Finite Automata Part Three

Friday Four Square! Today at 4:15PM, Outside Gates.

Announcements

- Problem Set 4 due right now.
- Problem Set 5 out, due next Friday, November 2.
- Play around with finite automata and regular languages.
- No checkpoint problems.

Midterm

- Midterm is next Monday, October 29 in Cubberly Auditorium from 7PM 10PM.
- Covers material up through and including this Monday's lecture on finite automata and DFAs.
- Review session this Saturday, October 27 in Gates 104 at 2PM.

Designing NFAs

NFAs

- An NFA is a
- Nondeterministic
- Finite
- Automaton
- Conceptually similar to a DFA, but equipped with the vast power of nondeterminism.
- There can be many or no transitions defined on certain inputs.
- An NFA accepts a string if any series of choices causes the string to enter an accepting state.

Guess-and-Check

$$
L=\left\{w \in\{0,1\}^{*} \mid w \text { ends in } 010 \text { or } 101\right\}
$$

Guess-and-Check

$L=\left\{w \in\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}^{*} \mid\right.$ at least one of \mathbf{a}, \mathbf{b}, or \mathbf{c} is not in $\left.w\right\}$ a, b

ε

NFAs and DFAs

- Any language that can be accepted by a DFA can be accepted by an NFA.
- Why?
- Just use the same set of transitions as before.
- Question: Can any language accepted by an NFA also be accepted by a DFA?
- Surprisingly, the answer is yes!

Simulation

- Simulation is a key technique in computability theory.
- If we can build an automaton A^{\prime} whose behavior simulates that of another automaton A, then we can make a connection between A and A^{\prime}.
- To show that any language accepted by an NFA can be accepted by a DFA, we will show how to make a DFA that simulates the execution of an NFA.

Simulating an NFA with a DFA

The Subset Construction

- This construction for transforming an NFA into a DFA is called the subset construction (or sometimes the powerset construction).
- Intuitively:
- States of the new DFA correspond to sets of states of the NFA.
- The initial state is the start state, plus all states reachable from the start state via ε-transitions.
- Transition on state S on character a is found by following all possible transitions on a for each state in S, then taking the set of states reachable from there by ε-transitions.
- Accepting states are any set of states where some state in the set is an accepting state.
- Read Sipser for a formal account.

The Subset Construction

- In converting an NFA to a DFA, the DFA's states correspond to sets of NFA states.
- Fact: $|\wp(S)|=2{ }^{\mid[\mid}$for any finite set S.
- In the worst-case, the construction can result in a DFA that is exponentially larger than the original NFA.
- Interesting challenge: Find a language for which this worst-case behavior occurs (there are infinitely many of them!)

A language L is called a regular language iff there exists a DFA D such that $\mathscr{L}(D)=L$.

An Important Result

Theorem: A language L is regular iff there is some NFA N such that $\mathscr{L}(N)=L$.

Proof Sketch: If L is regular, there exists some DFA for it, which we can easily convert into an NFA. If L is accepted by some NFA, we can use the subset construction to convert it into a DFA that accepts the same language, so L is regular.

The Union of Two Languages

- If L_{1} and L_{2} are languages over the alphabet Σ, the language $L_{1} \cup L_{2}$ is the language of all strings in at least one of the two languages.
- If L_{1} and L_{2} are regular languages, is $L_{1} \cup L_{2}$?

The Intersection of Two Languages

- If L_{1} and L_{2} are languages over Σ, then $L_{1} \cap L_{2}$ is the language of strings in both L_{1} and L_{2}.
- Question: If L_{1} and L_{2} are regular, is $L_{1} \cap L_{2}$ regular as well?

$$
\overline{\overline{\mathrm{L}}_{1} \cup \overline{\mathrm{~L}}_{2}}
$$

Concatenation

- The concatenation of two languages L_{1} and L_{2} over the alphabet Σ is the language

$$
L_{1} L_{2}=\left\{w x \in \Sigma^{*} \mid w \in L_{1} \wedge x \in L_{2}\right\}
$$

- The set of strings that can be split into two pieces: a string from L_{1} and a string from L_{2}.

Concatenation Example

- Let $\Sigma=\{\mathbf{a}, \mathrm{b}, \ldots, \mathbf{z}, \mathrm{A}, \mathrm{B}, \ldots, \mathrm{z}\}$ and consider these languages over Σ :
- Noun $=$ \{ Velociraptor, Rainbow, Whale, ... \}
- Verb $=\{$ Eats, Juggles, Loves, ... \}
- The = \{ The \}
- The language TheNounVerbTheNoun is
\{ TheVelociraptorEatsTheWhale,
TheWhaleLovesTheRainbow, TheRainbowJugglesTheRainbow, ... \}

Concatenating Regular Languages

- If L_{1} and L_{2} are regular languages, is $L_{1} L_{2}$?
- Intuition - can we split a string w into two strings $x y$ such at $x \in L_{1}$ and $y \in L_{2}$?
- Idea: Run the automaton for L_{1} on w, and whenever L_{1} reaches an accepting state, optionally hand the rest off w to L_{2}.
- If L_{2} accepts the remainder, then L_{1} accepted the first part and the string is in $L_{1} L_{2}$.
- If L_{2} rejects the remainder, then the split was incorrect.

Concatenating Regular Languages

Lots and Lots of Concatenation

- Consider the language $L=\{$ aa, b $\}$
- $L L$ is the set of strings formed by concatenating pairs of strings in L.
- \{ aaaa, aab, baa, bb \}
- LLL is the set of strings formed by concatenating triples of strings in L.
- \{ aaaaaa, aaaab, aabaa, aabb, baaaa, baab, bbaa, bbb\}
- LLLL is the set of strings formed by concatenating quadruples of strings in L.
- \{ aaaaaaaa, aaaaaab, aaaabaa, aaaabb, aabaaaa, aabaab, aabbaa, aabbb, baaaaaa, baaaab, baabaa, baabb, bbaaaa, bbaab, bbbaa, bbbb\}

Language Exponentiation

- We can define what it means to "exponentiate" a language as follows:
- $L^{0}=\{\varepsilon\}$
- The set containing just the empty string.
- Idea: Any string formed by concatenating zero strings together is the empty string.
- $L^{n+1}=L L^{n}$
- Idea: Concatenating ($n+1$) strings together works by concatenating n strings, then concatenating one more.

The Kleene Closure

- An important operation on languages is the Kleene Closure, which is defined as

$$
L^{*}=\bigcup_{i=0}^{\infty} L^{i}
$$

- Intuitively, all possible ways of concatenating any number of copies of strings in L together.

The Kleene Closure

If $L=\{\mathrm{a}, \mathrm{bb}\}$, then $L^{*}=\{$

$$
\varepsilon,
$$

a, bb,
aa, abb, bba, bbbb,
aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb,

Reasoning about Infinity

- How do we prove properties of this infinite union?
- A Bad Line of Reasoning:
- $L^{0}=\{\varepsilon\}$ is regular.
- $L^{1}=L$ is regular.
- $L^{2}=L L$ is regular
- $L^{3}=L(L L)$ is regular
- So their infinite union is regular.

Reasoning about Infinity

Reasoning about Infinity

Reasoning About the Infinite

- If a series of finite objects all have some property, their infinite union does not necessarily have that property!
- No matter how many times we zigzag that line, it's never straight.
- Concluding that it must be equal "in the limit" is not mathematically precise.
- (This is why calculus is interesting).
- A better intuition: Can we convert an NFA for the language L to an NFA for the language L^{*} ?

The Kleene Star

Summary

- NFAs are a powerful type of automaton that allows for nondeterministic choices.
- NFAs can also have $\boldsymbol{\varepsilon}$-transitions that move from state to state without consuming any input.
- The subset construction shows that NFAs are not more powerful than DFAs, because any NFA can be converted into a DFA that accepts the same language.
- The union, intersection, difference, complement, concatenation, and Kleene closure of regular languages are all regular languages.

Another View of Regular Languages

Rethinking Regular Languages

- We currently have several tools for showing a language is regular.
- Construct a DFA for it.
- Construct an NFA for it.
- Apply closure properties to existing languages.
- We have not spoken much of this last idea.

Constructing Regular Languages

- Idea: Build up all regular languages as follows:
- Start with a small set of simple languages we already know to be regular.
- Using closure properties, combine these simple languages together to form more elaborate languages.
- A bottom-up approach to the regular languages.

Regular Expressions

- Regular expressions are a family of descriptions that can be used to capture the regular languages.
- Often provide a compact and humanreadable description of the language.
- Used as the basis for numerous software systems (Perl, flex, grep, etc.)

Atomic Regular Expressions

- The regular expressions begin with three simple building blocks.
- The symbol Ø is a regular expression that represents the empty language \varnothing.
- The symbol $\boldsymbol{\varepsilon}$ is a regular expression that represents the language $\{\varepsilon\}$
- This is not the same as Ø!
- For any a $\in \Sigma$, the symbol a is a regular expression for the language \{ a \}

Compound Regular Expressions

- We can combine together existing regular expressions in four ways.
- If R_{1} and R_{2} are regular expressions, $\boldsymbol{R}_{\mathbf{1}} \boldsymbol{R}_{2}$ is a regular expression represents the concatenation of the languages of R_{1} and R_{2}.
- If R_{1} and R_{2} are regular expressions, $\boldsymbol{R}_{\mathbf{1}} \mid \boldsymbol{R}_{2}$ is a regular expression representing the union of R_{1} and R_{2}.
- If R is a regular expression, \boldsymbol{R}^{*} is a regular expression for the Kleene closure of R.
- If R is a regular expression, (\boldsymbol{R}) is a regular expression with the same meaning as R.

Operator Precedence

- Regular expression operator precedence is

$$
\begin{gathered}
(R) \\
R^{*} \\
R_{1} R_{2} \\
R_{1} \mid R_{2}
\end{gathered}
$$

- So $a b * c \mid d$ is parsed as $((a(b *)) c) \mid d$

Regular Expression Examples

- The regular expression trick|treat represents the regular language \{ trick, treat \}
- The regular expression booo* represents the regular language \{ boo, booo, boooo, ... \}
- The regular expression candy!(candy!)* represents the regular language \{ candy!, candy!candy!, candy!candy!candy!, ... \}

Regular Expressions, Formally

- The language of a regular expression is the language described by that regular expression.
- Formally:
- $\mathscr{L}(\varepsilon)=\{\varepsilon\}$
- $\mathscr{D}(\varnothing)=\varnothing$
- $\mathscr{A}(\mathrm{a})=\{\mathrm{a}\}$
- $\mathscr{L}\left(\mathrm{R}_{1} \mathrm{R}_{2}\right)=\mathscr{L}\left(\mathrm{R}_{1}\right) \mathscr{L}\left(\mathrm{R}_{2}\right)$
- $\mathscr{L}\left(\mathrm{R}_{1} \mid \mathrm{R}_{2}\right)=\mathscr{L}\left(\mathrm{R}_{1}\right) \cup \mathscr{L}\left(\mathrm{R}_{2}\right)$
- $\mathscr{L}\left(\mathrm{R}^{*}\right)=\mathscr{L}(\mathrm{R})^{*}$
- $\mathscr{L}(\mathrm{R}))=\mathscr{L}(\mathrm{R})$

