

Finite Automata
Part Three

Friday Four Square!
Today at 4:15PM, Outside Gates.

Announcements

● Problem Set 4 due right now.
● Problem Set 5 out, due next Friday,

November 2.
● Play around with finite automata and regular

languages.
● No checkpoint problems.

Midterm

● Midterm is next Monday, October 29 in
Cubberly Auditorium from 7PM –
10PM.

● Covers material up through and
including this Monday's lecture on finite
automata and DFAs.

● Review session this Saturday, October
27 in Gates 104 at 2PM.

Designing NFAs

NFAs

● An NFA is a
● Nondeterministic
● Finite
● Automaton

● Conceptually similar to a DFA, but equipped with
the vast power of nondeterminism.

● There can be many or no transitions defined on
certain inputs.

● An NFA accepts a string if any series of choices
causes the string to enter an accepting state.

Perfect Guessing

q
0

start
q

1
q

2

q
3

0 1

1

q
4

0

 1

q
5

0

0, 1

q
5

q
2

Perfect Guessing

q
0

start
q

1
q

2

q
3

0 1

1

q
4

0

 1

q
5

0

0, 1

q
5

q
2

0 1 0 1 0

Perfect Guessing

q
0

start
q

1
q

2

q
3

0 1

1

q
4

0

 1

q
5

0

0, 1

q
5

q
2

0 1 0 1 0

Perfect Guessing

q
0

start
q

1
q

2

q
3

0 1

1

q
4

0

 1

q
5

0

0, 1

q
5

q
2

0 1 0 1 0

Perfect Guessing

q
0

start
q

1
q

2

q
3

0 1

1

q
4

0

 1

q
5

0

0, 1

q
5

q
2

0 1 0 1 0

Perfect Guessing

q
0

start
q

1
q

2

q
3

0 1

1

q
4

0

 1

q
5

0

0, 1

q
5

q
2

0 1 0 1 0

Perfect Guessing

q
0

start
q

1
q

2

q
3

0 1

1

q
4

0

 1

q
5

0

0, 1

q
5

q
2

0 1 0 1 0

Perfect Guessing

q
0

start
q

1
q

2

q
3

0 1

1

q
4

0

 1

q
5

0

0, 1

q
5

q
2

0 1 0 1 0

Perfect Guessing

q
0

start
q

1
q

2

q
3

0 1

1

q
4

0

 1

q
5

0

0, 1

q
5

q
2

0 1 0 1 0

Perfect Guessing

q
0

start
q

1
q

2

q
3

0 1

1

q
4

0

 1

q
5

0

0, 1

q
5

q
2

0 1 0 1 0

Perfect Guessing

q
0

start
q

1
q

2

q
3

0 1

1

q
4

0

 1

q
5

0

0, 1

q
5

q
2

0 1 0 1 0

Perfect Guessing

q
0

start
q

1
q

2

q
3

0 1

1

q
4

0

 1

q
5

0

0, 1

q
5

q
2

0 1 0 1 0

Perfect Guessing

q
0

start
q

1
q

2

q
3

0 1

1

q
4

0

 1

q
5

0

0, 1

q
5

q
2

0 1 0 1 0

Designing NFAs

● When designing NFAs, embrace the
nondeterminism!

● Good model: Guess-and-check:
● Have the machine nondeterministically

guess what the right choice is.
● Have the machine deterministically check

that the choice was correct.

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0

1 0
0

 1

1

0 1
 1

0

0 1

0

1

 0

1

start

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

start

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0

1 0

start

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0

1 0

1

0 1

start

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0

1 0

1

0 1

start Σ

Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }

Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }

a

b

c

a

b

a, b

c
 a

c

b

c

c

a

b

a, c

b, c

b

a

 Σstart

Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }

Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }
a, b

Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }
a, b

a, c

Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }
a, b

a, c

b, c

Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }
a, b

a, c

b, c

start

Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }
a, b

a, c

b, c

start

ε

ε

ε

NFAs and DFAs

● Any language that can be accepted by a
DFA can be accepted by an NFA.

● Why?
● Just use the same set of transitions as

before.

● Question: Can any language accepted by
an NFA also be accepted by a DFA?

● Surprisingly, the answer is yes!

Simulation

● Simulation is a key technique in
computability theory.

● If we can build an automaton A' whose
behavior simulates that of another
automaton A, then we can make a
connection between A and A'.

● To show that any language accepted by an
NFA can be accepted by a DFA, we will
show how to make a DFA that simulates
the execution of an NFA.

Simulating an NFA with a DFA

q
1

q
0

start
q

2

q
3

0 1

ε

q
4

0 q
5

0 q
5

q
2

0

1

Simulating an NFA with a DFA

q
1

q
0

start
q

2

q
3

0 1

ε

q
4

0 q
5

0 q
5

q
2

0

1

Simulating an NFA with a DFA

q
1

q
0

start
q

2

q
3

0 1

ε

q
4

0 q
5

0 q
5

q
2

0

1

q
03

start

Simulating an NFA with a DFA

q
1

q
0

start
q

2

q
3

0 1

ε

q
4

0 q
5

0 q
5

q
2

0

1

q
03

start
q

14

0

Simulating an NFA with a DFA

q
1

q
0

start
q

2

q
3

0 1

ε

q
4

0 q
5

0 q
5

q
2

0

1

q
03

start
q

14

0

q

1

Simulating an NFA with a DFA

q
1

q
0

start
q

2

q
3

0 1

ε

q
4

0 q
5

0 q
5

q
2

0

1

q
03

start
q

14

0

q

1

Simulating an NFA with a DFA

q
1

q
0

start
q

2

q
3

0 1

ε

q
4

0 q
5

0 q
5

q
2

0

1

q
03

start
q

14

0

q

1

Simulating an NFA with a DFA

q
1

q
0

start
q

2

q
3

0 1

ε

q
4

0 q
5

0 q
5

q
2

0

1

q
03

start
q

14

0

q

1

q
5

0

Simulating an NFA with a DFA

q
1

q
0

start
q

2

q
3

0 1

ε

q
4

0 q
5

0 q
5

q
2

0

1

q
03

start
q

14

0

q

1

q
5

0

q
2

1

Simulating an NFA with a DFA

q
1

q
0

start
q

2

q
3

0 1

ε

q
4

0 q
5

0 q
5

q
2

0

1

q
03

start
q

14

0

q

1

q
5

0

q
2

1

q
2

q
5

Simulating an NFA with a DFA

q
1

q
0

start
q

2

q
3

0 1

ε

q
4

0 q
5

0 q
5

q
2

0

1

q
03

start
q

14

0

q

1

q
5

0

q
2

1

q
2

q
5

Simulating an NFA with a DFA

q
1

q
0

start
q

2

q
3

0 1

ε

q
4

0 q
5

0 q
5

q
2

0

1

q
03

start
q

14

0

q

1

q
5

0

q
2

1

q
2

q
5

Simulating an NFA with a DFA

q
1

q
0

start
q

2

q
3

0 1

ε

q
4

0 q
5

0 q
5

q
2

0

1

q
03

start
q

14

0

q

1

q
5

0

q
2

1

q
2

q
5

q
1

 0

Simulating an NFA with a DFA

q
1

q
0

start
q

2

q
3

0 1

ε

q
4

0 q
5

0 q
5

q
2

0

1

q
03

start
q

14

0

q

1

q
5

0

q
2

1

q
2

q
5

q
1

 0

1

Simulating an NFA with a DFA

q
1

q
0

start
q

2

q
3

0 1

ε

q
4

0 q
5

0 q
5

q
2

0

1

q
03

start
q

14

0

q

1

q
5

0

q
2

1

q
2

q
5

q
1

 0

1

Simulating an NFA with a DFA

q
1

q
0

start
q

2

q
3

0 1

ε

q
4

0 q
5

0 q
5

q
2

0

1

q
03

start
q

14

0

q

1

q
5

0

q
2

1

q
2

q
5

q
1

 0

1

Simulating an NFA with a DFA

q
1

q
0

start
q

2

q
3

0 1

ε

q
4

0 q
5

0 q
5

q
2

0

1

q
03

start
q

14

0

q

1

q
5

0

q
2

1

q
2

q
5

q
1

 0

1 0

Simulating an NFA with a DFA

q
1

q
0

start
q

2

q
3

0 1

ε

q
4

0 q
5

0 q
5

q
2

0

1

q
03

start
q

14

0

q

1

q
5

0

q
2

1

q
2

q
5

q
1

 0

1 0

q
3

 1

Simulating an NFA with a DFA

q
1

q
0

start
q

2

q
3

0 1

ε

q
4

0 q
5

0 q
5

q
2

0

1

q
03

start
q

14

0

q

1

q
5

0

q
2

1

q
2

q
5

q
1

 0

1 0

q
3

 1

Simulating an NFA with a DFA

q
1

q
0

start
q

2

q
3

0 1

ε

q
4

0 q
5

0 q
5

q
2

0

1

q
03

start
q

14

0

q

1

q
5

0

q
2

1

q
2

q
5

q
1

 0

1 0

q
3

 1

Simulating an NFA with a DFA

q
1

q
0

start
q

2

q
3

0 1

ε

q
4

0 q
5

0 q
5

q
2

0

1

q
03

start
q

14

0

q

1

q
5

0

q
2

1

q
2

q
5

q
1

 0

1 0

q
3

 1

 0

Simulating an NFA with a DFA

q
1

q
0

start
q

2

q
3

0 1

ε

q
4

0 q
5

0 q
5

q
2

0

1

q
03

start
q

14

0

q

1

q
5

0

q
2

1

q
2

q
5

q
1

 0

1 0

q
3

 1

 0
1

Simulating an NFA with a DFA

q
1

q
0

start
q

2

q
3

0 1

ε

q
4

0 q
5

0 q
5

q
2

0

1

q
03

start
q

14

0

q

1

q
5

0

q
2

1

q
2

q
5

q
1

 0

1 0

q
3

 1

 0
1

Simulating an NFA with a DFA

q
1

q
0

start
q

2

q
3

0 1

ε

q
4

0 q
5

0 q
5

q
2

0

1

q
03

start
q

14

0

q

1

q
5

0

q
2

1

q
2

q
5

q
1

 0

1 0

q
3

 1

 0
1

Simulating an NFA with a DFA

q
1

q
0

start
q

2

q
3

0 1

ε

q
4

0 q
5

0 q
5

q
2

0

1

q
03

start
q

14

0

q

1

q
5

0

q
2

1

q
2

q
5

q
1

 0

1 0

q
3

 1

 0
1

q
4 0

Simulating an NFA with a DFA

q
1

q
0

start
q

2

q
3

0 1

ε

q
4

0 q
5

0 q
5

q
2

0

1

q
03

start
q

14

0

q

1

q
5

0

q
2

1

q
2

q
5

q
1

 0

1 0

q
3

 1

 0
1

q
4 0

 1

Simulating an NFA with a DFA

q
1

q
0

start
q

2

q
3

0 1

ε

q
4

0 q
5

0 q
5

q
2

0

1

q
03

start
q

14

0

q

1

q
5

0

q
2

1

q
2

q
5

q
1

 0

1 0

q
3

 1

 0
1

q
4 0

 1

Simulating an NFA with a DFA

q
1

q
0

start
q

2

q
3

0 1

ε

q
4

0 q
5

0 q
5

q
2

0

1

q
03

start
q

14

0

q

1

q
5

0

q
2

1

q
2

q
5

q
1

 0

1 0

q
3

 1

 0
1

q
4 0

 1

Simulating an NFA with a DFA

q
1

q
0

start
q

2

q
3

0 1

ε

q
4

0 q
5

0 q
5

q
2

0

1

q
03

start
q

14

0

q

1

q
5

0

q
2

1

q
2

q
5

q
1

 0

1 0

q
3

 1

 0
1

q
4 0

 10

Simulating an NFA with a DFA

q
1

q
0

start
q

2

q
3

0 1

ε

q
4

0 q
5

0 q
5

q
2

0

1

q
03

start
q

14

0

q

1

q
5

0

q
2

1

q
2

q
5

q
1

 0

1 0

q
3

 1

 0
1

q
4 0

 10
1

Simulating an NFA with a DFA

q
1

q
0

start
q

2

q
3

0 1

ε

q
4

0 q
5

0 q
5

q
2

0

1

q
03

start
q

14

0

q

1

q
5

0

q
2

1

q
2

q
5

q
1

 0

1 0

q
3

 1

 0
1

q
4 0

 10
1

Simulating an NFA with a DFA

q
1

q
0

start
q

2

q
3

0 1

ε

q
4

0 q
5

0 q
5

q
2

0

1

q
03

start
q

14

0

q

1

q
5

0

q
2

1

q
2

q
5

q
1

 0

1 0

q
3

 1

 0
1

q
4 0

 10
1

Simulating an NFA with a DFA

q
1

q
0

start
q

2

q
3

0 1

ε

q
4

0 q
5

0 q
5

q
2

0

1

q
03

start
q

14

0

q

1

q
5

0

q
2

1

q
2

q
5

q
1

 0

1 0

q
3

 1

 0
1

q
4 0

 10
1

0, 1

Simulating an NFA with a DFA

q
1

q
0

start
q

2

q
3

0 1

ε

q
4

0 q
5

0 q
5

q
2

0

1

q
03

start
q

14

0

q

1

q
5

0

q
2

1

q
2

q
5

q
1

 0

1 0

q
3

 1

 0
1

q
4 0

 10
1

0, 1

Simulating an NFA with a DFA

q
1

q
0

start
q

2

q
3

0 1

ε

q
4

0 q
5

0 q
5

q
2

0

1

q
03

start
q

14

0

q

1

q
5

0

q
2

1

q
2

q
5

q
1

 0

1 0

q
3

 1

 0
1

q
4 0

 10
1

0, 1

0 0 1 0 0

Simulating an NFA with a DFA

q
1

q
0

start
q

2

q
3

0 1

ε

q
4

0 q
5

0 q
5

q
2

0

1

q
03

start
q

14

0

q

1

q
5

0

q
2

1

q
2

q
5

q
1

 0

1 0

q
3

 1

 0
1

q
4 0

 10
1

0, 1

0 0 1 0 0

Simulating an NFA with a DFA

q
1

q
0

start
q

2

q
3

0 1

ε

q
4

0 q
5

0 q
5

q
2

0

1

q
03

start
q

14

0

q

1

q
5

0

q
2

1

q
2

q
5

q
1

 0

1 0

q
3

 1

 0
1

q
4 0

 10
1

0, 1

0 0 1 0 0

Simulating an NFA with a DFA

q
1

q
0

start
q

2

q
3

0 1

ε

q
4

0 q
5

0 q
5

q
2

0

1

q
03

start
q

14

0

q

1

q
5

0

q
2

1

q
2

q
5

q
1

 0

1 0

q
3

 1

 0
1

q
4 0

 10
1

0, 1

0 0 1 0 0

Simulating an NFA with a DFA

q
1

q
0

start
q

2

q
3

0 1

ε

q
4

0 q
5

0 q
5

q
2

0

1

q
03

start
q

14

0

q

1

q
5

0

q
2

1

q
2

q
5

q
1

 0

1 0

q
3

 1

 0
1

q
4 0

 10
1

0, 1

0 0 1 0 0

Simulating an NFA with a DFA

q
1

q
0

start
q

2

q
3

0 1

ε

q
4

0 q
5

0 q
5

q
2

0

1

q
03

start
q

14

0

q

1

q
5

0

q
2

1

q
2

q
5

q
1

 0

1 0

q
3

 1

 0
1

q
4 0

 10
1

0, 1

0 0 1 0 0

Simulating an NFA with a DFA

q
1

q
0

start
q

2

q
3

0 1

ε

q
4

0 q
5

0 q
5

q
2

0

1

q
03

start
q

14

0

q

1

q
5

0

q
2

1

q
2

q
5

q
1

 0

1 0

q
3

 1

 0
1

q
4 0

 10
1

0, 1

0 0 1 0 0

Simulating an NFA with a DFA

q
1

q
0

start
q

2

q
3

0 1

ε

q
4

0 q
5

0 q
5

q
2

0

1

q
03

start
q

14

0

q

1

q
5

0

q
2

1

q
2

q
5

q
1

 0

1 0

q
3

 1

 0
1

q
4 0

 10
1

0, 1

0 0 1 0 0

Simulating an NFA with a DFA

q
1

q
0

start
q

2

q
3

0 1

ε

q
4

0 q
5

0 q
5

q
2

0

1

q
03

start
q

14

0

q

1

q
5

0

q
2

1

q
2

q
5

q
1

 0

1 0

q
3

 1

 0
1

q
4 0

 10
1

0, 1

0 0 1 0 0

Simulating an NFA with a DFA

q
1

q
0

start
q

2

q
3

0 1

ε

q
4

0 q
5

0 q
5

q
2

0

1

q
03

start
q

14

0

q

1

q
5

0

q
2

1

q
2

q
5

q
1

 0

1 0

q
3

 1

 0
1

q
4 0

 10
1

0, 1

0 0 1 0 0

Simulating an NFA with a DFA

q
1

q
0

start
q

2

q
3

0 1

ε

q
4

0 q
5

0 q
5

q
2

0

1

q
03

start
q

14

0

q

1

q
5

0

q
2

1

q
2

q
5

q
1

 0

1 0

q
3

 1

 0
1

q
4 0

 10
1

0, 1

0 0 1 0 0

Simulating an NFA with a DFA

q
1

q
0

start
q

2

q
3

0 1

ε

q
4

0 q
5

0 q
5

q
2

0

1

q
03

start
q

14

0

q

1

q
5

0

q
2

1

q
2

q
5

q
1

 0

1 0

q
3

 1

 0
1

q
4 0

 10
1

0, 1

0 0 1 0 0

Simulating an NFA with a DFA

q
1

q
0

start
q

2

q
3

0 1

ε

q
4

0 q
5

0 q
5

q
2

0

1

q
03

start
q

14

0

q

1

q
5

0

q
2

1

q
2

q
5

q
1

 0

1 0

q
3

 1

 0
1

q
4 0

 10
1

0, 1

0 0 1 0 0

The Subset Construction

● This construction for transforming an NFA into a DFA is
called the subset construction (or sometimes the
powerset construction).

● Intuitively:
● States of the new DFA correspond to sets of states of the NFA.
● The initial state is the start state, plus all states reachable from

the start state via ε-transitions.
● Transition on state S on character a is found by following all

possible transitions on a for each state in S, then taking the set
of states reachable from there by ε-transitions.

● Accepting states are any set of states where some state in the set
is an accepting state.

● Read Sipser for a formal account.

The Subset Construction

● In converting an NFA to a DFA, the DFA's
states correspond to sets of NFA states.

● Fact: |℘(S)| = 2 |S| for any finite set S.
● In the worst-case, the construction can

result in a DFA that is exponentially
larger than the original NFA.

● Interesting challenge: Find a language
for which this worst-case behavior occurs
(there are infinitely many of them!)

A language L is called a regular language
iff there exists a DFA D such that (ℒ D) = L.

An Important Result

Theorem: A language L is regular iff there
is some NFA N such that (ℒ N) = L.

Proof Sketch: If L is regular, there exists
some DFA for it, which we can easily
convert into an NFA. If L is accepted by
some NFA, we can use the subset
construction to convert it into a DFA that
accepts the same language, so L is
regular. ■

Why This Matters

● Constructions on DFAs allowed us to
prove that regular languages are closed
under complement, intersection, and
difference.

● We can now also use constructions on
NFAs to prove that regular languages are
closed under other properties.

The Union of Two Languages

● If L1 and L2 are languages over the alphabet Σ, the
language L1 ∪ L2 is the language of all strings in at
least one of the two languages.

● If L1 and L2 are regular languages, is L1 ∪ L2?

The Union of Two Languages

● If L1 and L2 are languages over the alphabet Σ, the
language L1 ∪ L2 is the language of all strings in at
least one of the two languages.

● If L1 and L2 are regular languages, is L1 ∪ L2?

L
1

L
2

start

start

The Union of Two Languages

● If L1 and L2 are languages over the alphabet Σ, the
language L1 ∪ L2 is the language of all strings in at
least one of the two languages.

● If L1 and L2 are regular languages, is L1 ∪ L2?

start

L
1

L
2

start

start

The Union of Two Languages

● If L1 and L2 are languages over the alphabet Σ, the
language L1 ∪ L2 is the language of all strings in at
least one of the two languages.

● If L1 and L2 are regular languages, is L1 ∪ L2?

start

ε

ε

L
1

L
2

The Intersection of Two Languages

● If L1 and L2 are languages over Σ, then
L1 ∩ L2 is the language of strings in both
L1 and L2.

● Question: If L1 and L2 are regular, is
L1 ∩ L2 regular as well?

● If L1 and L2 are languages over Σ, then
L1 ∩ L2 is the language of strings in both
L1 and L2.

● Question: If L1 and L2 are regular, is
L1 ∩ L2 regular as well?

L
1

The Intersection of Two Languages

L
2

 L
1

L
2

● If L1 and L2 are languages over Σ, then
L1 ∩ L2 is the language of strings in both
L1 and L2.

● Question: If L1 and L2 are regular, is
L1 ∩ L2 regular as well?

The Intersection of Two Languages

● If L1 and L2 are languages over Σ, then
L1 ∩ L2 is the language of strings in both
L1 and L2.

● Question: If L1 and L2 are regular, is
L1 ∩ L2 regular as well?

L
1
 ∪ L

2

The Intersection of Two Languages

● If L1 and L2 are languages over Σ, then
L1 ∩ L2 is the language of strings in both
L1 and L2.

● Question: If L1 and L2 are regular, is
L1 ∩ L2 regular as well?

L
1
 ∪ L

2

The Intersection of Two Languages

Concatenation

● The concatenation of two languages L1
and L2 over the alphabet Σ is the
language

L1 L2 = { wx ∈ Σ* | w ∈ L1 ∧ x ∈ L2 }

● The set of strings that can be split into
two pieces: a string from L1 and a string
from L2.

Concatenation Example

● Let Σ = { a, b, …, z, A, B, …, Z } and consider
these languages over Σ:
● Noun = { Velociraptor, Rainbow, Whale, … }

● Verb = { Eats, Juggles, Loves, … }

● The = { The }

● The language TheNounVerbTheNoun is

{ TheVelociraptorEatsTheWhale,
 TheWhaleLovesTheRainbow,
 TheRainbowJugglesTheRainbow, … }

Concatenating Regular Languages

● If L1 and L2 are regular languages, is L1L2?

● Intuition – can we split a string w into two strings
xy such at x ∈ L1 and y ∈ L2?

● Idea: Run the automaton for L1 on w, and
whenever L1 reaches an accepting state,
optionally hand the rest off w to L2.

● If L2 accepts the remainder, then L1 accepted the first
part and the string is in L1L2.

● If L2 rejects the remainder, then the split was
incorrect.

Concatenating Regular Languages

Concatenating Regular Languages

start start

Concatenating Regular Languages

start start
start start

Concatenating Regular Languages

start

ε

ε

ε

start

Concatenating Regular Languages

start

ε

ε

ε

start

Lots and Lots of Concatenation

● Consider the language L = { aa, b }

● LL is the set of strings formed by concatenating pairs
of strings in L.
● { aaaa, aab, baa, bb }

● LLL is the set of strings formed by concatenating
triples of strings in L.
● { aaaaaa, aaaab, aabaa, aabb, baaaa, baab, bbaa, bbb}

● LLLL is the set of strings formed by concatenating
quadruples of strings in L.
● { aaaaaaaa, aaaaaab, aaaabaa, aaaabb, aabaaaa, aabaab,
aabbaa, aabbb, baaaaaa, baaaab, baabaa, baabb, bbaaaa,
bbaab, bbbaa, bbbb}

Language Exponentiation

● We can define what it means to
“exponentiate” a language as follows:

● L0 = { ε }
● The set containing just the empty string.
● Idea: Any string formed by concatenating zero

strings together is the empty string.

● Ln + 1 = LLn

● Idea: Concatenating (n + 1) strings together
works by concatenating n strings, then
concatenating one more.

The Kleene Closure

● An important operation on languages is
the Kleene Closure, which is defined as

● Intuitively, all possible ways of
concatenating any number of copies of
strings in L together.

∪
i = 0

∞
Li L* =

The Kleene Closure

● An important operation on languages is
the Kleene Closure, which is defined as

● Intuitively, all possible ways of
concatenating any number of copies of
strings in L together.

∪
i = 0

∞
Li

This is an infinite union of
sets. It is defined as “the
set of all x contained in Li
for any natural number i.”

 L* =

The Kleene Closure

● An important operation on languages is
the Kleene Closure, which is defined as

● Intuitively, all possible ways of
concatenating any number of copies of
strings in L together.

∪
i = 0

∞
Li L* =

The Kleene Closure

If L = { a, bb }, then L* = {

ε,

a, bb,

aa, abb, bba, bbbb,

aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb,

…

}

Reasoning about Infinity

● How do we prove properties of this
infinite union?

● A Bad Line of Reasoning:
● L0 = { ε } is regular.
● L1 = L is regular.
● L2 = LL is regular
● L3 = L(LL) is regular
● …
● So their infinite union is regular.

Reasoning about Infinity

Reasoning about Infinity

x

x

Reasoning about Infinity

x

x

Reasoning about Infinity

x

x

Reasoning about Infinity

x

x

Reasoning about Infinity

x

x

Reasoning About the Infinite

● If a series of finite objects all have some
property, their infinite union does not
necessarily have that property!
● No matter how many times we zigzag that line, it's

never straight.
● Concluding that it must be equal “in the limit” is

not mathematically precise.
● (This is why calculus is interesting).

● A better intuition: Can we convert an NFA
for the language L to an NFA for the language
L*?

The Kleene Star

start

The Kleene Star

εstart

The Kleene Star

εstart

The Kleene Star

εstart

ε

ε

Kleene Star in Action
L = { ma, mom, mommy, mum }

Kleene Star in Action
L = { ma, mom, mommy, mum }

m o m

u

a

m

m ystart

Kleene Star in Action
L = { ma, mom, mommy, mum }

m o m

u

a

m

m yεstart

Kleene Star in Action
L = { ma, mom, mommy, mum }

m o m

u

a

m

m y

ε

ε

ε

ε

εstart

Kleene Star in Action
L = { ma, mom, mommy, mum }

m o m

u

a

m

m y

ε

ε

ε

ε

εstart

m a m o mm m u m

m o m

u

a

m

m y

ε

ε

Kleene Star in Action
L = { ma, mom, mommy, mum }

ε

ε

ε

ε

start

m a m o mm m u m

m o m

u

a

m

m y

ε

ε

Kleene Star in Action
L = { ma, mom, mommy, mum }

ε

ε

ε

ε

start

m a m o mm m u m

m o m

u

a

m

m y

ε

ε

Kleene Star in Action
L = { ma, mom, mommy, mum }

ε

ε
ε

start

m a m o mm m u m

ε

m o m

u

a

m

m y

ε

ε

Kleene Star in Action
L = { ma, mom, mommy, mum }

ε

ε

ε

ε

start

m a m o mm m u m

m o m

u

a

m

m y

ε

ε

Kleene Star in Action
L = { ma, mom, mommy, mum }

ε

ε

ε

ε

start

m a m o mm m u m

m o m

u

a

m

m y

ε

ε

Kleene Star in Action
L = { ma, mom, mommy, mum }

ε

ε

ε

ε

start

m a m o mm m u m

m o m

u

a

m

m y

ε

ε

Kleene Star in Action
L = { ma, mom, mommy, mum }

ε

ε

ε

ε

start

m a m o mm m u m

m o m

u

a

m

m y

ε

ε

Kleene Star in Action
L = { ma, mom, mommy, mum }

ε

ε

ε

ε

start

m a m o mm m u m

m o m

u

a

m

m y

ε

ε

Kleene Star in Action
L = { ma, mom, mommy, mum }

ε

ε

ε

ε

start

m a m o mm m u m

m o m

u

a

m

m y

ε

ε

Kleene Star in Action
L = { ma, mom, mommy, mum }

ε

ε

ε

ε

start

m a m o mm m u m

m o m

u

a

m

m y

ε

ε

Kleene Star in Action
L = { ma, mom, mommy, mum }

ε

ε

ε

ε

start

m a m o mm m u m

m o m

u

a

m

m y

ε

ε

Kleene Star in Action
L = { ma, mom, mommy, mum }

ε

ε

ε

ε

start

m a m o mm m u m

m o m

u

a

m

m y

ε

ε

Kleene Star in Action
L = { ma, mom, mommy, mum }

ε

ε

ε

ε

start

m a m o mm m u m

m o m

u

a

m

m y

ε

ε

Kleene Star in Action
L = { ma, mom, mommy, mum }

ε

ε

ε

ε

start

m a m o mm m u m

m o m

u

a

m

m y

ε

ε

Kleene Star in Action
L = { ma, mom, mommy, mum }

ε

ε

ε

ε

start

m a m o mm m u m

m o m

u

a

m

m y

ε

ε

Kleene Star in Action
L = { ma, mom, mommy, mum }

ε

ε

ε

ε

start

m a m o mm m u m

m o m

u

a

m

m y

ε

ε

Kleene Star in Action
L = { ma, mom, mommy, mum }

ε

ε

ε

ε

start

m a m o mm m u m

m o m

u

a

m

m y

ε

ε

Kleene Star in Action
L = { ma, mom, mommy, mum }

ε

ε

ε

ε

start

m a m o mm m u m

m o m

u

a

m

m y

ε

ε

Kleene Star in Action
L = { ma, mom, mommy, mum }

ε

ε

ε

ε

start

m a m o mm m u m

m o m

u

a

m

m y

ε

ε

Kleene Star in Action
L = { ma, mom, mommy, mum }

ε

ε

ε

ε

start

m a m o mm m u m

m o m

u

a

m

m y

ε

ε

Kleene Star in Action
L = { ma, mom, mommy, mum }

ε

ε

ε

ε

start

m a m o mm m u m

m o m

u

a

m

m y

ε

ε

Kleene Star in Action
L = { ma, mom, mommy, mum }

ε

ε

ε

ε

start

m a m o mm m u m

m o m

u

a

m

m y

ε

ε

Kleene Star in Action
L = { ma, mom, mommy, mum }

ε

ε

ε

ε

start

m a m o mm m u m

m o m

u

a

m

m y

ε

ε

Kleene Star in Action
L = { ma, mom, mommy, mum }

ε

ε

ε

ε

start

m a m o mm m u m

m o m

u

a

m

m y

ε

ε

Kleene Star in Action
L = { ma, mom, mommy, mum }

ε

ε

ε

ε

start

m a m o mm m u m

Summary

● NFAs are a powerful type of automaton that allows
for nondeterministic choices.

● NFAs can also have ε-transitions that move from
state to state without consuming any input.

● The subset construction shows that NFAs are
not more powerful than DFAs, because any NFA
can be converted into a DFA that accepts the same
language.

● The union, intersection, difference, complement,
concatenation, and Kleene closure of regular
languages are all regular languages.

Another View of Regular Languages

Rethinking Regular Languages

● We currently have several tools for
showing a language is regular.
● Construct a DFA for it.
● Construct an NFA for it.
● Apply closure properties to existing

languages.

● We have not spoken much of this last
idea.

Constructing Regular Languages

● Idea: Build up all regular languages as
follows:
● Start with a small set of simple languages we

already know to be regular.
● Using closure properties, combine these

simple languages together to form more
elaborate languages.

● A bottom-up approach to the regular
languages.

Regular Expressions

● Regular expressions are a family of
descriptions that can be used to capture
the regular languages.

● Often provide a compact and human-
readable description of the language.

● Used as the basis for numerous software
systems (Perl, flex, grep, etc.)

Atomic Regular Expressions

● The regular expressions begin with three
simple building blocks.

● The symbol Ø is a regular expression
that represents the empty language Ø.

● The symbol ε is a regular expression that
represents the language { ε }
● This is not the same as Ø!

● For any a ∈ Σ, the symbol a is a regular
expression for the language { a }

Compound Regular Expressions

● We can combine together existing regular expressions
in four ways.

● If R1 and R2 are regular expressions, R1R2 is a regular
expression represents the concatenation of the
languages of R1 and R2.

● If R1 and R2 are regular expressions, R1 | R2 is a
regular expression representing the union of R1 and
R2.

● If R is a regular expression, R* is a regular expression
for the Kleene closure of R.

● If R is a regular expression, (R) is a regular
expression with the same meaning as R.

Operator Precedence

● Regular expression operator precedence
is

(R)

R*

R1R2

R1 | R2

● So ab*c|d is parsed as ((a(b*))c)|d

Regular Expression Examples

● The regular expression trick|treat
represents the regular language { trick,
treat }

● The regular expression booo* represents
the regular language { boo, booo, boooo,
… }

● The regular expression candy!(candy!)*
represents the regular language { candy!,
candy!candy!, candy!candy!candy!, … }

Regular Expressions, Formally

● The language of a regular expression is the
language described by that regular expression.

● Formally:
● ℒ(ε) = {ε}
● ℒ(Ø) = Ø
● ℒ(a) = {a}

● ℒ(R1 R2) = (Rℒ 1) (Rℒ 2)

● ℒ(R1 | R2) = (Rℒ 1) ∪ (Rℒ 2)

● ℒ(R*) = (R)*ℒ
● ℒ((R)) = (R)ℒ

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165

