

Finite Automata
Part Two

Announcements

● Practice midterm solutions available.
● Second practice midterm available.
● Midterm review session this Saturday,

October 27 at 2PM in Gates 104.
● Come with questions!
● Leave with answers!

● Problem Set 3 and Problem Set 4 Checkpoints
graded; will be returned at end of lecture.

A Friendly Reminder

∀ goes with →

∃ goes with ∧

Finite Automata

DFAs, Informally

● A DFA is defined relative to some
alphabet Σ.

● For each state in the DFA, there must be
exactly one transition defined for each
symbol in the alphabet.
● This is the “deterministic” part of DFA.

● There is a unique start state.
● There may be multiple accepting states.

Recognizing Languages with DFAs

L = { w ∈ {0, 1}* | w contains 00 as a substring }

q
0

start
q

1
q

2

0 0

1

1

 0, 1

Recognizing Languages with DFAs

L = { w ∈ {0, 1}*| all even-numbered characters of w are 0 }

q
0

start
q

1

q
2

0

1
0, 1

 0, 1

q
0

q
1

More Elaborate DFAs
L = { w | w is a C-style comment }

Suppose the alphabet is

Σ = { a, *, / }

Try designing a DFA for comments!

Some test cases:

 ACCEPTED REJECTED
 /*a*/ /**
 /**/ /**/a

 /***/ aaa/**/
/*aaa*aaa*/ /*/

More Elaborate DFAs
L = { w | w is a C-style comment }

q
1

start
q

2
* q

3

*
q

4
/q

0
/

q
5

 a, / *

a

a, *

/, a

a, *, /

a, *, /

More Elaborate DFAs
L = { w | w is a C-style comment }

q
1

start
q

2
* q

3

*
q

4
/q

0
/

q
5

 a, / *

a

a, *

/, a

Σ

Σ

More Elaborate DFAs

L = { w | w is a legal email address }

q
1

start
q

3
@

q
2

. a

q
0

a

 a a

q
5

. q
6

q
7

. a

 a

a

q
8

@, .

., @ @ @, .
 @

@, .

q
0

q
4

q
0

a

@, .
Σ

Tabular DFAs

start
q

0
q

0

1

q
1

q
2 q

3

0 1 0

1

0

 0, 1

*q
0

q
1

q
2

q
3

0 1

q
0

q
1

q
2

q
3

q
3

q
3

q
0

q
3

The star indicates
that this is an
accepting state.

The star indicates
that this is an
accepting state.

Code‽ In a Theory Course‽
int kTransitionTable[kNumStates][kNumSymbols] = {
 {0, 0, 1, 3, 7, 1, …},
 …
};
bool kAcceptTable[kNumStates] = {
 false,
 true,
 true,
 …
};
bool SimulateDFA(string input) {
 int state = 0;
 for (char ch: input)
 state = kTransitionTable[state][ch];
 return kAcceptTable[state];
}

The Complexity of Addition

+

1

1 0 11

100

01101

Our Alphabet

0

0

0

0

0

1

1

0

0

1

0

1

0

1

0

0

1

1

1

1

0

1

1

1
, , , , , , ,

R0

error

R1

0
0
-
1

1
1
-
0

Σ

1 0 0
0 1 0
- - -
1 1 0

1 1 0
1 0 1
- - -
1 0 0

 1 1 1 0
 1 1 0 1
 - - - -
 0 1 0 0

1 0 0 0
0 1 0 0
- - - -
1 1 0 1

R0

sta
rt

● Formally, a DFA is a 5-tuple (Q, Σ, δ, q0, F)
where
● Q is a set of states.
● Σ is an alphabet.
● δ : Q × Σ → Q is the transition function.

● q0 ∈ Q is the start state.

● F ⊆ Q is a set of accepting states.

A Formal Definition of DFAs

A Formal Definition of Acceptance

● Given a DFA D = (Q, Σ, δ, q0, F), we can
formally define what it means for D to
accept a string w ∈ Σ*.

● Idea: Define a function δ* : Σ* → Q that
says what state we end up in if we run
the DFA on a given string.

● This function represents the effect of
running the computer on a given input.

A Formal Definition of Acceptance

● Notation: If ω is a string and a is a character,
then ωa is the string formed by appending a to ω.

● Given a DFA (Q, Σ, δ, q0, F), δ* is defined
recursively.

● δ* (ε) = q0

● Running the automaton on ε ends in the start state.

● δ* (ωa) = δ(δ*(ω), a)

● Running on ωa is equal to running the automaton
on ω, then following the transition for a.

A Formal Definition of Acceptance

● Using our δ* function, we can formally
define the language of a DFA.

● Let D = (Q, Σ, δ, q0, F) be a DFA.

● Define ℒ(D) = { w ∈ Σ* | δ* (w) ∈ F }
● The set of strings w that cause the DFA to

end up in an accepting state.

So What?

● We now have a mathematically rigorous
way of defining whether a DFA accepts a
string.

● We can try making changes to DFAs and
can formally prove how those changes
transform the language of the DFA.

A language L is called a regular language
iff there exists a DFA D such that (ℒ D) = L.

The Complement of a Language

● Given a language L ⊆ Σ*, the complement
of that language (denoted L) is the
language of all strings in Σ* not in L.

● Formally:

L = Σ* - L

Complementing Regular Languages

● Recall: A regular language is a
language accepted by some DFA.

● Question: If L is a regular language, is L
a regular language?

● If the answer is “yes,” then there must be
some way to construct a DFA for L.

● If the answer is “no,” then some
language L can be accepted by a DFA,
but L cannot be accepted by any DFA.

Complementing Regular Languages

L = { w ∈ {0, 1}* | w contains 00 as a substring }

q
0

start
q

1
q

2

0 0

1

1

 0, 1

L = { w ∈ {0, 1}* | w does not contain 00 as a substring }

q
0

start
q

1
q

2

0 0

1

1

 0, 1

Complementing Regular Languages

L = { w | w is not a legal email address }

q
1

start
q

3
@

q
2

. a

q
0

a

 a a

q
5

. q
6

q
7

. a

 a

a

q
8

@, .

., @ @ @, .
 @

@, .

q
0

q
4

q
0

a

@, .
Σ

q
0

q
1

q
3 q

4
q

5

q
7

q
8

q
2

Constructions on Automata

● Much of our discussion of automata will
consider constructions that transform
one automaton into another.

● Exchanging accepting and rejecting
states is a simple construction sometimes
called the complement construction.

● Does this construction always work?
● How would we prove it?

Theorem: If D = (Q, Σ, δ, q0, F) is a DFA with language (ℒ D),

then the DFA D' = (Q, Σ, δ, q0, Q – F) has language (ℒ D).

Proof: By definition, (ℒ D') = { w ∈ Σ* | δ*(w) ∈ Q – F }. So

 ℒ(D') = { w ∈ Σ* | δ*(w) ∈ Q ∧ δ*(w) ∉ F }
 ℒ(D') = { w ∈ Σ* | δ*(w) ∈ Q } – { w ∈ Σ* | δ*(w) ∈ F }

Since δ* : Σ* → Q, any string w ∈ Σ* satisfies δ*(w) ∈ Q. Thus

 ℒ(D') = { w ∈ Σ* | w ∈ Σ* } - { w ∈ Σ* | δ*(w) ∈ F }
 ℒ(D') = Σ* - {w ∈ Σ* | δ*(w) ∈ F }
 ℒ(D') = Σ* - (ℒ D)
 ℒ(D') = (ℒ D). ■

Closure Properties

● If L is a regular language, L is a regular
language.

● If we begin with a regular language and
complement it, we end up with a regular
language.

● This is an example of a closure property of
regular languages.
● The regular languages are closed under

complementation.
● We'll see more such properties later on.

NFAs

NFAs

● An NFA is a
● Nondeterministic
● Finite
● Automaton

● Conceptually similar to a DFA, but
equipped with the vast power of
nondeterminism.

(Non)determinism

● A model of computation is deterministic if at
every point in the computation, there is exactly
one choice that can make.

● The machine accepts if that series of choices
leads to an accepting state.

● A model of computation is nondeterministic if
the computing machine may have multiple
decisions that it can make at one point.

● The machine accepts if any series of choices
leads to an accepting state.

A Simple NFA

q
0

q
1

q
2

start 1 1 q
2

 0, 1

q
3

0 0, 1

 0, 1

q0 has two transitions
defined on 1!

q0 has two transitions
defined on 1!

q
0

q
0

q
1

q
2

q
2

A More Complex NFA

q
1

q
2

start 1 1 q
2

 0, 1

If a NFA needs to make a
transition when no transition

exists, the automaton dies and
that particular path rejects.

If a NFA needs to make a
transition when no transition

exists, the automaton dies and
that particular path rejects.

Intuiting Nondeterminism

● Nondeterministic machines are a serious
departure from physical computers.

● How can we build up an intuition for
them?

● Three approaches:
● Tree computation
● Perfect guessing
● Massive parallelism

Tree Computation

q
0

start
q

1
q

2

q
3

0 1

1

q
4

0

 1

q
5

0

0, 1

q
5

q
2

0 1 0 1 0

q
0

q
1

q
2

q
4

q
4

q
5

q
4

q
4

q
5

Nondeterminism as a Tree

● At each decision point, the automaton
clones itself for each possible decision.

● The series of choices forms a directed,
rooted tree.

● At the end, if any active accepting states
remain, we accept.

Perfect Guessing

● We can view nondeterministic machines as having
Magic Superpowers that enable them to guess
the correct choice of moves to make.

● Idea: Machine can always guess the right choice if
one exists.

● No physical analog for something of this sort.
● (Those of you thinking quantum computing – this is not

the same thing. We actually don't fully know the
relation between quantum and nondeterministic
computation.)

Massive Parallelism

● An NFA can be thought of as a DFA that
can be in many states at once.

● Each symbol read causes a transition on
every active state into each potential state
that could be visited.

● Nondeterministic machines can be thought
of as machines that can try any number of
options in parallel.
● No fixed limit on processors; makes multicore

machines look downright wimpy!

So What?

● We will turn to these three intuitions for
nondeterminism more later in the quarter.

● Nondeterministic machines may not be feasible, but
they give a great basis for interesting questions:
● Can any problem that can be solved by a

nondeterministic machine be solved by a deterministic
machine?

● Can any problem that can be solved by a
nondeterministic machine be solved efficiently by a
deterministic machine?

● The answers vary from automaton to automaton.

q
1

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

q
0

start
q

2

q
3

0 1

ε

q
4

0 q
5

0 q
5

q
2

0

1

q
1

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

q
0

start
q

2

q
3

0 1

ε

q
4

0 q
5

0 q
5

q
2

0 0 1 0 0

0

1

A Formal Definition of NFAs

● Formally, an NFA is a 5-tuple (Q, Σ, δ, q0, F) where

● Q is a set of states.
● Σ is an alphabet.
● δ : Q × (Σ ∪ {ε}) → ℘(Q) is the transition function.

● q0 ∈ Q is the start state.

● F ⊆ Q is a set of accepting states.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

