday, October 
27 in Gates 104 at 2PM.



  

Designing NFAs



  

NFAs

● An NFA is a
● Nondeterministic
● Finite
● Automaton

● Conceptually similar to a DFA, but equipped with 
the vast power of nondeterminism.

● There can be many or no transitions defined on 
certain inputs.

● An NFA accepts a string if any series of choices 
causes the string to enter an accepting state.



  

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }
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Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }
a, b
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NFAs and DFAs

● Any language that can be accepted by a 
DFA can be accepted by an NFA.

● Why?
● Just use the same set of transitions as 

before.

● Question: Can any language accepted by 
an NFA also be accepted by a DFA?

● Surprisingly, the answer is yes!



  

Simulation

● Simulation is a key technique in 
computability theory.

● If we can build an automaton A' whose 
behavior simulates that of another 
automaton A, then we can make a 
connection between A and A'.

● To show that any language accepted by an 
NFA can be accepted by a DFA, we will 
show how to make a DFA that simulates 
the execution of an NFA.



  

Simulating an NFA with a DFA

q
1

q
0

start
q

2

q
3

0 1

ε    

q
4

0 q
5

0 q
5

q
2

0

1

q
03

start
q

14

0

q

1       

q
5

0                                  

q
2

1    

q
2

q
5

q
1

    0

1 0

q
3

     1
  

    0
1    

q
4 0

               10             
1    

0, 1      



  

The Subset Construction

● This construction for transforming an NFA into a DFA is 
called the subset construction (or sometimes the 
powerset construction).

● Intuitively:
● States of the new DFA correspond to sets of states of the NFA.
● The initial state is the start state, plus all states reachable from 

the start state via ε-transitions.
● Transition on state S on character a is found by following all 

possible transitions on a for each state in S, then taking the set 
of states reachable from there by ε-transitions.

● Accepting states are any set of states where some state in the set 
is an accepting state.

● Read Sipser for a formal account.



  

The Subset Construction

● In converting an NFA to a DFA, the DFA's 
states correspond to sets of NFA states.

● Fact: |℘(S)| = 2 |S| for any finite set S.
● In the worst-case, the construction can 

result in a DFA that is exponentially 
larger than the original NFA.

● Interesting challenge: Find a language 
for which this worst-case behavior occurs 
(there are infinitely many of them!)



  

A language L is called a regular language 
iff there exists a DFA D such that (ℒ D) = L.



  

An Important Result

Theorem: A language L is regular iff there
is some NFA N such that (ℒ N) = L.

Proof Sketch: If L is regular, there exists
some DFA for it, which we can easily 
convert into an NFA.  If L is accepted by
some NFA, we can use the subset
construction to convert it into a DFA that
accepts the same language, so L is
regular. ■



  

The Union of Two Languages

● If L1 and L2 are languages over the alphabet Σ, the 
language L1 ∪ L2 is the language of all strings in at 
least one of the two languages.

● If L1 and L2 are regular languages, is L1 ∪ L2?
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● If L1 and L2 are languages over Σ, then 
L1 ∩ L2 is the language of strings in both 
L1 and L2.

● Question: If L1 and L2 are regular, is 
L1 ∩ L2 regular as well?

L
1
  ∪ L

2

The Intersection of Two Languages



  

Concatenation

● The concatenation of two languages L1 
and L2 over the alphabet Σ is the 
language

L1 L2 = { wx ∈ Σ* | w ∈ L1 ∧ x ∈ L2 }

● The set of strings that can be split into 
two pieces: a string from L1 and a string 
from L2.



  

Concatenation Example

● Let Σ = { a, b, …, z, A, B, …, Z } and consider 
these languages over Σ:
● Noun = { Velociraptor, Rainbow, Whale, … }

● Verb = { Eats, Juggles, Loves, … }

● The = { The }

● The language TheNounVerbTheNoun is

{ TheVelociraptorEatsTheWhale,
  TheWhaleLovesTheRainbow,
  TheRainbowJugglesTheRainbow, … }



  

Concatenating Regular Languages

● If L1 and L2 are regular languages, is L1L2?

● Intuition – can we split a string w into two strings 
xy such at x ∈ L1 and y ∈ L2?

● Idea: Run the automaton for L1 on w, and 
whenever L1 reaches an accepting state, 
optionally hand the rest off w to L2.

● If L2 accepts the remainder, then L1 accepted the first 
part and the string is in L1L2.

● If L2 rejects the remainder, then the split was 
incorrect.



  

Concatenating Regular Languages
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Lots and Lots of Concatenation

● Consider the language L = { aa, b }

● LL is the set of strings formed by concatenating pairs 
of strings in L.
● { aaaa, aab, baa, bb }

● LLL is the set of strings formed by concatenating 
triples of strings in L.
● { aaaaaa, aaaab, aabaa, aabb, baaaa, baab, bbaa, bbb}

● LLLL is the set of strings formed by concatenating 
quadruples of strings in L.
● { aaaaaaaa, aaaaaab, aaaabaa, aaaabb, aabaaaa, aabaab, 
aabbaa, aabbb, baaaaaa, baaaab, baabaa, baabb, bbaaaa, 
bbaab, bbbaa, bbbb}



  

Language Exponentiation

● We can define what it means to 
“exponentiate” a language as follows:

● L0 = { ε }
● The set containing just the empty string.
● Idea: Any string formed by concatenating zero 

strings together is the empty string.

● Ln + 1 = LLn

● Idea: Concatenating (n + 1) strings together 
works by concatenating n strings, then 
concatenating one more.



  

The Kleene Closure

● An important operation on languages is 
the Kleene Closure, which is defined as

● Intuitively, all possible ways of 
concatenating any number of copies of 
strings in L together.

∪
i = 0

∞
Li L* =



  

The Kleene Closure

If L = { a, bb }, then L* = {

ε,

a, bb,

aa, abb, bba, bbbb,

aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb,

…

}



  

Reasoning about Infinity

● How do we prove properties of this 
infinite union?

● A Bad Line of Reasoning:
● L0 = { ε } is regular.
● L1 = L is regular.
● L2 = LL is regular
● L3 = L(LL) is regular
● …
● So their infinite union is regular.



  

Reasoning about Infinity
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Reasoning about Infinity
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Reasoning About the Infinite

● If a series of finite objects all have some 
property, their infinite union does not 
necessarily have that property!
● No matter how many times we zigzag that line, it's 

never straight.
● Concluding that it must be equal “in the limit” is 

not mathematically precise.
● (This is why calculus is interesting).

● A better intuition: Can we convert an NFA 
for the language L to an NFA for the language 
L*?



  

The Kleene Star
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Summary

● NFAs are a powerful type of automaton that allows 
for nondeterministic choices.

● NFAs can also have ε-transitions that move from 
state to state without consuming any input.

● The subset construction shows that NFAs are 
not more powerful than DFAs, because any NFA 
can be converted into a DFA that accepts the same 
language.

● The union, intersection, difference, complement, 
concatenation, and Kleene closure of regular 
languages are all regular languages.



  

Another View of Regular Languages



  

Rethinking Regular Languages

● We currently have several tools for 
showing a language is regular.
● Construct a DFA for it.
● Construct an NFA for it.
● Apply closure properties to existing 

languages.

● We have not spoken much of this last 
idea.



  

Constructing Regular Languages

● Idea: Build up all regular languages as 
follows:
● Start with a small set of simple languages we 

already know to be regular.
● Using closure properties, combine these 

simple languages together to form more 
elaborate languages.

● A bottom-up approach to the regular 
languages.



  

Regular Expressions

● Regular expressions are a family of 
descriptions that can be used to capture 
the regular languages.

● Often provide a compact and human-
readable description of the language.

● Used as the basis for numerous software 
systems (Perl, flex, grep, etc.)



  

Atomic Regular Expressions

● The regular expressions begin with three 
simple building blocks.

● The symbol Ø is a regular expression 
that represents the empty language Ø.

● The symbol ε is a regular expression that 
represents the language { ε }
● This is not the same as Ø!

● For any a ∈ Σ, the symbol a is a regular 
expression for the language { a }



  

Compound Regular Expressions

● We can combine together existing regular expressions 
in four ways.

● If R1 and R2 are regular expressions, R1R2 is a regular 
expression represents the concatenation of the 
languages of R1 and R2.

● If R1 and R2 are regular expressions, R1 | R2 is a 
regular expression representing the union of R1 and 
R2.

● If R is a regular expression, R* is a regular expression 
for the Kleene closure of R.

● If R is a regular expression, (R) is a regular 
expression with the same meaning as R.



  

Operator Precedence

● Regular expression operator precedence 
is

(R)

R*

R1R2

R1 | R2 

● So ab*c|d is parsed as ((a(b*))c)|d



  

Regular Expression Examples

● The regular expression trick|treat 
represents the regular language { trick, 
treat }

● The regular expression booo* represents 
the regular language { boo, booo, boooo, 
… }

● The regular expression candy!(candy!)* 
represents the regular language { candy!, 
candy!candy!, candy!candy!candy!, … }



  

Regular Expressions, Formally

● The language of a regular expression is the 
language described by that regular expression.

● Formally:
● ℒ(ε) = {ε}
● ℒ(Ø) = Ø
● ℒ(a) = {a}

● ℒ(R1 R2) = (Rℒ 1) (Rℒ 2)

● ℒ(R1 | R2) = (Rℒ 1) ∪ (Rℒ 2)

● ℒ(R*) = (R)*ℒ
● ℒ((R)) = (R)ℒ
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