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Announcements

● Practice midterm solutions available.
● Second practice midterm available.
● Midterm review session this Saturday, 

October 27 at 2PM in Gates 104.
● Come with questions!
● Leave with answers!

● Problem Set 3 and Problem Set 4 Checkpoints 
graded; will be returned at end of lecture.



  

A Friendly Reminder

∀ goes with →

∃ goes with ∧



  

Finite Automata



  

DFAs, Informally

● A DFA is defined relative to some 
alphabet Σ.

● For each state in the DFA, there must be 
exactly one transition defined for each 
symbol in the alphabet.
● This is the “deterministic” part of DFA.

● There is a unique start state.
● There may be multiple accepting states.



  

Recognizing Languages with DFAs

L = { w ∈ {0, 1}* | w contains 00 as a substring }
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Recognizing Languages with DFAs

L = { w ∈ {0, 1}*| all even-numbered characters of w are 0 }
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More Elaborate DFAs
L = { w | w is a C-style comment  }

Suppose the alphabet is

Σ = { a, *, / }

Try designing a DFA for comments!

Some test cases: 

    ACCEPTED        REJECTED  
 /*a*/          /**
  /**/         /**/a

    /***/         aaa/**/ 
/*aaa*aaa*/        /*/  



  

More Elaborate DFAs
L = { w | w is a C-style comment  }
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More Elaborate DFAs
L = { w | w is a C-style comment  }
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More Elaborate DFAs

L = { w | w is a legal email address  }
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Tabular DFAs
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Code‽  In a Theory Course‽
int kTransitionTable[kNumStates][kNumSymbols] = { 
     {0, 0, 1, 3, 7, 1, …}, 
      …
};
bool kAcceptTable[kNumStates] = {
    false,
    true,
    true,
    …
};
bool SimulateDFA(string input) {
    int state = 0;
    for (char ch: input)
        state = kTransitionTable[state][ch];
    return kAcceptTable[state];
}



  

The Complexity of Addition
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Our Alphabet
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● Formally, a DFA is a 5-tuple (Q, Σ, δ, q0, F) 
where
● Q is a set of states.
● Σ is an alphabet.
● δ : Q × Σ → Q is the transition function.

● q0 ∈ Q is the start state.

● F ⊆ Q is a set of accepting states.

A Formal Definition of DFAs



  

A Formal Definition of Acceptance

● Given a DFA D = (Q, Σ, δ, q0, F), we can 
formally define what it means for D to 
accept a string w ∈ Σ*.

● Idea: Define a function δ* : Σ* → Q that 
says what state we end up in if we run 
the DFA on a given string.

● This function represents the effect of 
running the computer on a given input.



  

A Formal Definition of Acceptance

● Notation: If ω is a string and a is a character, 
then ωa is the string formed by appending a to ω.

● Given a DFA (Q, Σ, δ, q0, F), δ* is defined 
recursively.

● δ* (ε) = q0

● Running the automaton on ε ends in the start state.

● δ* (ωa) = δ(δ*(ω), a)

● Running on ωa is equal to running the automaton 
on ω, then following the transition for a.



  

A Formal Definition of Acceptance

● Using our δ* function, we can formally 
define the language of a DFA.

● Let D = (Q, Σ, δ, q0, F) be a DFA.

● Define ℒ(D) = { w ∈ Σ* | δ* (w) ∈ F }
● The set of strings w that cause the DFA to 

end up in an accepting state.



  

So What?

● We now have a mathematically rigorous 
way of defining whether a DFA accepts a 
string.

● We can try making changes to DFAs and 
can formally prove how those changes 
transform the language of the DFA.



  

A language L is called a regular language 
iff there exists a DFA D such that (ℒ D) = L.



  

The Complement of a Language

● Given a language L ⊆ Σ*, the complement 
of that language (denoted L) is the 
language of all strings in Σ* not in L.

● Formally:

L = Σ* - L



  

Complementing Regular Languages

● Recall: A regular language is a 
language accepted by some DFA.

● Question: If L is a regular language, is L 
a regular language?

● If the answer is “yes,” then there must be 
some way to construct a DFA for L.

● If the answer is “no,” then some 
language L can be accepted by a DFA, 
but L cannot be accepted by any DFA.



  

Complementing Regular Languages

L = { w ∈ {0, 1}* | w contains 00 as a substring }

q
0

start
q

1
q

2

0 0

1

1

            0, 1

L = { w ∈ {0, 1}* | w does not contain 00 as a substring }
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Complementing Regular Languages

L = { w | w is not a legal email address  }
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Constructions on Automata

● Much of our discussion of automata will 
consider constructions that transform 
one automaton into another.

● Exchanging accepting and rejecting 
states is a simple construction sometimes 
called the complement construction.

● Does this construction always work?
● How would we prove it?



  

Theorem: If D = (Q, Σ, δ, q0, F) is a DFA with language (ℒ D), 

then the DFA D' = (Q, Σ, δ, q0, Q – F) has language (ℒ D).
 

Proof: By definition, (ℒ D') = { w ∈ Σ* | δ*(w) ∈ Q – F }.  So 
 

    ℒ(D') = { w ∈ Σ* | δ*(w) ∈ Q ∧ δ*(w) ∉ F }
    ℒ(D') = { w ∈ Σ* | δ*(w) ∈ Q } – { w ∈ Σ* | δ*(w) ∈ F }
 

Since δ* : Σ* → Q, any string w ∈ Σ* satisfies δ*(w) ∈ Q.  Thus 
 

    ℒ(D') = { w ∈ Σ* | w ∈ Σ* } - { w ∈ Σ* | δ*(w) ∈ F }
    ℒ(D') = Σ* - {w ∈ Σ* | δ*(w) ∈ F }
    ℒ(D') = Σ* - (ℒ D)
    ℒ(D') = (ℒ D). ■



  

Closure Properties

● If L is a regular language, L is a regular 
language.

● If we begin with a regular language and 
complement it, we end up with a regular 
language.

● This is an example of a closure property of 
regular languages.
● The regular languages are closed under 

complementation.
● We'll see more such properties later on.



  

NFAs



  

NFAs

● An NFA is a
● Nondeterministic
● Finite
● Automaton

● Conceptually similar to a DFA, but 
equipped with the vast power of 
nondeterminism.



  

(Non)determinism

● A model of computation is deterministic if at 
every point in the computation, there is exactly 
one choice that can make.

● The machine accepts if that series of choices 
leads to an accepting state.

● A model of computation is nondeterministic if 
the computing machine may have multiple 
decisions that it can make at one point.

● The machine accepts if any series of choices 
leads to an accepting state.



  

A Simple NFA

q
0

q
1

q
2

start 1 1 q
2

              0, 1

q
3

0             0, 1

              0, 1

q0 has two transitions 
defined on 1!

q0 has two transitions 
defined on 1!



  

q
0

q
0

q
1

q
2

q
2

A More Complex NFA
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Intuiting Nondeterminism

● Nondeterministic machines are a serious 
departure from physical computers.

● How can we build up an intuition for 
them?

● Three approaches:
● Tree computation
● Perfect guessing
● Massive parallelism



  

Tree Computation
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Nondeterminism as a Tree

● At each decision point, the automaton 
clones itself for each possible decision.

● The series of choices forms a directed, 
rooted tree.

● At the end, if any active accepting states 
remain, we accept.



  

Perfect Guessing

● We can view nondeterministic machines as having 
Magic Superpowers that enable them to guess 
the correct choice of moves to make.

● Idea: Machine can always guess the right choice if 
one exists.

● No physical analog for something of this sort.
● (Those of you thinking quantum computing – this is not 

the same thing.  We actually don't fully know the 
relation between quantum and nondeterministic 
computation.)



  

Massive Parallelism

● An NFA can be thought of as a DFA that 
can be in many states at once.

● Each symbol read causes a transition on 
every active state into each potential state 
that could be visited.

● Nondeterministic machines can be thought 
of as machines that can try any number of 
options in parallel.
● No fixed limit on processors; makes multicore 

machines look downright wimpy!



  

So What?

● We will turn to these three intuitions for 
nondeterminism more later in the quarter.

● Nondeterministic machines may not be feasible, but 
they give a great basis for interesting questions:
● Can any problem that can be solved by a 

nondeterministic machine be solved by a deterministic 
machine?

● Can any problem that can be solved by a 
nondeterministic machine be solved efficiently by a 
deterministic machine?

● The answers vary from automaton to automaton.
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ε-Transitions

● NFAs have a special type of transition called 
the ε-transition.

● An NFA may follow any number of ε-transitions 
at any time without consuming any input.
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ε-Transitions

● NFAs have a special type of transition called 
the ε-transition.

● An NFA may follow any number of ε-transitions 
at any time without consuming any input.
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A Formal Definition of NFAs

● Formally, an NFA is a 5-tuple (Q, Σ, δ, q0, F) where

● Q is a set of states.
● Σ is an alphabet.
● δ : Q × (Σ ∪ {ε}) → ℘(Q) is the transition function.

● q0 ∈ Q is the start state.

● F ⊆ Q is a set of accepting states.
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